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ASYMPTOTICS OF THE EXIT DISTRIBUTION 
FOR MARKOV JUMP PROCESSES; 

APPLICATION TO ATM 

I. ISCOE, D. MCDONALD AND K. QIAN 

ABSTRACT. We approximate the exit distribution of a Markov jump process into a 
set of forbidden states and we apply these general results to an ATM multiplexor. In 
this case the forbidden states represent an overloaded multiplexor. Statistics for this 
overload or busy period are difficult to obtain since this is such a rare event. Starting 
from the approximate exit distribution, one may simulate the busy period without 
wasting simulation time waiting for the overload to occur. 

1. Introduction. Let (Xt\t > 0) be a continuous-time, non-terminating, Markov 
jump process, on a measurable state space (S,5), having an invariant probability measure 
7T. We work in the setting of Iscoe and McDonald (1994) and employ much of the same 
notation, some of which we now briefly recall. Let (Tt;t > 0) denote the transition 
semi-group of the jump process (Xt; t > 0); Tt operates on L2(S; n). The inner product on 
L2(S; 7r) will be denoted by (•, •)1T; and we let ad denote the adjoint operation on operators 
in L2(S; 7r). Note that the adjoint operation was denoted by an asterisk superscript in Iscoe 
and McDonald (1994). The asterisk will be employed for a different, induced operation 
here—see the the end of this Introduction. 

We denote the probability transition rate kernel by J(x, dy)\ so the weak infinitésimal 
generator, —£, of (Tt\ t > 0), is given by 

(1.1)- Lu(x) = fj(x,dy)[u(y) - u{x)\ u E £>(£) C {w.S—> %} \ u is bounded}. 

The strong infinitesimal generator, —L, of (Tt\ t > 0) in L2(S\ TT) is an extension of —L. 
Denoting the jump rate by J(x) = J(x, {x}c), we assume throughout that 

/ J(x)ir(dx) < oo. 

We fix a (measurable) set of forbidden states and, letting B G 5 denote those states 
outside the forbidden region, we denote by (Tf \t > 0) the semi-group of the process 
killed outside B\ that is, the process killed when it enters the forbidden region, Bc. For 
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MARKOV JUMP PROCESSES 1239 

/ € L2(B; TT) this semigroup is defined by 

Tff(z):=Ez\f(Xty,r>t] 

(1.2) T = 7B:=inf{t>0:XtfÈB}. 

Let — LB denote the (strong) infinitesimal generator associated with (Tf ; t > 0). We now 
make the second standing assumption: 

M(B) := 7r-esssup/(x) < +oo. 
xeB 

We assume throughout the paper that 0 < TT(B) < 1 and set 

TT{B):=TT(B)-\TT\B) 

where TT\B is the restriction of TT to B. 
The notion of a spectral gap is central to this article. We remark that in the reversible 

case, in which Tt is self-adjoint on L2(S; TT), the spectral gap (when positive) is the gap in 
the spectrum, a(L) C R+, between the simple eigenvalue 0 and the rest of the spectrum. 

DEFINITION. For the strong infinitesimal generator -L , of (Tt; t > 0) in L2(S; TT), 

Gap(L) := inf{(w, Lu\ : u E £>(L), ||w||w = 1, («, 1)* = 0}. 

The following will be a standing assumption: 

Gap(L) > 0. 

The main goal of Iscoe and McDonald (1994) was to estimate P^{r > i) by 
exp(-A(£)f) as B -> 5, when 0 < A(B) := inf Re{a(LB)}, the bottom of the real 
part of the spectrum of LB\ and "5 —* 5"' is a shorthand for the convergence: TT(B) —• 1. 
This in turn implied that r is approximately exponentially distributed with mean 1 /MB). 
See Theorem 2.2 in Section 2 below for a precise statement. In the present paper, we 
study the (exit) distribution of XTi particularly for large B. Roughly stated, the distribution 
of the Markov jump process, just prior to exiting from B, is asymptotically proportional 
to the quasi-stationary distribution on B: For A C Bc, 

P«(XT E A) w Etf* • / 7T(dx)J(x, A), 3L$B^>S, 

where dn = pB dn denotes the quasi-stationary measure—see Theorems 2.1 and 2.7 for 
a more precise description. 

In Section 2 we recall and complete our standing assumptions and recall the spectral 
results in Iscoe and McDonald (1994) (for non-reversible Markov jump processes). 
We then extend them to a full Perron-Frobenius theorem (Theorem 2.3) for the killed 
semigroup of a Markov jump process on a general state space under our standing 
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assumptions. As a corollary (see Corollary 2.4), we obtain the following probabilistic 
interpretation of the quasi-stationary measure n : 

TT(-) = lim PtQCt €-\rB>t). 
t—KX) 

Finally we establish Theorem 2.7. This result makes rigorous, and provides error bounds 
for the heuristic estimates of the mean hitting time to hit Bc and the associated hitting 
distribution, described in Section B17 in Aldous (1989). A more detailed discussion 
relating the two approaches is given at the end of Section 2. 

In Section 3 this general result on exit distributions is applied to a model for an ATM 
multiplexor as in Iscoe, McDonald and Qian (1993), to which we refer for more details 
on notation and terminology. The ATM paper mainly discussed the time until overload 
of an ATM switch. Here we turn our attention to the onset of the busy period of an ATM 
switch. We assume that the link rate of the multiplexor is I — 1 cells per second and 
that n distinct, independent traffic categories (voice, text, video, etc.) are multiplexed 
together at the switch. Traffic sources in category / may be described as an alternating 
series of idle and bursty periods. A burst from a source in category i produces cells at a 
rate of d[ cells per second. (As in the ATM paper, we assume that the d[% are integers with 
g.c.d. equal to 1; d := max;(d;).) We assume that bursts of category i arrive according to 
a Poisson process having a rate of at bursts per second. We also assume that the burst 
periods are independent (and independent of the arrival process) and are exponentially 
distributed with a mean burst length of 1 //?;. 

The aggregate of the n different source categories represents the total load at the link. 
In particular, if we let Ni(t) represent the number of bursts from category / sources being 
multiplexed at the link at time t, then the total load at time t may be represented by 

When the load exceeds the link rate we say the multiplexor is busy. Define 

r = inf{t > 0 : N(t) > £} 

so that r is the waiting time until the busy period starts. 
We describe the traffic at the multiplexor, up to time r, by the Markov process 

N(0 := (#i ( 0 , . . . , Nn(tj) defined on the state space S := {0,1,2, . . .}" . As such, r is the 
first time the process N(t) reaches the forbidden region Bc = {x E S : £" d[X[ > I}. 

Let £b denote those real-valued functions which are constant outside a finite subset 
of S. N(0 has infinitesimal generator —L (having (Do as a core) given at u E £b by 

n 

—Lu(x) = ^2{[u(x + Si) — u(x)]ai + [u(x — 8i) — u(x)]xib^ x = (x\, *2, • • • ? xn) ES 
J=I 

where <5, is the i-th basis vector in S having all its components equal to 0 except the /-th, 
which is 1. Thus J(x, x + ôï) = ai and /(x, x — Sf) = Xib[. 
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We remark that for each I < i < n, #,-(•) is reversible with respect to the stationary 
Poisson measure having mean A/ := ai/bi. Moreover the (#/(•); 1 < i < n) a r e inde
pendent. Hence N(f) is also reversible, with respect to the stationary product measure n 
given by 

n yfi 
7T(xux2,...,xn) = ll-!-e-Xi. 

We show, in Section 3, that Gap(L) > 0. 
The technique of induced Dirichlet forms was used in Iscoe, McDonald and Qian 

(1993) to generate a reversible one-dimensional induced Markov process (N*;t > 0) 
with induced stationary measure 7r*, having support S* C fA£, defined by 

7r*(r) = TT({X : f(x) = r}) = £ *(x)i where/(x) := £ djXj. 

The generator —L* of the induced process AC* is given by 

n n 

-L*u(r) = X > ( r + di) - u(r)]at + £ > ( r - dt) - u(r)] 

for u in the core DQ °f real-valued functions which are constant outside a finite subset of 
the non-negative integers. As above let — [LB]* = — [L*]B* denote the generator of the 
process killed on the induced forbidden set [B*]c :={£,£ + 1,...}. 

The exit time r* of N*(t) from B* provides a stochastic bound on the exit time of N(t) 
into the forbidden set: r* is stochastically smaller than the original exit time r in the 
sense that, for all 0 > 0, 

En exp(—Or) < E** exp(—Or*) 

and 
E**T* < EVT. 

The numerical results in Iscoe, McDonald and Qian (1993) yielded virtually identical 
values for En*r* and Enr for even moderate values of t ; far better than just a lower bound. 
One of the main goals of this paper is to explain this extremely good approximation. 
The explanation lies in the fact that Enr is closely approximated by 1 /A, while E^r* 
is closely approximated by 1/A*, the inverse of the principal or Perron-Frobenius 
eigenvalue corresponding to the killed generator for the induced process. We use the 
Temple-Kato theorem (cf. Kato (1949) or Reed and Simon (1978)) to show that as 
B —• 5, A/A* —* 1. The second goal is to provide a practical means of simulating the 
busy period of the ATM switch. Applying Corollary 3.13, we can start the busy period on 
the hyperplane {x : Z"=1 d/jc; = 1} with distribution e having probability mass function 

n n 

K(X) Y, biXil X) ai^^ ~ di)' 
i = l i = l 

<2;7rv — at) 
Tr*(r) 
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2. General results. The semigroup of the process killed off some B G S was given 
at (1.2). The associated transition rate kernel and killing rates are given by 

JB{x, dy) := \B(y)J(x, dy), KB(x) := lB{x)J{x, Bc). 

We may also define the resuscitation rate RB to be the Radon-Nikodym derivative of 
the measure jj,(dy) := JBc ir(dx)J{x, dy) with respect to 7r|2?, the restriction of 7r to B. The 
infinitesimal generator, — LB, can then be expressed as 

-LBu{x) = f J{x, dy)[u(y) - u{x)] - KB{x)u{x\ u e L2{B\ n\B); 

so that KB = LB1. where 1 denotes the constant function with value 1. 
Recall our renormalization of n\B9 

fr = fr* := [TTOB)]"1 (TT|B), L2(fr) = \}{B\ it). 

The following three quantities were defined in Iscoe and McDonald (1994). They are the 
mean killing rate and standard deviations of the killing rate and resuscitation rate with 
respect to the probability fr on B, viz. 

(2.1) K = KB := fBKB(x)7t(dx), «! := \\KB - «||^, «2 := \\RB - /c||fr. 

The following will be the standing assumptions throughout this section: 
• (Xt \t > 0) is non-terminating. 
• 7T is an invariant probability. 
• B E S with 0 < n(B) < 1. 
• JJ(x)ir(dx) < co and M(B) := 7r-ess supx6B 7(x) < oo. 
• In the nonreversible case (/.e., when n is not a reversibility measure for (Xt\t> 0)), 

«i,«2 —̂  0 a s 5 —>S. 
• Gap(L) > 0. 

The following two results are taken from Iscoe and McDonald (1994). Theorem 2.1 
establishes the existence of the Perron-Frobenius eigenvalue and the associated eigen-
functions of LB provided that B is sufficiently large. Moreover it gives an explicit bound 
on the L2 distance to the function 1 which is the limiting Perron-Frobenius eigenfunc-
tion corresponding to the eigenvalue 0 of the unkilled generator, —L. We note that in 
the the reversible case, in which L and hence LB are self-adjoint, similar but simpler 
estimates hold without any restrictions on the size of B {cf. Iscoe and McDonald (1994): 
Lemma 2.12 and the estimate (3.11) in the proof of Theorem 2.13.) Also the conclusions 
of Theorem 2.2 below can be strengthened, again without restrictions on the size of B, 
in the reversible case {cf. Theorem 2.13 in Iscoe and McDonald (1994).) 

THEOREM 2.1. If the quantities R,, K,\ and «2 (defined at (2.1)) satisfy 

K < Gap(L), 4/ci«2 < [Gap(L) — /t]2, 
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then I? and (LB)ad, the adjoint, have a common positive, isolated eigenvalue A(B) and 
associated (real-valued) eigenfunctions (j>B and pB, respectively, belonging to I?(n) such 
that SBpBdn = JB(t>BpBd7t = 1. Moreover 0 < A(B) = inf Re{cr(L5)}, inf[Re{a(Z*) \ 
{A(B)})]> 0, and: 

(i) \A(B) -K\< 2«1«2/[Gap(L) - R] 
(ii) | | p * - l | U < 2 / s 2 / [ G a p ( L ) - 6 ] 

Note, the non-negativity of <j>B and pB is established in Theorem 2.3 below, under 
addition hypotheses on B. 

THEOREM 2.2. Ifir(Bc) is sufficiently small then for allt>0 

(2.2) |P*(T > 0 - e~MB)t\ < P(B)e-A(B)t 

where 

(2.3) 0(B) := 
(Gap(L) — «) — 4K i «2 

7(Gap(L)-6) 2 +4*2 
1 + — — 

Gap(L) — K 
«1«2-

More precisely, n(Bc) is sufficiently small if, in addition to the assumptions in Theo

rem 2.1: 

(2.4) e(B) :=R+ „2_*l*2 + e0(B) < Gap(L). 
Gap(L) — K 

where 

(2.5) £0(B):= 8(Gap(L)-«) ' Gap(L) + 2M(B)(l + —-^ 
\ Gap(L) =ï) • « 2 . 

Let || ||oo denote the total-variation norm of a (signed) measure or the sup-norm of 
a function, as appropriate. The following result extends Theorem 2.2 to a full Perron-
Frobenius theorem for TB. See Definition 4.2 in Iscoe and McDonald (1994) for T^, 

THEOREM 2.3. Denote JB(j>B dit by s = s(B) and set dïï = P^JTT. For sufficiently 

large B, pB > 0, <j>B > 0 (fr-fl.e.) ««J 

| | 7 r r f - , 7 r r f | | 0 O < 2 | | l - ^ | | ^ - r ^ . 

where T(B) := min(rp«, T^); TpB > Gap(L) — SQ(B) and T^B > Gap(L) — el(B), where 
eo(5), 6Q(B) = 0 in the selfadjoint case and are given in general by (2.5) and 

e*0(B) := 6c{Gap(L) +M(B)[2 + 3c«i]}«i 

w/iere 

c := 2y(Gap(L) - «)2 + 4«2/[(Gap(L) - «)2 - 4«!/c2]. 
More precisely, B is sufficiently large (in the non-s elf adjoint case) if, in addition to the 

assumptions of Theorem 2.1, (2.4) and its analogue, with so(B) replaced by e^(B), hold. 

In the selfadjoint case, B is sufficiently large ifR< Gap(L). 
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PROOF. 

||fr7? - sWBHOC = sup I [[1 - spB]TBfd%\ 

= sup fI /" [1 - spB]Tf\f - (f, p\] dn 
M»=i WB 

+(fyh-JBn-spB]TfidTt\] 

< | | l - * / | | * SUP \\T?V-(f,pBh]h 

+(i , |p B | ) t | | ( r f ) a d [ i - , / ] | | , 

< e x p ( - I > ) | | l - * / l k sup \\f-(f,pB)4* 
llflU=i 

+ e x p ( - r ^ O ( l , | / | ) t | | l - ^ / | | t 

(2.6) <e-r(B)([l + (l , |pB | )*] | | l -*/lk 

where we have used the Cauchy-Schwarz inequality and Proposition 4.4 of Iscoe and 
McDonald (1994), first with p = / , \i = it, Tt = TB and A = LB along with the 
orthogonality condition: 

(pV-(f,pV)* = 0 

to estimate the first term; and then with p = <j>B, \x = it, Tt = (Tf )ad and A = (L5)ad 

along with the orthogonality condition: 

to estimate the second term. The estimate on T^ is just Lemma 4.11 of Iscoe and 
McDonald (1994); that for F^B can be derived similarly. Indeed, one simply replaces 
pB everywhere in the proof by s~x<j>B. In the selfadjoint case, both Ts coincide and are 
bounded below by Gap(L) by the classical minimax theorem [cf. Theorem XIII.3 in Reed 
and Simon (1978)] as in the proof of Lemma 2.12 in Iscoe and McDonald (1994). 

It only remains to show that pB > 0; for then (1, \pP\\ = (1, fP)* = 1. Now, applying 
the inequality (2.6) t o / = 1A, with A G 5H£, and using the fact that ftT? = e~A{B)t7T, we 
derive that 

\eA^nTB (1A) ~ sJAPBd7t\ < r ^ « [ l + (1, \pB\)*]\\l - sp% -> 0, 

as t —• oo, since by (2.4) and Theorem 2.1(i), for large B: F(B) - A(B) > 0. (In the 
selfadjoint case, T(B) > Gap(L) > R > A(B).) Therefore 

/ pBdit = s~] lim eMB)t f TB(lA)d7t > 0. 
JA r f-KX) JB * ~ 

Since A was arbitrary we conclude that pB > 0,7r-a.e. Repeating the previous argument, 
with/ = max(—1, min(c/>fi, 1)) • 1^, yields the non-negativity of <j>B. m 
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REMARK. We can obtain an explicit bound on the quantity ||1 — sp8^ as follows: 

i i i -vik<*ii i - / i i*+i*- i i 

and bounds for each of the terms on the right-hand side are given in Theorem 2.1. 
However, introduction of these estimates into sit will increase the the error bound to 
order exp(—A(#)?). (Similarly, introduction of these estimates into s in (2.7) below 
would essentially reproduce (2.2).) • 

As an immediate corollary we have the following probabilistic description (2.8) of 
the quasi-stationary measure fr. 

COROLLARY 2.4. Let B, s, and T(B) be as in Theorem 2.3. Then for A G S H B 

k ( X , E Ay > t) - f <j>Bdit- ( pBdir- * - A H < 2||1 -sp%e~Tm. 
I JB J A I 

In particular, when A = Bwe obtain the estimate 

(2.7) P*<7* > t) - I <f>B dn • e - A H < 2||1 - s/| |*<r r (B) ' . 
JB I 

Moreover, 
(2.8) 7f(-) = lim P#(X, € • | T8 > 0, 

/—KX> 

the limit being in total-variation norm for sufficiently large B; uniformly with respect to 
B if 60(B), e*0(B) -+0asB-^S. 

PROOF. The first result follows from Theorem 2.3 applied to the function/ = 1^. Set 
f3\(B) := 2||1—spB||ft. Now, by Theorem 2.3, for each (measurable)/ such that |[/||oo = 1» 
there exists 0\ (depending on/ , r, B), with \6\\ < 1, such that 

Mf/ = sîtfe~MB)t + exHx(B)e-^B)t 

and by (2.7) there exists 62 (depending on t, B), with | ^ | < 1, such that 

P*(T* > 0 = se~Am + 62f3l(B)e-rm. 

Therefore 

£#[f(*<) I r* > r] = 
W > 0 

Hence for sufficiently large B 

\E*[f(Xt) I T
8 > t] - ff/| < 2s -10i (5)[e[r(B)-A(B)]( - j - ' / î , (5 ) ] - ' — 0, as f -> oo 

since, for sufficiently large B, A(B) < T(B) and /3\(B) < s. Indeed, the former holds 
by the reasoning in the last paragraph of the proof of Theorem 2.3. The latter holds 
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because lim#_>s s(B) = 1, and \imB->s /3\ (B) = 0. Finally, under the stated hypotheses, the 
limit is uniform with respect to large B because lim^—^ A(B) = 0 and by Theorem 2.3, 
lim i n f ^ s T(B) - A(B) > Gap(L) > 0. • 

Integrating the estimate (2.7) with respect to t we get 

COROLLARY 2.5. For sufficiently large B (as in Theorem 2.3), 

\Etft - A(BTl jB $Bdit\ < 2||1 - spB\U/T(B). 

with s and T(B) as in Theorem 2.3. 

THEOREM 2.6. Under the hypotheses of Theorem 2.1, the probability of hitting a 
subset A C Bc when the Markov jump process first exits B, having started in the 
conditional stationary distribution fr, is given by 

P«(XT EA) = J°° j(TrT*)(dx)J(x,A)dt 

= f[LBrlJ(x,A)7t(dx) = 7t[LBrlJ(x,A). 
JB 

PROOF. For a fixed measurable A C Bc and e > 0, set/£ = e~l
 JQ TtÏAdt. Since, 

by Corollary 2.10 of Iscoe and McDonald (1994), E^r < oo, then for 7r-a.e. x G B, 
Exr < oo. Denoting the weak infinitesimal generator of (Tt\ t > 0) by — L, we may apply 
Dynkin s formula (cf. the Corollary to Theorem 5.1 in Dynkin (1965)) to obtain 

(2.9) Ex\f£(XT)] -Mx) = Ex[£ -Lfe(Xt)dt 7r-a.e. x E B 

(Note thatXr is measurable by the result 3.17A on p. 98 of Dynkin (1965) and the remark 
preceding it.) 

By Theorem 5.4 in Dynkin (1965), (Tt; t > 0) is weakly continuous. Therefore/e —» 1^ 
pointwise and boundedly on 5, as e —+ 0. Therefore the left-hand side of (2.9) tends to 
PX(XT e A), as e —> 0, for 7r-a.e. x e B. Also, by (1.1), for 7r-a.e. x EB 

(2.10) -Lfe(x) = Js\f£(y) -f6(x)]J(x,dy) 

(2.11) —>J(x,A\ a s e - > 0 

by the bounded convergence theorem. (Recall that, for 7r-a.e. x £ B, J(x) < M(B) < oo.) 
In addition, the convergence in (2.11) takes place boundedly on B since (2.10) implies 

that 
(2.12) \Lfe(x)\ < 2M(B), 7r-a.e. xEB. 

Therefore the inner integral on the right-hand side of (2.9) converges, by the bounded 
convergence theorem, to JQ J(Xt1 A)dt, as e —• 0. To justify the interchange of limit and 
expectation on the right-hand side of (2.9), we can apply the dominated convergence 
theorem since, by (2.12), 

\fo-LfE(Xt)dt < 2M(B}r 
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and Exr < oo. 
In summary, for 7r-a.e. x E B, 

PAXrEA) = Ex\£j(XhA)dt] 

= j^Ex[J{Xt,A)-r>t]dt 

(2.13) = £°Tf[J(.,A)](x)dt 

(2.14) = £°T?[J(-,A)]dt(x) 

(2.15) = [LBrlJ(;A)(x). 

Note that, in (2.14), we are permitted to interpret the integral as an element of L2(£, it) 
by the estimates: 

J(x) < M(B), 7T- a.e. x e B, 

\\T?V)h < M{B) x const, x exp(-A(fl)f); 

the latter following from (2.2). Also, in (2.15), [LB]~l exists because 0 < A(B) = 
inf Re{cr(L5)}. Integrating (2.13) and (2.15) with respect to it yields the result. • 

In our next theorem, we show how this hitting probability may be approximated by 
replacing it with the eigenmeasure it, where dit = pPdit. 

DEFINITION. For a fixed measurable A C Bc, let H denote the function J(x, A), x € £, 
and let// = ( / / , / ) * . 

THEOREM 2.7. Under the full hypotheses of Theorem 2.2 (in the non-s elf adjoint case, 
and without any restriction on B in the selfadjoint case), if A C Bc then, 

\P«(XT G A) - EtfT • / it(dx)J(x, A)\ 
J B \ 

< \\l-p%\\H-H\\t 
Gap(L) - e0(B) 

(In the selfadjoint case, e0(B) = 0.) 

PROOF. By the definition of H and H, 

{pB,H-H)* = 0 

and by Theorem 2.6 

Also 

Pit(XTeA) = Tt[LT,H. 

%{LBYXH = H f°fiTB(B)dt 

= H j°°P*{T>t)dt 

= HE*r. 
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Since fr is an eigenmeasure for — LB and hence for [—LB]~X, 

îf[LBrlH = A(B)-l7tH = A(BylH 

n[LBYlH = A(B)-l7tH = A(B)-lH. 

Therefore TT[LB]-1 ( / / - / / ) = 0 and 

\Pit(XTeA)-EitT- [ 7T(dx)J(x,A)\ = \ft[LBr\H-H)\ 

= \(Tt-mLBrl(n-H)\ 

= \jBd%{\-pB)[LBV\H-H)\ 

<\\l-p%\\[LBrl(H-H)\U. 

Now, since {pB,H-H)% = 0 

\\[LB]-](H-H)\\t < \\H-H\\t sup | | [Z,Vs| |*. 
*VMIg||*=i 

For each g satisfying g ± pB and ||g||ft = 1 define fg := [LB]_1g/||[LB]_1g||*. We see 
immediately that/g _L pB and |[/g||# = 1. Clearly for any such g 

\[LBrh 
i 

irai* 
< sup [iizZ/y-1 

/Xp*,|[/|U=i 

inf ||LB/|U_1 

and consequently 

W,M*=i 

sup | |[LVg|k<Ljnf IIL'/Ht]"1. 

However, in the non-selfadjoint case, by Lemma 4.11 in Iscoe and McDonald ( 1994), 
for B sufficiently large (and by Theorem XIII.3 in Reed and Simon (1978), in the 
selfadjoint case—without any restriction on B), T^QJ) > Gap(L) — e0(B) > 0 where 

r>(LB) := inf (/,LB/)* 

Therefore, 

< inf ||LB/||*. 

\\[LBr\H-H)\\* < ̂ - 7 # < r "fn "U
mV 
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The estimate of Theorem 2.1(ii) can be used for || 1 — pB\\ft in the general case. In the 
selfadjoint case, we can use the estimate (3.11) in Iscoe and McDonald (1994). 

The estimate for P%(XT € A) given in Theorem 2.7 is related to the heuristic formula 

in Section B17 in Aldous (1989). Consider the time-reversed process Xt whose jump 

kernel /(x, dy) satisfies 
7r(dx)J(x, dy) = 7r(dy)J(y, dx). 

Let n (T) denote the number of times before time T that the backwards process leaves 
Bc from A into B and then does not "immediately" return to Bc. By stationarity 

(2.16) Urn h^T) = f *(dx) fj(x,dy)cc(y) 
T—KX) 1 J A JB T—*oo T 

where a(y) is the probability the process X starting at y 6 B does not "immediately" 
return to Bc. The meaning of a(y) can be made precise if there exists a subset 0 C B, 
such that 7r(0) > 0, to which the process returns again and again. (In the ATM example 
take 0 = {(0 ,0 , . . . , 0)}.) In this case a(y) may be defined as the probability of hitting 0 
before returning to Bc. In this case a satisfies 

Lada(v) = 0 foryEB\0 

a(y) = l foryGO 

a(y)=0 foryeBc 

(This may be derived in a manner similar to (2.15) in the proof of Theorem 2.6.) 
Now, p satisfies 

Ladp(y) = A(B)p(y) foryEB 

p(y) = 0 foryeBc 

and hence is a close approximation to a, as may be verified using Theorem 4.9 in Iscoe 
and McDonald (1994). Therefore 

jA 7T(dx) jB T(x, dy)a(y) w jT ir(dx) j£ 7(x, dy)p(y) = j£ p(yMdy)J(y, A). 

Let n(T) denote the number of times before time T that the forward process first enters 
into Bc from B at A after a return to 0. Treating successive returns to 0 after visiting Bc 

as cycles, we have from renewal theory that 

hm -n(T) = 
T-KX> T p, 

where /i is the mean cycle length. This follows since once each cycle the forward process 
enters B for the first time that cycle. 

By time reversal, limr_>00«(r)/7 = lim^-K» n(T)/T. Also, the mean cycle length is 
approximately EQT œ E%T. We conclude 

P0(xTeA) _p0(xTeA) 
EfiT [i 

' JB p(y)K(dy)J(y,A) « jT p(y)7t(dy)J(y,A). 
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Thus the heuristic results in Section B17 in Aldous (1989) coincide asymptotically with 
ours. 

3. Application to ATM. For the ATM multiplexor, M(B) = M(Bt) < £?=1 ifli + t-bi). 
Since this process is also reversible we have e0{B) = 0 in Theorem 2.7 and Corollary 2.5. 
Moreover the quantities R, K\ and ft 2 (defined at (2.1)) clearly tend to to 0 as TT(BC) —• 0. 
In particular 

(3.1) R = it* = W £ ai)**(l -j) ~ f £ « « V ( ' " ^ as I — 00, 

as will be seen in the proof of Lemma 3.1 below. Similarly 

M^ = f(E^)2**( /̂) 
j=\\:di>j J 

and this gives a bound on (K\)2. Also 

. 2 
E x e ^ T r W ^ j ) 

7r(y) 

^ ./.../, TT(J5) 7r(y) Vtr / 

1 1 
^ "7^:~7T (X>(yV(y> ? + £;)) , by reversibility 
" j . . ^ , 7r(Z?)7r(y) V r ï / 

y.l-d<YH^diyi<l 

2 1-1 

^ *w /A \ 

This gives the rate at which (K2)2 tends to 0. Lastly, it is clear from the variational charac
terization of the Gap that Gap(L*) > Gap(L). However by Theorem 2.6 in Liggett (1989) 
Gap(L) > min, Gap(L,) where L, is the generator of the i-th source; that is the generator 
of a M/M/ oo-queue with birth rate <z/ and death rate b[. The Gap of such a birth and death 
process was calculated to be b{ in Proposition 3.1 in Iscoe, McDonald and Qian (1993). 
We conclude that the hypotheses of Theorems 2.2 and 2.7 and Corollary 2.5 are verified 
for the ATM switch. Practical application of these theorems requires, however, good es
timates on A(B) and on fr. This is the main thrust of the rest of this section. In particular 
in Proposition 3.8 we show that A(Z?^)/A*(£) —• 1 as £ —• 00. In doing so, we show 
we may replace ft by (p* of) • fr in Theorem 2.7. It turns out that this measure in turn is 
asymptotically equivalent to fr. 

The Dirichlet (zero)-form associated with N* was calculated in Iscoe, McDonald and 
Qian (1993) as follows, 

00 00 n 

(3.2) (w, L*u)** = £ u(r)L*u(r)ir*(r) = £ £ > ( r + d{) - u(r)]2 am* (r) 
r=0 r=0 i=l 
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We recall that the killed induced generator is denoted by [L8]* = [L*]B*. Also, we denote 
by K*(x) := lB*(x)J*(x, [B*]cl the killing rate of the induced process. Then [LB]*, being 
self-adjoint, has a positive, isolated eigenvalue A*(£) and associated right (and left) 
nonnegative eigenfunction p* belonging to L2(fr*). It will be convenient to renormalize 
p* so that ||P*||TT* = 1. 

LEMMA 3.1. 

A*(£) = 0(TT*(£ -d)), asl-* oo. 

PROOF. By Lemma 2.12 in Iscoe and McDonald (1994), with B = [0, t - 1], 

A*(£) < a* 

= ÊA*,[^oo])7r*(t) 
k=0 

*=£-</ i:dj>£-k 

= E ( E */)**(* -;) 

vz:4=*/ 

by Lemma A.2 in Iscoe, McDonald, and Qian (1993). • 

LEMMA 3.2. Let p* be normalized such that H/D*!!*-* = 1. Then 

lim max \p*(k) - ll = 0. 
£-»OO0<*<£-l 

PROOF. By Lemma 3.1 there is a constant C\ such that A*(£) < CITT*^ — d). Set 
a = £/:</,=</ «/. Then for all large £ 

Cx > A*(£)/n*(£-d) 

= (lLB?p*,p*)r/n*(l-d) 

= E E *.V(*) - P*(* + rf.-)]2 . . , / ,, by (3.2), 
(=1 fc=0 7T (f — d j 

l-d-l *\k) 

by Lemma A3 in Iscoe, McDonald and Qian (1993). By Lemma A.2 of Iscoe, McDonald 
and Qian (1993), l i i r ^ ^ TT*(£ - J - 1)/TT*(£ - d) = +oo. We conclude that 

(3.3) lim E~[p*(*)-p*(* + d)]2 = 0. 
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Given t — d<k<t—l, write k = md+r with 0 < r < d. Then 

(3.4) | l - p * ( * ) | < | l - p * ( r ) | 
m - l 

+ E \p\k - [/• + l]d) - p\k ~jd)\ + |p*(* - d) - p\k)\. 
7=1 

Now, by Theorem 2.1, l i m ^ o 11 - p\r)\ = 0 for each 0 < r < d - 1 ; and by (3.3) 

lim max \p*(k -d)- p\k)\ = 0. 

Finally, with C denoting a generic constant (depending on d, À, etc.) whose value varies 
from line to line, we have, by the Cauchy-Schwarz inequality: 

m - l -.2 / l-2d-\ 

E IP*(* - [/+nrf) - A* -*ol < ^ E I/O') - *»*0'+df 
7=1 J a / = 0 

£-2</-l IT* (ft 

< ClA*(l)/ir*(l-2d-l) by (3.2), 

< CtTT*(£-d)/7T*(£-2d- 1) 

< ctr<d+l)/d = crl/d->o 
as £ —• oo; the last inequality following from Lemma A.2 of Iscoe, McDonald and 
Qian (1993). 

Note that for k < I — d, we can include the first term on the right-hand side of (3.4) 
in the summation following it. • 

We now show that the estimate obtained in the proof of Lemma 3.1 is actually 
asymptotically sharp. 

PROPOSITION 3.3. Let a = E ^ ^ Û / . Then A*(£) ~ an*(l - d), as I —> oo. 

PROOF. By Theorem 2.7, with A = Bc, and Corollary 2.14 of Iscoe and McDon
ald (1994) with B = [0, t - 1] 

A*(*)~ Èp*(*)r(*)**(*) 
*=o 
i-\ 

~ Y,K*(k)ir*(k), by Lemma 3.2 
fc=0 

d 

7=1 \:di>j J 

~ an*(E-d) 

by Lemma A.2 of Iscoe, McDonald and Qian (1993). • 

Using Proposition 3.3, we can sharpen the analysis in the beginning of the proof 
of Lemma 3.1 to obtain the following estimate, which will be used in the proof of 
Proposition 3.8. 
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COROLLARY 3.4. Let p* be normalized such that ||p*||^* = 1- Then 

E É at[p\k)- p\k + di)}
2ix\k) = o(K\t)\ as i^oo. 

i=\ k=0 

PROOF. With a as in Proposition 3.3, 

A*(€) = E Ë ai[p*(k) - p\k + dd]2ft*(k) by (3.2), 

> È É */[p*(*) - P*(* + 4)1 V(*) + a[p*(£ - d) - P*(*)] V ( £ - J). 
/=1 £=0 

Therefore 

A * W _ 1 E É a , V ( * ) - p * ( * + 4 ) ] V ( * ) < l-[p\l-d)]2air*(l-d)A*(irl 

—• 0, as £ —• oo, 

by Lemma 3.1 and Proposition 3.3. • 

The next two lemmas will also be used in the proof of Proposition 3.8. 

LEMMA 3.5. Let X = (X\,..., Xn) be a random vector with law 7T. Set À; = ai/bi and 

fork ES*, set 

&k)Xi = E\Xi\Y/djXj=k and V a r ^ X ^ V a r xt\j:djXj=k 
7=1 

Then 

&k)Xt = Xi 
7T*(k ~ dj) 

7T*(k) 

v^Xi = ^k:,?KxP*=*>-« 
7T*(k) 7T*(k) 

7T*(k - di) 

TT*(k) 

PROOF. 

x:f(x)=k K \K) 

1 

(3.5) 

_ * m E biXiirM/bi 
n W x:f(x)=k 

—— E aiir(x-6i)/bi 
K W x:f(x)=k 

1 
ai7T*(k — di)jb[ 

= Xi 

ir*(k) 

ir*(k - di) 

n*(k) 
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and 

x:f(x)=k n W 

= -T77T E */A/7r(* - £,-), as in (3.5) 

11 W x:f(x)=k 

^ W x:f(x)=k-dj 

= "77 :̂ E -^W+ -TTT: E 7r(̂ ) 
^ W x:f(x)=k-clj K W x:f(x)=k-dj 

2v*(k-2di) **(k-dj) . 
= Af — — + Xi 7^7—-, as in (3.5). 

LEMMA 3.6. For sufficiently large k, Var^k\Xi) / &k\Xi) is well-defined and uniformly 
bounded in k. 

PROOF. By Lemma 3.5, the second half of the present lemma will follow from the 
factorization: 

7T*(& - 2di) <K*(k-di) 

7T*(k) 

7T*(k-2di) if{k-di)' 

7I*(t) 

provided we show that 

n*(k-2di) n*(k-di) 

7T*(k-di) ir*(k) 

if(k-di) 

7t*(k) 

(3.6) 
ir*(k - di) 7T*(k) 

= 0(1), as/:—+ co. 

In the case that all the d/S coincide (and equal 1), S* = fA£ and (3.6) follows from 
explicit computation. Indeed, 7r* is then a Poisson density and the ratio rc*(k — \)/ir*(k) 
is a linear function of k. 

Assume for the remainder of the proof, that the d,s are aperiodic. Then, for sufficiently 
large k, k E S* ; so that ir*(k) > 0 and hence the ratios g(k) := n*(k — di)/n*(k) are well-
defined. In order to verify (3.6), it suffices to derive the asymptotic expansion 

(3.7) g(k) := **(k~?u = c0k?d- + d ^ - 1 ] + • • • + cdikP + 0(1), as * — oo. 

Indeed, (3.6) follows from (3.7) because for any (positive or negative) exponent q < l 

di\i 
(3.8) {k-di)q-kq=kq (l- - r ) ^ - l ] =kq[-diqk-l+0(k~2)] = 0(1), as£-»oo; 

and the left-hand side of (3.6) is g(k — di) — g(k), which is a linear combination of 
differences of the type in (3.8) (plus the O-term from (3.7)). 

In what follows, we let (c/), (c-), etc. denote generic sequences of constants which 
may vary in value from line to line in any calculation—they are coefficients in various 
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asymptotic expansions. It is only the existence of the expansions which is important; the 
precise values of the coefficients are not needed. Also we set/7 = 1 jd and c = (d\)~p. 

A somewhat weaker form of (3.7) was established (for another purpose) in Lemma A.2 
of Iscoe, McDonald and Qian (1993) in the special case d = 1 ; namely that g(k) ~ ckp. 
The analysis here is similar, so we shall be brief. The starting point was the asymptotic 
expansion 

(39) ,*(,). ' ^ « p f e ^ ( ^ - l ) ] f c, Q ] 
(3.9) " ( t ) - ^ [ E ; L ] 4 V (*)4]i /2 V+k+^+ I 

where s = s(k) is the positive solution of £Li djXjSdJ = k so that s(k) ~ (k/Xd)xld, as 
k —• oo. Therefore 

g(k) = 
s(k) ]"fexp(EAy[^-^-.(^]) 

(3.10) 

L s(k — dt) 

x s(k - di)i[l + 0(k~2)l as k —• oo, 

EjLi dfXjs(k)^ 

l^dfXjsik-di^n 

since [1 + cx jik - 1) + 0(k-2])/[l +ci/k + 0(k~2)] = 1 + 0(k~2) as /: — oo. 
The method of reversion (see Chapter 1 of Olver (1974)) applied to the defining 

equation for s(k), viz. 

jtdj\js(k)d>=k, 
7=1 

yields the asymptotic expansion 

(3.11) s(k) = ckP + c0 + cxkTp + c2k~2p + • • • + cdkTx [1 + 0(1)]. 

From (3.11) we can easily derive the expansions 

(3.12) j(jfe)4 = cdikpdi + c{k
p[dJ-l] + c2*

pW"23 + • • • + cdj[\ + 0(1)] 

and 
(3.13) s(k)~x = c-]k-p{l+dk-p + c2k-2p + • • • + cdkTp-x[\ +(9(1)]}. 

Now, (3.11) also implies that 

,s(fc - d{) = s(& - 4 ) - s(£) + s(fc) 

= c[(k - dif - kp] + cx [(k - di)~p - k~p] + 0(k~2p-1 ) + j(Jfc) 

= -pcdtk
p-1 + 0(kp~z) + ci 

(3.14) = s(&) -pcdtk
p~x + 0(k~p~x). 

Combining (3.13) and (3.14) yields 

s(k - di) 

\-{\-dif 

kp(\ - ?y 
+ 0(k-2p-x) + s(k) 

s{k) 

(3.15) 

= 1 - pcdikp~x s(k)"x + 0(k~2p-x) 

= 1 -pdik-x{\ + cxk~p + c2k~2p + • • • + cdk~p-x [1 + oil)]}, 
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since —2p — 1 > —p — 2. In particular 

(3.16) s(k-di) = s(k)[l + 0(k~x)] = ckp + c0 + cxk~p + • • • + cd.xk
p-x[\ + 0(1)]. 

Also 

/
 S^ , = 1 +pdik-{{\ + cxk~p + c2kT2p + • • • + c/iT1 [1 + o(l)]} 

s(A: — d,) 

and 

[ f^ 1 = exp(fclog[l +pdik~l{l + c ^ + c2r2 / ? + • • • + cdk~x [1 + o(l)]}]) 

= exp(M{l + ci*_p + C2/t_2p + • • • + cdk~\\ + o(l)]}) 

(3.17) = é">>• {1 + ci* -" + c 2 r 2 p + • • • + Q/fe_1[l + o(l)]}. 

Next, (3.12) and (3.13) yield 

exp(jri\j[S(k-di)
d'-s(k)d^ 

'-'«Kg^K^r-]) 
= expf ]T A / J ( ^ [-djpdilC1 {1 + ciJT* + • • • + cdk~x [1 + 0(1)]} + 0()T2)]) 

= cxp(~pdi[Xds(k)dk-l{\ + c ^ + c2kT2p + • • • + c^ _ 1 [ l + 0(1)]} + 0(k~1)]) 

x exp(c^~^ + 4 * " ^ + • • • + c'dk~x + 0(k~p-x) + 0(k~p-x)) 

= e~pdl • {1 + cxk~p + c2k~2p + • • • + QÂT * [1 + 0(1)]} 

x {1 + c\k~p + c ^ - ^ + • • • + cf
dk~x[1 + o(l)]} 

(3.18) = e~pd' • {1 + cxk~p + c2k~2p + • • • + c^ _ 1 [ l + 0(1)]} 

Finally, (3.12) and (3.16) yield 

f T^=ld
2XjS(k^ y 

l^dfXjsik-d^l 

_ f d2\k + cxk
x~p + c2A:1~^ + • - • + Q[l + o(l)] 1 * 

" [{d2Xk + c ' ^ 1 ^ + c'2k
l~2P + • • • + c^[l + 0(1)]}{1 + 0(k~1)}J 

(3.19) = 1 + ci/T^ + c2fc~2/? + • • • + QJT1 [1 + o(l)]. 

Combining (3.11), (3.16), (3.17), (3.18), (3.19) and noting thatpd/- 1 < 0, we obtain 
the desired conclusion (3.7) from (3.10) as follows: 

g{k) = epd' • {1 + c\k~p + • • • + cdk~x[1 + o(l)]} 
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x e~pd< • {1 + c'{k~p + • • • + cn
dk~x [1 + 0(1)} 

x {l+c'l'k-r + • • • +cJ/JT1[l +o(l)]} 

x { c ^ * + cxk
p[d>-X] + • • • + cdi^kpd'-1 [1 + O(1)]}{1 + 0(fc~2)} 

= {1 + ciit"p + c2Â:"2 + • • • + Q_iF _ 1 + O^"1)} 

x {cd<kpd> + Clk
p[di~l] + • • • + Q , - ! ^ ' - 1 [1 + o(l)]} 

= c ^ ' : +ci*pW-1] + • • • + cj.-iifc^'-^l +o(l)] + 0(1). 

• 

The main tool used in the proof of Proposition 3.8 is the following variational estimate 
due to Temple and Kato [cf. Kato (1949) or Theorem XIII.5 in Reed and Simon (1978)]. 

THEOREM 3.7. Let Lbea self-adjoint operator, on a Hilbert space H, whose spectrum 
is bounded below by an isolated eigenvalue A: A < A\ = inf a(L) \ {A}. Fix O / v G ^ / 
and let r denote the Rayleigh quotient: 

r=(Lv,v)/\\v\\2. 

Ifr< Afar some A < Ai, then 

e2 

r - T < A < r 
A — r 

where e2 = e(v)2 = \\Lv - rv\\2/\\v\\2 = ||Xv||2/||v||2 - r2. 

PROPOSITION 3.8. Let B = Bt = {x : f(x) < £ - 1}, B* = 5J = [0, t - 1], and 

to A = A(£), A* = A*(£) &e the principal eigenvalues of lP and [LB]* = L*B . Then 
A(£) - A*(£), as e-+oo. 

PROOF. We apply the Temple-Kato result, Theorem 3.7, to L = LB and A = A(£), 
with test function v = p = p* of, where p* is the principal (non-negative) eigenfunction 
associated with A*, normalized such that ||P*||TT* = 1; and recall/(x) = Y%=\ à[X[. Thus 

n 

p(x) = p*{k), if Yjdixi = k-
i=\ 

As such, ||p||£ = 1 and the Rayleigh-Ritz quotient, r, is given by 

(LBp,p)* = ([LBTp\p*)t*=A\t). 

Taking v = p in Theorem 3.7 it suffices to show e2 = o(A*); i.e., 

\\LBP~A*P\\l 
A* 

Now, if/(*) = k, 

• 0, as £ —•+ oo. 

LBP(X) = E *«•[?(*) - P(x+«,-)] + E *«*/[?(*) - p(* - £«•)] 
/=! 

= E a/tP* W - P*« + d/)] + E biXi\p\k) - p\k - dd] 
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A*p(x) = A*p*(k) = [LBTp\k) 
7l(x) 

E Û I V ( * ) - P * ( * + * ) ] + E E b^i-bk [ P * ( * ) - P * ( * - 4 ) L 
/=1 i=\ lx:f(x)=k K W J 

Therefore 
£-1 

\LB~p-A*p\\l = £[L*p(x)-A*p(x)]2^) = £ E [LBp(x)-A*p(x)]2m 
xEB k=0 x:f(x)=k 

IblXl- Y: b^z^i 
x:f(x)=k K W J 

l-\ ( n 

= E E E 
it=Ojc:/(jc)=A:V/=l 

[p*(fc)-p*(*-*)]l *(*) 

£-1 
< E E nYXbiXi- E ^.~^]2[p*(*)-P*(*-rf/)]2*W 

&=0 *:/(*)=* z"=l 

»EE E 
/=1 k=0x:f(x)=k 

n l-\ 

x:f(x)=k 7T*(ky 

x:f(x)=k n W 
[p*(k)-P*(k-di)rr(k) 

= n £ E V*P\biXi)[p\k) - p\k - dt)]
2r(k) 

where (X,; 1 < i < n) are random variables as in Lemma 3.5. For the remainder of 
the calculation, C denotes a generic constant which may vary from line to line. By 
Lemma 3.6, the last step may be estimated by 

\\LBp-A*p\\l < cj^Y.b^iX^ik)- p*(k-di)]2ir*(k) 
i=\ k=di 

= CJ2 E aibi[p*(k) - p*(k - dt)]
2iT\k - dd 

z'=l k=d, 

= CJ2 É X *«V(*) - P*(* + di)]2n*(k) 
i=\ k=0 

= o(A*(tj), as£-»oo 

by Corollary 3.4. • 

COROLLARY 3.9. E*T ~ A(£yl ~ «-1 ~ [a7r*(£ - J)]"1 as £ —• oo. 

PROOF. This is an immediate consequence of Corollary 2.5, Proposition 3.8, and 
Proposition 3.3. Note that R, = K* ~ a7T*(l — d) by (3.1). • 

The next lemma is the final preliminary to the proof of the main result of this section; 
it is also of independent interest. 

LEMMA 3.10. (Maximum Principle) Let l\ < tandp < A(£i). Suppose that v. B^ —• 
%} satisfies 

L v = pv onBi^ 

v < 0 onBt\Bu, 
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Then v < 0 on B^. 

PROOF. Extend v to S = 1C by setting v = 0 on B\\ and setr = inf{f > 0 : Xt G Bc
u } . 

Then since 
Px(r >t)< Cxe-A(il)t 

for each x € B^, where Cx is a constant depending on x, we conclude that Ex[e^r] < +oo 
for each* E B^. By an optional stopping argument, applied to the martingale: e^v{Xt), 
we obtain the representation 

v(x) = Ex[e»Tv(XT)] 

(equating expectations at times t - 0 and t = r). The nonpositivity of v follows. • 

REMARK. If p < 0 then a direct (deterministic) analysis of the equation LBv = /LJV 
shows that v cannot attain a positive maximum value (occuring necessarily in B^ ). This 
yields an alternative proof in this case. 

LEMMA 3.11. Let p = pi denote a non-negative eigenfunction associated with the 
principal eigenvalue A(Bi). Then p is decreasing in each coordinate. In particular 
maxxeBtp(x) = p(0). 

PROOF. For any fixed j , 1 <j<n, set v(x) = p(x + Sj) — p(x), where p is extended 
to be 0 off Bt. Note that x + Sj e B\ when x E Bc

t_d.\ so that v(x) = 0 - p(x) < 0 
for x G Bi\B^, where t\ := £ — dj. It will be shown below that LBv = pv on 
i?^, where p := A(£) — h} < A(£) < A(l\); the latter following from the Rayleigh-
Ritz characterization of A. Granted this result, we then conclude immediately from 
Lemma 3.10 that v < 0 on B^ which is equivalent to the present lemma. 

It remains to verify that v satisfies LBv = pv on B^. For x € Biv x + Sj € Bf, so that 
LBp(x + Sj) = A(l)p(x + Sj). Now 

LBv(x) = LB[p{- + Sj)](x) - LBp(x) = LB[p(- + Sj)](x) - A(£)p(x); 

and 

n 

= E M P C * + SJ) ~ P(x + SJ + ^)1 + bixt[p(x + Sj) - p(x + Sj - St)]} 

= E M P C * + */) ~ PC* + */ + *'')] + &/(*/ + */)[p(* + «/) - PC* + &j - */)]} 

-fy[p(x + <57)-p(x)] 

= L V x + */) - bjv(x) = A(£)p(x + fy) - bjv(x). 

Therefore LBv{x) = A(l)p(x + Sj) - fyv(;t) - A(£)p(;c) = (A(£) - bj)v(x) as claimed. • 

In the next result, we use the notation || ||oo to denote the total-variation norm of 
a (signed) measure. Also //(*, •) := J(x, • Pi B0); and recall that for a fixed A C Bc\ 
H(x) = #(*, A) and H = £x6/? H(x)p(x)B7t(x). 
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THEOREM 3.12. Let a- Yli-.d^d^i andBt = {x e S :f(x) < I - 1}. Then 

Pt(XT e •) - EtfT Y, H^ 'Mx)\ —• 0, as I —• oo, 

where E%T ~ [air*(£ — d)]~\ as I —• oo. {See (3.9) for the asymptotic behaviour ofn*, 

itself.) In particular lime-^oo Pft(XT E dBi) = 1 where dB^ := {x £ S :f(x) = £}. 

PROOF. Writing simply B for Bi, for each A C Bc, the proof of Theorem 2.7 implies 

PftVLrEA)-
EfiT 

ExeBpixMx) £B 
Y,p(x)H(x,A)ft(x) < 

\l-p%\\H-H\U 

Gap(L) 

= rj(A) 

< 2Eti^lll-p1k 
Gap(L) 

where p := pB /pfi(0), so that p(0) = 1 and pB = pj T,XEB p(x)ît(x). In particular 

EfiT 
(3.20) 1 -

By Lemma 3.11, p(*) < p(0) = 1. Therefore 

EfiT 

•Y,P(x)H(x,BcMx) < T](BC). 

P*{XT e A) • 
£;cefi p(x)7t(x) xeB 

< 

Y,H(x,A)7t(x) 

P*(XTEA)-

EfiT 

EzT 
$ > « / / ( * , A)TT(X) 

(3.21) < 7](A) + 

HxeB p(x)it(x) xeB 

£*e* p(x)7t(x) xeB 

J2[l-p(x)]H(x,A)it(x) 

Y,[l-p(x)]H(x,A)ii(x). 
HxeB p(x)it(x) xeB 

Also, since R, = J2xeB H(x, Bc)ix(x), 

(3.22) E*T • X)[l - p(x)]H(x,AMx) 
xeB 

< % ^ [ l - p ( i ) M x / ) t « 

< [£ p(x)7t(x) - £*r • £ p(x)H(x,Bc)7t(x) 
]xeB xeB 

+ 11 — EftT • R,\ + 1 — ^2 P(x)n(x) 
xeB 

< ri(Bc) £ P(*)fr(*) + 11 - EiT • H\ + 1 - 1 / / ( 0 ) 

(3.23) —>0 

as £ -+ 5, by (3.20) and Corollary 3.9. 
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Combining (3.21) with (3.22), we conclude that 

1261 

P*(Xr € •) -
xeB 
£#(*,-)*(*) • 0, as I —» oo. 

Finally, 

xeB 

< \\P*(Xr 6 

+ E p(xMx) 
xeB 

0, as £ —+ oo, 

1 ~ 52 P(xMx) 
xeB 

P*(Xr 6 - ) -
^ T T T 

£*6*/>(*)*(*) *ez? 
£#(*,.)*(*) 

which yields the first conclusion of the theorem. The second conclusion then follows 

immediately from Corollary 3.9. • 

COROLLARY 3.13. 

11/MX.e •)-*(•: • 0 , as £ —• o o , 

where e is a probability measure on the hyperplane dBt = {x : £"=1 d/jc/ = £}, with 

probability mass function ir(x)Y%=\ b[Xij £"=1 a(ir*(£ — di). 

PROOF. From Theorem 3.12, the hitting distribution is concentrated, asymptotically, 

on the hyperplane {x : £?=1 djXi = £} with a probability mass function at x proportional 

to 
n n 

E atir(x - Si) = ]T biXiir(x). 
i=i ;=i 

The normalizing constant is 

E ê^«7rW = E\j£biXr9 [j^d^ = *)| = $>£<^ * **(') 
l.cllXl=ii=l L i=l l i = l J J i=l *££: 

The. result follows. 

= Y]è;A/ 77;—n*(0 from Lemma 3.5. 
tt 7T*(£) 
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