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Abstract. The incredible variety of galaxy shapes cannot be summarized by human defined
discrete classes of shapes without causing a possibly large loss of information. Dictionary learning
and sparse coding allow us to reduce the high dimensional space of shapes into a manageable
low dimensional continuous vector space. Statistical inference can be done in the reduced space
via probability distribution estimation and manifold estimation.
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1. Introduction
The evolution of the Universe has led to the formation of complex objects apparently

without any regular shape, which our mind would just classify as irregular. Thus, the
incredible variety of galaxy shapes cannot be summarized by human defined discrete
classes of shapes (e.g. “Hubble sequence”) without causing a possibly large loss of in-
formation. Our human concept of shape could limit the complete understanding of the
complex structure of the galaxies. Estimating the distribution of galaxy morphologies
is one means to test theories of the formation and the evolution of the Universe. We
estimate the distribution of morphologies on a continuous Euclidean space, such that
a particular shape will be viewed as a point in a continuous space. This task must be
performed in an unsupervised way, i.e. free from any human judgement. Galaxy images
are intrinsically high-dimensional data, and we use dictionary learning and sparse coding
[Mairal et al. (2010)] to reduce the high dimensional space of shapes into a manageable
low dimensional one. Essentially, galaxy images will be approximated by sparse linear
combinations of basis pictures, which are learned from the data. Statistical inference on
the reduced space can be performed via probability distribution estimation. We propose
a testing procedure and analyse a dataset of galaxy images† to show some examples.

2. Dictionary Learning and Sparse Coding - Radon Transform
The general idea of dictionary learning and sparse coding is to approximate images by

sparse linear combinations of a fixed number of basis images, which are not predefined,

† GOODS-South Early Release Science Field dataset observed in the near-infrared regime by
the Wide Field Camera 3 on-board the Hubble Space Telescope [see Windhorst et al. (2011),
Freeman et al. (2013)].
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but are learned from the data. Let xi ∈ R
a×b be an image, which has a × b dimensions.

For m << a × b, we want to approximate xi as:

xi ≈
m∑

j=1

αijBj (2.1)

where αi = (αi1 , ..., αim ) ∈ R
m is a sparse vector of coefficients, and {Bj}m

j=1 is a
collection of basis images Bj ∈ R

a×b . Notice that the basis images will not be imposed
to be orthogonal such that the dictionary can easily adapt to the structure of the data
[Mairal et al. (2010)]. Moreover, learning the bases from the data was shown to perform
better in signal reconstruction with respect to using predefined bases [Elad et al. (2006)].

2.1. Optimization problem
From a dataset of galaxy images {xi}n

i=1, we can estimate the dictionary D = {Bj}m
j=1

and the vectors of coefficients A = {αi}n
i=1 by solving the following optimization problem:

⎧⎪⎪⎨
⎪⎪⎩

min
{αi }n

i = 1 ,{Bj }m
j = 1

n∑
i=1

⎡
⎣1

2

∥∥∥∥∥xi −
m∑

j=1
αijBj

∥∥∥∥∥
2

2

+ λ‖αi‖1︸ ︷︷ ︸
Sparsity

⎤
⎦

s.t. ‖Bj‖2
2 � 1,∀j = 1, ...,m

(2.2)

where λ � 0 is a sparsity parameter and ‖∗‖2
2 is the Frobenius norm [Mairal et al. (2010);

R package “spams”]. We suggest to choose m and λ via cross validation. See Mairal et al.
(2010) for other configurations of problem (2.2).

2.2. Standardization of the images. Radon transform
Before solving problem (2.2), images must be standardized to eliminate any spurious di-
mensionality and improve the quality of the approximations (2.1). We are talking about:
centring, resizing and rotation orientation. While the first one can be easy to perform, the
two others are not. Images can be rotated and resized by using Radon Transform (RT)
and Inverse RT (IRT). The RT of a function f is Rf (t, θ) =

∫ ∞
−∞ f(t cos θ−u sin θ, t sin θ+

u cos θ)du, where (t, θ) ∈ R
2 . An image can be viewed as the discrete evaluation of a func-

tion. The orientation of the texture of an image can be estimated by θ∗ = arg minθ
∂ 2 σ 2

θ

∂ θ2 ,
where σ2

θ is the variance of Rf (t, θ) at angle θ [Jafari-Khouzani et al. (2005), Arodź
(2012); R package “PET”]. Rotating images by angle −θ∗ essentially makes all the pic-
tures horizontally oriented. To rotate an image we need to: 1) evaluate its RT on a discrete
grid, say R̂M ×(ω180+1) = {Rf (t, θ)} with t ∈ {t1 , ..., tM }, θ ∈ { j

ω180 π}ω180
j=0 , and ω ∈ N

+;
2) find θ∗ and move the first k∗ = θ∗ ω180

π columns of R̂ as described in Figure 1 to get
R̃ (“rotation” in the Radon domain); 3) computing the IRT of R̃ on a grid of desired
resolution (“resizing”). In Figure 2 we show some effects of images standardization.

3. Statistical inference on the reduced space
In this section we propose a method to estimate the distribution of galaxy morphologies

on a low-dimensional space, and we use the GOODS-S dataset to perform a simulation.

3.1. Probability distribution of galaxy morphologies.
For a dataset of n images {xi}n

i=1, where xi is a matrix of nonnegative light intensity:
(a) Standardize all the images as described in paragraph 2.2;
(b) Obtain the dictionary D and the vectors A = {αi}n

i=1 according to paragraph 2.1;
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Figure 1. Left: vectors A are moved after vectors B with values moved up and down. Right:
starting from an original image, we compute its Radon transform on a discrete grid, then by
shifting the vectors of this matrix according to the orientation θ∗, we can obtain a standardized
rotated version of the image as the IRT of the shifted RT.

Figure 2. Rotation standardization improves the fit. Left: an image approximated using a dic-
tionary learned with rotation standardization (top) and not (bottom). Spurious dimensionality
negatively affects the dictionary at the bottom, while rotation standardization may lead to more
refined approximations. Right: for different numbers of atoms (m = 9, 25, 64), the minimum loss
(2.2) is smaller when using standardized images. Images are from the GOODS-S dataset, H-band.

(c) Estimate the joint distribution of vector αi ∈ R
m . Call it P̂α .

Given the fitted dictionary D, estimate P̂α can be viewed as an approximation of the
distribution of galaxy morphologies.

3.2. Comparing populations of shapes
In this section we propose a method to compare the distributions of two collections
of images. Let X,Y be two collections of images. Suppose we want to test hypothesis
X

D= Y , i.e. a distribution test. We propose the following method:
(a) Pool X and Y into a unique dataset Z = [X,Y ]
(b) From Z, fit dictionary D and vectors of coefficients {αZ,k} = [{αX,i}, {αY,j}].
(c) Implement a distribution test αX

D= αY .
For step (c), we suggest to use the nonparametric test based on the Maximum Mean
Discrepancy (MMD) statistic (Gretton et al. (2012); R package “kernlab”). We can call
this testing procedure “DSM test” (Dictionary Learning - Sparse Coding - MMD).

3.2.1. Simulation
We selected two subsets of images of the GOODS-S dataset in the H-band (see Figure

3): X1 with 25 images of non-mergers, and X2 with 25 images of mergers. To generate
n images of non-mergers and n images of non-mergers we: 1) randomly sample with
replacement n images from X1 and n images from X2 , respectively; 2) randomly rotate

them by angles θ ∼Unif(0, 2π), i.i.d.; 3) add heteroscedastic noise: εjk
indep∼ N(0, β2×Ijk ),
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Figure 3. Left: selected non-mergers (X1 ) and mergers (X2 ) from the GOODS-S dataset,
H-band. Top right: procedure to simulate an image from Xi . An image is randomly selected
from the subset, randomly rotated and heteroscedastic Gaussian noise is added to each pixel.
Bottom right: the DSM test helps to distinguish different shapes. The probability of Type I error
of the DSM test is always smaller than the level of the test; the power of the test is increasing
in the sample size. The shape of the power function depends on the original sets X1 , X2 .

where Ijk � 0 is the light intensity at position jk in a matrix. We repeat comparisons
(via DSM test) of samples of the same kind (Mer Vs Mer, NMer Vs NMer) and different
one (Mer Vs NMer) to estimate the probability of Type I error and the power of the test
as functions of the sample size (see Figure 3). We chose m = 4 and λ = 0.05 via 10-CV.

4. Conclusions and future work
An unsupervised analysis based on dictionary learning and sparse coding allows us

to approximate the distribution of galaxy morphologies by a multivariate distribution
defined on a subset of R

m , where dimension m is much smaller than the dimension of a
galaxy image. Hypothesis testing on the reduced space can help to distinguish the distri-
butions of two sets of images. Current and future work is: using dictionary learning and
sparse coding to put constraints on the parameters of cosmological models; comparing
the distribution of galaxy shapes at different redshift ranges; manifold estimation: some
clusters may correspond to some human defined shapes (e.g. spiral, elliptical) and fila-
ments [see Chen et al. (2013)] may describe the transition from a shape to another one;
analysing images of other astronomical objects and 3D images.
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