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A Note on Homological Dimensions of
Artinian Local Cohomology Modules
Kamal Bahmanpour

Abstract. Let (R, m) be a non-zero commutative Noetherian local ring (with identity) and let M be a
non-zero finitely generated R-module. In this paper for any p ∈ Spec(R) we show that

injdim
Rp

H
i−dim(R/p)
pRp

(Mp) and fdRp H
i−dim(R/p)
pRp

(Mp)

are bounded from above by injdim
R

Hi
m(M) and fdR Hi

m(M) respectively, for all integers i ≥ dim(R/p).

1 Introduction

Let R be a commutative ring with identity and I be an ideal of R. For an arbitrary
R-module M, the i-th local cohomology module of M with respect to I is defined as

Hi
I(M) = lim

−→
n≥1

Exti
R(R/In,M).

We refer the reader to [2, 4] for more details. The module Hi
I(M) has both algebraic

and geometric aspects, but this is very difficult to treat. Hartshorne [5] introduced an
interesting class of modules. He defined an R-module M to be I-cofinite if Supp M ⊆
V (I) and Ext j

R(R/I,M) is finitely generated for all j.
Delfino and Marley [3, Theorem 1] and Yoshida [9, Theorem 1.1] have shown that

for any ideal of dimension one of a Noetherian local ring (R,m) ( i.e., dim R/I = 1),
the modules Hi

I(M) are I-cofinite for all i and all finitely generated modules M. Also,
the author and Naghipour [1] have removed the local assumption on R.

In the sequel (R,m) denotes a non-zero commutative Noetherian local ring (with
identity). In this paper we establish some results for finiteness of extension and tor-
sion functors of Artinian local cohomology modules. Then, as an application, we get
a couple of inequalities on homological dimensions of local cohomology modules.
More precisely, this paper’s main result is the following theorem.

Theorem 1.1 Let M be a finitely generated R-module. Then for any p ∈ Spec(R) and
all integers i ≥ dim(R/p), we have the following inequalities:

(i) injdim
Rp

Hi−dim(R/p)
pRp

(Mp) ≤ injdim
R

Hi
m(M);
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(ii) fdRp
Hi−dim(R/p)

pRp
(Mp) ≤ fdR Hi

m(M).

For any ideal a of R, we denote the set {p ∈ Spec R : p ⊇ a} by V (a). Also,
the radical of a, denoted by Rad(a), is defined to be the set {x ∈ R : xn ∈ a for
some n ∈ N}. For any R-module M we denote injective and flat dimensions of M by
injdimR(M) and fdR(M) respectively. For any unexplained notation and terminology,
we refer the reader to [2, 6].

2 Homological Dimensions of Artinian Local Cohomology Modules

The following lemmas will be useful in the proof of Lemma 2.4.

Lemma 2.1 Let R be a Noetherian (not necessary local) ring and let I be an ideal
of R. Let M be an R-module with support in V (I). Then the following statements are
equivalent:

(i) the R-module (0 :M I) has finite length;
(ii) M is Artinian and I-cofinite.

Proof See [7, Proposition 4.1].

Lemma 2.2 Let (R,m) be a Noetherian local ring and let M be a non-zero R-module.
Then the following statements are equivalent:

(i) M is finitely generated and Supp(M) = {m};
(ii) M is finitely generated and Artinian;
(iii) M has finite length.

Proof (i)⇒(ii) Since M is finitely generated, it follows that

SuppR(M) = V
(

AnnR(M)
)
.

Hence, from the hypothesis we have V (AnnR(M)) = {m}. So the ideal AnnR(M)
is m-primary. In particular, the ring R/AnnR(M) is Artinian. Now, since M can be
viewed as a homomorphic image of a finitely generated free R/AnnR(M)-module,
it follows that M is an Artinian R/AnnR(M)-module. But this implies that M is an
Artinian R-module.

(ii)⇒(iii) and (iii)⇒(i) are clear.

Lemma 2.3 Let (R,m) be a Noetherian local ring, I an ideal of R, and M be a non-
zero I-cofinite R-module. Then the R-module Γm(M) = ∪∞n=1(0 :M mn) is Artinian
and I-cofinite.

Proof We may assume that Γm(M) 6= 0. The exact sequence 0 → Γm(M) ↪→ M
induces the exact sequence

0 −→ HomR

(
R/I,Γm(M)

)
−→ HomR(R/I,M).

By hypothesis M is I-cofinite, and so the R-module HomR(R/I,M) is finitely gen-
erated. Therefore, the R-module (0 :Γm(M) I) ∼= HomR(R/I,Γm(M)) is also finitely
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generated. Since the R-module Γm(M) is m-torsion, it follows that Γm(M) is a non-
zero I-torsion R-module. Hence, we have (0 :Γm(M) I) 6= 0. So

∅ 6= Supp
(

(0 :Γm(M) I)
)
⊆ Supp

(
Γm(M)

)
⊆ {m},

which implies that Supp((0 :Γm(M) I)) = {m}. Now using Lemma 2.2 we deduce that
the R-module (0 :Γm(M) I) has finite length. Therefore, as Supp(Γm(M)) = {m} ⊆
V (I), the assertion follows from Lemma 2.1.

The following lemma is crucial for the proof of the main result.

Lemma 2.4 Let (R,m) be a Noetherian local ring with dim R = d ≥ 1 and p be a
prime ideal of R such that dim R/ p = 1. Let M be a p-cofinite R-module such that
Supp M = V (p) and let n ≥ 0 be an integer. Then the following hold:

(i) the R-module Extn
R(R/ p,H1

m(M)) is finitely generated if and only if

Extn
R(R/ p,M)p = 0;

(ii) the R-module TorR
n (R/ p,H1

m(M)) is finitely generated if and only if

TorR
n (R/ p,M)p = 0.

Proof In view of Lemma 2.3, the R-module Γm(M) is p-cofinite. Now, from the
exact sequence

0 −→ Γm(M) −→ M −→ M/Γm(M) −→ 0,

it follows that the R-module M/Γm(M) also is p-cofinite. Moreover, there is an
isomorphism of R-modules as H1

m(M) ∼= H1
m(M/Γm(M)), and using the fact that

Supp(Γm(M)) ⊆ {m}, by [6, Exercise 7.7] we have the following isomorphisms:

Extn
R

(
R/ p,M/Γm(M)

)
p
∼= Extn

Rp

(
Rp/ p Rp,

(
M/Γm(M)

)
p

)
∼= Extn

Rp

(
Rp/ p Rp,Mp/

(
Γm(M)

)
p

)
∼= Extn

Rp
(Rp/ p Rp,Mp) ∼= Extn

R(R/ p,M)p.

Therefore, replacing M by M/Γm(M)), we may assume without loss of generality
that Γm(M) = 0. Since dim R/ p = 1, it follows that there is an element x ∈ m \ p

such that dim R/(p +Rx) = 0. In particular Rad(p +Rx) = m. In view of [2, Theo-
rem 2.2.4], there is an exact sequence:

(2.1) 0 −→ M −→ Dm(M) −→ H1
m(M) −→ 0.

As AssR(M) ⊆ Supp(M) = {p,m} and Γm(M) = 0, we have m 6∈ AssR(M) and so
AssR(M) = {p}. Since x 6∈ p, it follows that x is an M-regular element, and so the
sequence 0→ M

x→ M, is exact. Therefore, for each k ≥ 1, there is an exact sequence

0 −→ HomR(mk,M)
x
−→ HomR(mk,M).

https://doi.org/10.4153/CMB-2011-197-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-197-9


494 K. Bahmanpour

By definition we have
Dm(M) = lim

−→
k≥1

HomR(mk,M),

hence it follows that x is a Dm(M)-regular element. In particular ΓRx(Dm(M)) = 0.
Now the exact sequence (2.1) induces an exact sequence

(2.2) 0 −→ H1
m(M)

f
−→ H1

Rx(M) −→ H1
Rx

(
Dm(M)

)
−→ H1

Rx

(
H1

m(M)
)
.

But, from the Grothendieck’s Vanishing Theorem, [2, Theorem 6.1.2], we deduce
that H1

Rx(H1
m(M)) = 0. Also from the facts that Γp(M) = M and Rad(p +Rx) = m,

it follows that H1
Rx(M) = H1

m(M). Consequently, the exact sequence (2.2) gives the
exact sequence

(2.3) 0 −→ H1
m(M)

f
−→ H1

m(M) −→ H1
Rx

(
Dm(M)

)
−→ 0.

By [1, Theorem 2.15], the R-module H1
m(M) is Artinian, therefore it follows from the

exact sequence (2.3) that f is an epimorphism, and so H1
Rx(Dm(M)) = 0. Using

ΓRx

(
Dm(M)

)
= 0 = H1

Rx

(
Dm(M)

)
,

we deduce that the map Dm(M)
x→ Dm(M) is an isomorphism. On the other hand

the exact sequence (2.1) induces the exact sequence

Extn−1
R

(
R/ p,H1

m(M)
)
−→ Extn

R(R/ p,M) −→(2.4)

Extn
R

(
R/ p,Dm(M)

)
−→ Extn

R

(
R/ p,H1

m(M)
)
.

Since Supp H1
m(M) ⊆ {m}, it follows that

Extn
R

(
R/ p,H1

m(M)
)

p
= 0 = Extn−1

R

(
R/ p,H1

m(M)
)

p
,

and therefore Extn
R(R/ p,M)p = 0 if and only if Extn

R(R/ p,Dm(M))p = 0 if
and only if Extn

R(R/ p,Dm(M)) = 0. (In fact if Extn
R(R/ p,Dm(M))p = 0, then

Extn
R(R/ p,Dm(M)) is m-torsion and hence is Rx-torsion and therefore from the

isomorphism Dm(M)
x→ Dm(M), we deduce that Extn

R(R/ p,Dm(M)) = 0.)
But using the NAK lemma and the isomorphism Dm(M)

x→ Dm(M), we have
Extn

R(R/ p,Dm(M)) = 0 if and only if the R-module Extn
R(R/ p,Dm(M)) is finitely

generated. Now since M is p-cofinite, it follows from the exact sequence (2.4) that the
R-module Extn

R(R/ p,H1
m(M)) is finitely generated if and only if Extn

R(R/ p,M)p = 0.
This completes the proof of (i).

(ii) In view of method used in the proof of (i), the R-module M/Γm(M) is p-
cofinite. Also using [6, Exercise 7.7] we have the isomorphism

TorR
n

(
R/ p,M/Γm(M)

)
p
∼= TorR

n (R/ p,M)p.
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Therefore, again as in the the proof of (i) we can assume Γm(M) = 0. Consequently,
the map Dm(M)

x→ Dm(M) is an isomorphism. The exact sequence (2.1) induces the
following exact sequence:

TorR
n

(
R/ p,Dm(M)

)
−→ TorR

n

(
R/ p,H1

m(M)
)
−→ TorR

n−1(R/ p,M)

TorR
n+1

(
R/ p,H1

m(M)
)
−→ TorR

n (R/ p,M) −→

Since Supp H1
m(M) ⊆ {m}, it follows that

TorR
n

(
R/ p,H1

m(M)
)

p
= 0 = TorR

n+1

(
R/ p,H1

m(M)
)

p
.

Also, since M is p-cofinite, it follows from [7, Theorem 2.1], that the R-modules
TorR

i (R/ p,M) are finitely generated for all integers i ≥ 0. Now the remaining part
of the proof follows from the method of the proof of (i), using the NAK lemma
and the fact that, in this situation, we have TorR

n (R/ p,Dm(M))p = 0 if and only
if TorR

n (R/ p,Dm(M)) = 0.

Theorem 2.5 Let (R,m) be a Noetherian local ring with dim R = d ≥ 1 and let M
be a finitely generated R-module. Let p ∈ Spec(R) with dim R/ p = 1. Then for all
integers n ≥ 0 and i ≥ 1 the following conditions are equivalent:

(i) the R-module Extn
R(R/ p,Hi

m(M)) is finitely generated;
(ii) Extn

R(R/ p,Hi−1
p (M))p = 0.

Proof Since dim R/ p = 1, it follows that there is an element x ∈ m \ p such that
Rad(p +Rx) = m. By [8, Corollary 3.5] there is the exact sequence

(2.5) 0 −→ H1
Rx

(
Hi−1

p (M)
)
−→ Hi

p +Rx(M) −→ H0
Rx

(
Hi

p(M)
)
−→ 0.

Since the R-module Hi
p(M) is p-torsion and Rad(p +Rx) = m, using Remark 1.2.3

of [2], it follows that

H0
Rx

(
Hi

p(M)
)

= H0
p +Rx

(
Hi

p(M)
)

= H0
m

(
Hi

p(M)
)

and Hi
p +Rx(M) = Hi

m(M).

Also since R is Noetherian it follows from the definition that the ideal p is finitely
generated. Hence there are elements a1, . . . , ak ∈ p such that p = (a1, . . . , ak), for
some integer k ≥ 0. Now if k ≥ 1, then in view of [8, Corollary 3.5], there exists an
exact sequence as follows:

0 −→ H1
Ra1

(
H0

Rx

(
Hi−1

p (M)
))
−→ H1

Rx+Ra1

(
Hi−1

p (M)
)
−→(2.6)

H0
Ra1

(
H1

Rx

(
Hi−1

p (M)
))
−→ 0.

But since the R-module Hi−1
p (M) is p-torsion and a1 ∈ p, it follows that the R-mod-

ule Hi−1
p (M) is Ra1-torsion. Consequently, the R-modules

H0
Rx(Hi−1

p (M)) and H1
Rx(Hi−1

p (M))
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are also Ra1-torsion. Hence,

H1
Ra1

(
H0

Rx

(
Hi−1

p (M)
))

= 0 and H0
Ra1

(
H1

Rx

(
Hi−1

p (M)
))

= H1
Rx

(
Hi−1

p (M)
)
.

So it follows from the exact sequence (2.6) that H1
Rx+Ra1

(Hi−1
p (M)) ∼= H1

Rx(Hi−1
p (M)).

Now, proceeding in the same way, we see that for each 1 ≤ i ≤ k, there is an isomor-
phism of R-modules as H1

Rx(Hi−1
p (M)) = H1

Rx+(a1,...,ai )
(Hi−1

p (M)). In particular,

H1
Rx

(
Hi−1

p (M)
)

= H1
Rx+p

(
Hi−1

p (M)
)
.

But, since Rad(p +Rx) = m, using Remark 1.2.3 of [2], we have H1
Rx+p(Hi−1

p (M)) =
H1

m(Hi−1
p (M)). Therefore, H1

Rx(Hi−1
p (M)) ∼= H1

m(Hi−1
p (M)). Hence from the exact

sequence (2.5) we deduce the exact sequence

(2.7) 0 −→ H1
m(Hi−1

p (M)) −→ Hi
m(M) −→ H0

m(Hi
p(M)) −→ 0.

By [1, Corollary 2.7] the R-modules Hi
p(M) and Hi−1

p (M) are p-cofinite. Conse-
quently, according to the Lemma 2.3 the R-module Γm(Hi

p(M)) = H0
m(Hi

p(M)) is
p-cofinite. The exact sequence (2.7) induces the long exact sequence

0 −→ HomR

(
R/ p,H1

m

(
Hi−1

p (M)
))
−→ HomR

(
R/ p,Hi

m(M)
)

−→ HomR

(
R/ p,H0

m

(
Hi

p(M)
))
−→ Ext1

R

(
R/ p,H1

m

(
Hi−1

p (M)
))

−→ Ext1
R

(
R/ p,Hi

m(M)
)
−→ Ext1

R

(
R/ p,H0

m

(
Hi

p(M)
))
−→ · · · ,

which implies that for each n ≥ 0 the R-module Extn
R(R/ p,Hi

m(M)) is finitely gener-
ated if and only if the R-module Extn

R(R/ p,H1
m(Hi−1

p (M))) is finitely generated. By
Lemma 2.4 this is equivalent to Extn

R(R/ p,Hi−1
p (M))p = 0.

Theorem 2.6 Let (R,m) be a Noetherian local ring with dim R = d ≥ 1 and let M
be a finitely generated R-module. Let p ∈ Spec(R) with dim R/ p = 1. Then for all
integers n ≥ 0 and i ≥ 1, the following conditions are equivalent:

(i) the R-module TorR
n (R/ p,Hi

m(M)) is finitely generated;
(ii) TorR

n (R/ p,Hi−1
p (M))p = 0.

Proof As in the proof of Theorem 2.5, there is an exact sequence

0 −→ H1
m

(
Hi−1

p (M)
)
−→ Hi

m(M) −→ H0
m

(
Hi

p(M)
)
−→ 0.

This exact sequence induces the long exact sequence

R/ p⊗RHi
m(M) −→ R/ p⊗RH0

m

(
Hi

p(M)
)
−→ 0

TorR
1

(
R/ p,H0

m

(
Hi

p(M)
))
−→ R/ p⊗RH1

m

(
Hi−1

p (M)
)
−→

· · · −→ TorR
1

(
R/ p,H1

m

(
Hi−1

p (M)
))
−→ TorR

1

(
R/ p,Hi

m(M)
)
−→
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But in view of [1, Corollary 2.7] and Lemma 2.3, the R-module H0
m(Hi

p(M))
is p-cofinite. Therefore, using [7, Theorem 2.1], it follows that the R-modules
TorR

j (R/ p,H0
m(Hi

p(M))) are finitely generated for all integers j ≥ 0. Now the above

long exact sequence implies that for each n ≥ 0 the R-module TorR
n (R/ p,Hi

m(M))
is finitely generated if and only if the R-module TorR

n (R/ p,H1
m(Hi−1

p (M))) is
finitely generated. By Lemma 2.4 and [1, Corollary 2.7], this is equivalent to
TorR

n (R/ p,Hi−1
p (M))p = 0.

Before stating the next corollary, note that in this paper, for technical reasons, for
each ring R, the injective and flat dimensions of the zero R-module are defined as
follows: fdR(0) = −1 = idR(0).

Corollary 2.7 Let (R,m) be a Noetherian local ring with dim R = d ≥ 1 and let
M be a non-zero finitely generated R-module. Let i ≥ 1 be an integer. Then for each
p ∈ Spec(R) with dim(R/p) = 1, the following assertions hold:

(i) the R-module Extk
R(R/p,Hi

m(M)) is not finitely generated, for any 0 ≤ k ≤
injdim

Rp
Hi−1

pRp
(Mp);

(ii) the R-module Extk
R(R/p,Hi

m(M)) is finitely generated, for each

k > injdim
Rp

Hi−1
pRp

(Mp);

whenever injdim
Rp

Hi−1
pRp

(Mp) <∞.

(iii) injdim
Rp

Hi−1
pRp

(Mp) ≤ injdim
R

Hi
m(M).

Proof (i) and (ii) follow immediately from Theorem 2.5, and (iii) follows from (i).

Lemma 2.8 Let (R,m) be a Noetherian local ring and let A be a non-zero Ar-
tinian R-module. Let j ≥ 0 be an integer and N be a non-zero R-module such that
TorR

j (N,A) 6= 0. Then there exists an integer n ≥ j such that TorR
n (R/m,A) 6= 0.

Proof Since N can be viewed as the direct limit of its finitely generated submodules
and the torsion functor TorR

j (−,A) commutes with direct limits, it follows from the
hypothesis TorR

j (N,A) 6= 0 that N has a finitely generated non-zero submodule M
such that TorR

j (M,A) 6= 0. Now using [6, Theorem 6.4] it follows that there exists a
prime ideal p of R such that TorR

j (R/ p,A) 6= 0. Next, let

S :=
{

q ∈ Spec(R) : TorR
n (R/q,A) 6= 0, for some integers n ≥ j

}
.

Then as p ∈ S, it follows that S 6= ∅. Since R is Noetherian, S has a maximal element,
say, q. By the definition of S there exists an integer n ≥ j such that TorR

n (R/q,A) 6= 0.
We must show that q = m. Suppose the contrary be true. Then there exists an
element x ∈ m \q. The exact sequence

0 −→ R/q
x
−→ R/q −→ R/(q + Rx) −→ 0,
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induces the exact sequence

(2.8) TorR
n+1(R/(q + Rx),A) −→ TorR

n (R/q,A)
x
−→ TorR

n (R/q,A).

Since

∅ 6= Supp(TorR
n (R/q,A)) ⊆ Supp(A) = {m},

it follows that Supp(TorR
n (R/q,A)) = {m}. Therefore, (0 :TorR

n (R/q,A) x) 6= 0. Whence,

the exact sequence (2.8) implies that TorR
n+1(R/(q + Rx),A) 6= 0. Now again using

[6, Theorem 6.4] it follows that there exists a prime ideal q1 ∈ Supp(R/(q+Rx)) such
that TorR

n+1(R/q1,A) 6= 0. So q ⊂ q1 ∈ S, which is a desired contradiction.

The following consequence of Lemma 2.8 will be useful in the proof of the main
theorem.

Corollary 2.9 Let (R,m) be a Noetherian local ring and let A be a non-zero Artinian
R-module. Then

fdR(A) = sup{n ∈ N0 : TorR
n (R/m,A) 6= 0}.

Proof Using Lemma 2.8 we have

fdR(A) = sup
{

n ∈ N0 : TorR
n (N,A) 6= 0, for some R-module N 6= 0

}
≤ sup

{
n ∈ N0 : TorR

n (R/m,A) 6= 0
}
≤ fdR(A).

Corollary 2.10 Let dim R = d ≥ 1 and let M be a non-zero finitely generated R-
module. Let i ≥ 1 be an integer. Then for each p ∈ Spec(R) with dim(R/p) = 1 we
have

fdRp

(
Hi−1

pRp
(Mp)

)
≤ fdR

(
Hi

m(M)
)
.

Proof In the case where Hi−1
pRp

(Mp) = 0, the assertion is clear. So we may assume

that Hi−1
pRp

(Mp) 6= 0. Then since by [2, Theorem 7.1.3], Hi−1
pRp

(Mp) is an Artinian
Rp-module, it follows from Corollary 2.9 that

fdRp

(
Hi−1

pRp
(Mp)

)
= sup

{
j ∈ N0 : TorRp

j

(
Rp/pRp,Hi−1

pRp
(Mp)

)
6= 0

}
.

By Theorem 2.6 we have

sup
{

j ∈ N0 : TorRp

j

(
Rp/pRp,Hi−1

pRp
(Mp)

)
6= 0

}
= sup

{
j ∈ N0 : TorR

j

(
R/p,Hi

m(M)
)

is not finitely generated
}

≤ fdR

(
Hi

m(M)
)
.

https://doi.org/10.4153/CMB-2011-197-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-197-9


A Note on Homological Dimensions of Artinian Local Cohomology Modules 499

Proof of Theorem 1.1 (i) Let p ∈ Spec(R) and suppose that dim R/ p = n. Then it
follows from the definition that there is a chain of prime ideals of R as:

p = pn ⊂ pn−1 ⊂ · · · ⊂ p1 ⊂ p0 = m

such that height(pi / pi+1) = 1, for each 0 ≤ i ≤ n− 1. Then using Corollary 2.7(iii)
we have

injdim
Rp

Hi−n
pRp

(Mp) = injdimRpn
Hi−n

pnRpn
(Mpn )

≤ injdimRpn−1
Hi−n+1

pn−1Rpn−1
(Mpn−1 )

...

≤ injdimRp1
Hi−1

p1Rp1
(Mp1 ) ≤ injdim

R
Hi

m(M).

This completes the proof of (i).
(ii) The assertion follows from Corollary 2.10, applying the method used in the

proof of (i).
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