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Volume Electron Microscopy (EM) not only enables dense reconstructions of neuronal circuits but 

provides the tissue context for targeted high resolution visualization of selected biological structures. 

Currently, 3D ultrastructure can be solved by destructive techniques including serial block-face electron 

microscopy (SB-SEM Denk & Horstmann, 2004; ), focused ion beam-scanning electron microscopy (FIB-

SEM (Heymann et al., 2006)) or serial sectioning (automated tape-collecting ultramicrotomy ATUM (K. 

J. Hayworth et al., 2014), transmission electron microscope camera array TEMCA (Bock et al., 2011)) 

methods. While destructive methods benefit from high alignment accuracy, they lack the option of 

reacquisition and hierarchical imaging. However, as microtomy-based approaches are limited by their 

poor z resolution, ion milling techniques are required if isotropic high resolution voxels are needed. 

Despite recent advances in the application of alternative milling strategies, targeted FIB-SEM imaging is 

still required to restrict the acquisition volume. This is mainly achieved by correlated workflows involving 

targeted trimming guided by endogenous and artificial landmarks (Bishop et al., 2011). X-ray micro 

computed tomography (microCT) (Bushong et al., 2015) has emerged as a tool for facilitated ROI 

relocation within the processed EM sample. So far, microCT imaging options are not commonly 

accessible and the technique only provides a virtual map for subsequent guided destructive sample 

preparation. An alternative prescreening of embedded tissue at a larger scale is implemented by rendering 

it accessible to light and electron imaging modalities. Ultrathick sectioning at 20 µm by the hot knife 

method provides samples that are accessible to large-scale FIB-SEM (Kenneth J. Hayworth et al., 2015) 

enabling seamless reconstruction of large tissue blocks. 

We developed a multiscale method for targeted FIB-SEM on semithick (2-10 µm) sections named ATUM-

FIB. Microtomy of semithick sections is facilitated by an optimized resin formulation and a custom-built 

ultra diamond knife with temperature control. Serial thick sections are collected onto carbon nanotube 

(CNT) tape (Kubota et al., 2018), compatible with both transmitted light and scanning electron microscopy 

(SEM). 3D information obtained by serial Light and Electron Microscopy exposes the detailed 

ultrastructure of regions of interest that are directly accessible for targeted FIB-SEM. While providing 

direct physical access to isotropic high resolution imaging of multiple ROIs by FIB-SEM this method 

enables the archiving of 3D tissue context information. We demonstrate the relocation of microglia contact 

sites with amyloid plaques in a mouse model for familial Alzheimer Disease (FAD). 
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Figure 1. ATUM-FIB is a new technique for targeted volume EM. 

 
Figure 2. Targeted FIB-SEM on selected consecutive semithick sections of mouse familial Alzheimer 

Disease (FAD) cortex. 
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