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Abstract

We present a novel approach to synthesizing recursive functional programs from input–output exam-
ples. Synthesizing a recursive function is challenging because recursive subexpressions should be
constructed while the target function has not been fully defined yet. We address this challenge by
using a new technique we call block-based pruning. A block refers to a recursion- and conditional-
free expression (i.e., straight-line code) that yields an output from a particular input. We first
synthesize as many blocks as possible for each input–output example, and then we explore the space
of recursive programs, pruning candidates that are inconsistent with the blocks. Our method is based
on an efficient version space learning, thereby effectively dealing with a possibly enormous num-
ber of blocks. In addition, we present a method that uses sampled input–output behaviors of library
functions to enable a goal-directed search for a recursive program using the library. We have imple-
mented our approach in a system called TRIO and evaluated it on synthesis tasks from prior work
and on new tasks. Our experiments show that TRIO significantly outperforms prior work.

1 Introduction

Recent years have witnessed a surge of interest in recursive functional program synthe-
sis (Albarghouthi et al., 2013; Kneuss et al., 2013; Feser et al., 2015; Osera and Zdancewic,
2015; Polikarpova et al., 2016; Lubin et al., 2020; Farzan and Nicolet, 2021; Miltner et al.,
2022). In particular, because input–output examples are readily available, inductive syn-
thesis of recursive functional programs has gained a lot of attention, witnessing significant
strides. Inductive synthesis problems are typically expressed as a combination of algebraic
data types, a library of external operators over the data types, and input–output examples
that should be satisfied by the target function to be synthesized.
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2 H. Cho and W. Lee

Despite recent advances, synthesizing recursive functional programs from input–output
examples is still challenging, mainly due to the following two factors.

• Recursive calls: recursive data types often necessitate recursive calls, which are
nontrivial to synthesize. That is because we should be able to reason about the
target function yet to be defined during the search. As a workaround, previous
approaches (Albarghouthi et al., 2013; Osera and Zdancewic, 2015) require the
user to provide a trace-complete specification where the behaviors of recursive call
expressions are part of the specification.1 However, writing a trace-complete spec-
ification is quite unintuitive and difficult even for experts who are familiar with
the synthesizers. To overcome this limitation, there have been previous methods,
including specification strengthening (Miltner et al., 2022), partial evaluation, and
constraint solving (Lubin et al., 2020). However, these approaches have their weak-
nesses, occasionally suffering from scalability issues even for small programs (see
Section 6).

• External operators: to synthesize programs that utilize various operators over
algebraic data types, synthesizers often require the user to provide a library of exter-
nal operators. However, there is no general method for accelerating synthesis by
exploiting the semantics of such external operators. Previous methods (e.g., Feser
et al. (2015)) rely on predefined deductive rules only applicable to a fixed set of com-
binators (e.g., map, fold) or resort to naive enumeration. Therefore, the scalability
issues worsen in the presence of a targeted library of external operators.

In this paper, we propose a novel approach to the inductive synthesis of recursive
functional programs that addresses these challenges.

Our method for handling recursion, which we call block-based pruning, is to carry out
synthesis in two phases: (1) synthesis of blocks satisfying the given examples followed by
(2) synthesis of a recursive program. We define a block as a recursion- and conditional-free
expression (i.e., straight-line program) that yields an output for a particular input, which is
called trace in the prior work (Summers, 1986; Kitzelmann and Schmid, 2006). For each
input–output example, we first synthesize as many blocks satisfying that example as pos-
sible. Based on an efficient version space learning, we effectively deal with possibly an
enormous number of blocks.2 And then, we explore the space of recursive programs top-
down, generating incomplete candidate programs with holes (which we call hypotheses).
For each hypothesis containing recursive calls, we transform it into blocks possibly with
holes (which we call open blocks) by symbolic evaluation interleaved with concrete eval-
uation. If the open blocks cannot be the blocks synthesized in the earlier phase by filling
the holes, the hypothesis is determined to be inconsistent with the blocks and is discarded.

Our method for handling external operators, which we call library sampling, is to
sample input–output behaviors of library functions and use them for synthesis. This
method enables a divide-and-conquer strategy called top-down propagation (or top-down

1 For example, suppose the user tries to provide input–output examples [] �→ 0 and [1, 2, 3] �→ 3 to synthesize
a function that returns the length of an integer list. To make the specification trace complete, the user should
also provide two additional input–output examples: [2, 3] �→ 2 and [3] �→ 1.

2 For example, a graph of 2470 nodes is used to represent over 7 million blocks (for the list_rev_append
benchmark in Section 6).
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Fig. 1. High-level architecture of our synthesis algorithm.

deductive search) for synthesizing expressions that call arbitrary external operators. Top-
down propagation hypothesizes an overall structure of the desired program satisfying
given input–output examples and then performs deductive reasoning to recursively deduce
new examples that should be satisfied by missing subexpressions. For example, suppose
we want to synthesize a list manipulating program satisfying an input–output example
[1, 2] �→ [3, 4]. After hypothesizing that the desired program is of form map(f , x) where x
denotes input and f is an unknown function subexpression to be synthesized, we can gen-
erate two new input–output examples for f as a synthesis subproblem: 1 �→ 3 and 2 �→ 4.
This process is recursively repeated until all subproblems are solved. When hypothesiz-
ing the desired program is a function call expression involving external operators, we can
use the input–output samples of the library functions to deduce new examples for missing
subexpressions. This method is applicable even for black-box libraries.

Figure 1 presents the overall architecture of our synthesis algorithm, inspired by a
recently proposed synthesis strategy (Lee, 2021). Our synthesis algorithm consists of three
key modules, namely Bottom-up enumerator, Block generator, and Candidate generator:

• Bottom-up enumerator: Given synthesis specification comprising input–output
examples and usable external operators, and a number n, the Bottom-up enumerator
module generates two ingredients for the other modules: components and inverse
maps. The components are expressions (of size ≤ n) that can be used to construct
blocks and recursive programs. The inverse maps are finite maps from outputs to
inputs of the external operators and derived from input–output samples collected
from concrete evaluation of the external operators.

• Block generator: Given the two ingredients from Bottom-up enumerator, the Block
generator module generates blocks. For each input–output example, the module
generates as many satisfying blocks as possible using the components. The block
generation phase can be quickly done by top-down propagation. To control blocks
in an enormous amount, we make use of version space representations to efficiently
enumerate and store them.

• Candidate generator: Given the blocks generated by Block generator, the
Candidate generator module searches for a solution also by top-down propagation.
Starting with an empty program, it generates a sequence of hypotheses (i.e., par-
tial programs with holes). During the search, any hypothesis inconsistent with the
blocks is discarded early. Candidate generator keeps generating hypotheses until it
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4 H. Cho and W. Lee

finds a solution, or all candidates have been explored in the search space. If a solu-
tion cannot be found using the current components, the whole process is repeated
with the component size n increased by 1, thereby exploring the larger search space
in the next iteration.

Our algorithm eventually finds a solution if it exists because Bottom-up enumerator will
eventually enumerate a solution of finite size. Also, our method does not require the user
to provide unintuitive trace-complete specifications.

We implemented our approach in a tool called TRIO. We evaluate TRIO on 65 bench-
marks: 45 out of 65 are from prior work (Osera and Zdancewic, 2015), and the others
are newly added. We use two types of specifications: (1) input–output examples and (2)
reference implementations. Our evaluation results suggest that TRIO is more scalable than
prior work on all types of specifications. In particular, our tool can synthesize 100% (65)
of the functions from input/output examples and 91% (59) of the functions from refer-
ence implementations. We also compare TRIO against simpler variants that do not perform
either block-based pruning or library sampling, and we empirically prove the efficacy of
the two techniques.

Our contributions are as follows:

• A novel general method for synthesizing recursive programs from input–output
examples: We propose a general algorithm for effectively synthesizing recursion-
and calls to external operators. We believe our method is potentially applicable to
other synthesis contexts.

• Confirming the method’s effectiveness in an extensive experimental evaluation: We
have conducted an extensive experimental evaluation on synthesis benchmarks from
prior work and new benchmarks. Furthermore, we publicly release the implemen-
tation of our approach as a tool called TRIO (available at https://github.com/
pslhy/trio).

Comparison with the previous version. This article is an extension of our previous
work (Lee and Cho, 2023). Compared to the previous version, the current article presents a
new method for ensuring termination of synthesized programs (Section 4.6). This method
enables us to synthesize tail-recursive programs, which are not supported in the previous
version. In addition, various optimizations for improving the scalability of the synthesis
algorithm (Sections 4.7 and 5.1), which were not discussed in the previous version due
to space constraints and a qualitative comparison to a recent work (Yuan et al., 2023)
(Section 7) are added. Lastly, the evaluation section (Section 6) is extended with additional
benchmarks.3

2 Overview

In this section, we give an overview of our method using the problem of synthesizing
a recursive function mul for multiplying two natural numbers. The specification for the

3 We have added 5 new tail-recursive benchmarks to the 60 benchmarks used in the previous version to test if
our termination check method works well. Also, the tool has been updated to fix some performance bugs and
improve the performance.
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Inductive synthesis of structurally recursive functional programs 5

problem comprises an inductive data type for natural numbers, an external operator add
for adding two natural numbers that can be used to synthesize mul, and input–output exam-
ples embedded in a hypothesis. A hypothesis is a program that may have placeholders
for missing expressions. We will call such a placeholder a hole (denoted �), which is
associated with input–output examples that should be satisfied by a subexpression in that
position. In the following specification (in OCaml-like syntax),

type nat = Z | S of nat
rec add (x : nat, y : nat) : nat = match x with Z -> y | S _ -> S (add

(S−1(x), y))
rec mul (x : nat, y : nat) : nat = �in

�in is a hole associated with the set of input–output examples {(0, 1) �→ 0, (1, 2) �→
2, (2, 1) �→ 2}. S−1 denotes a destructor which extracts the subcomponent of a constructor
application of S. Such destructors obviate the need for introducing new variables bound by
patterns in match expressions. The following program is a solution.

Psol = rec mul (x : nat, y : nat) : nat =
match x with Z -> Z | S _ -> add (mul (S−1(x), y), y)

We will describe how the three modules of our system interact with each other to syn-
thesize the desired program. For brevity, we will often use literals 0, 1, · · · as syntactic
sugar for the corresponding naturals Z, S(Z), · · · .

Component generation and library sampling. Bottom-up enumerator first gener-
ates the following component pool C of expressions whose size is not greater than some
user-provided upper bound.

C = {x, y, S−1(x), S−1(S−1(x)), S−1(y), S−1(S−1(y)), Z, add, (S−1(x), y), · · · }
During bottom-up enumeration, it adopts the existing pruning technique based on observa-
tional equivalence to avoid maintaining multiple components of the same behaviors with
respect to the input examples.4 This pruning technique drastically reduces the number
of components by removing redundant expressions, which leads to overall performance
gains. These components will be used to construct blocks and recursive programs in the
following phases.

Next, for each function that a component in C may evaluate to, it constructs an inverse
map of the function through a method we call library sampling. An inverse map of a func-
tion is a finite map from output values to input values of the function. Because add is
the only function component, we construct the inverse map of add, which can be derived
from input–output samples of add. Such samples can be obtained by evaluating add with
input values that are not greater than the values in the examples. The reason behind this
choice is that we aim to synthesize structurally decreasing recursive programs like pre-
vious approaches (Frankle et al., 2016; Osera and Zdancewic, 2015; Lubin et al., 2020;
Miltner et al., 2022) where arguments of recursive calls are strictly decreasing, and we

4 Whenever a new program is enumerated, it is checked if it is “observationally equivalent” to any of the
programs already constructed; i.e., those which produce the same outputs on inputs that were given as a spec-
ification. If so, the new program is discarded (e.g., x+ x is discarded if 2 × x is already enumerated). This is
done to avoid enumerating redundant programs.
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6 H. Cho and W. Lee

observe inputs to the target function often flow to the external operators as arguments.
Using numbers not greater than the greatest number (2) in the input–output examples (i.e.,
(0, 0), (0, 1), · · · , (2, 2)) as inputs, we evaluate the add function and obtain the inverse map
add−1 = {0 �→ {(0, 0)}, 1 �→ {(0, 1), (1, 0)}, · · · , 4 �→ {(2, 2)}}.

Block generation. Next, for each input–output example, Block generator gener-
ates a set of blocks satisfying that example. Given an input–output example, it adds all
the components in C satisfying the example to the block set. Irrespective of whether
or not any component is added, to find as various blocks as possible, it continues by
hypothesizing about the structure of the other possible blocks and deduces new input–
output examples that should be satisfied by missing holes. For each hole, it recursively
searches for all the blocks that satisfy the hole. For example, consider the second input–
output example (1, 2) �→ 2. Block generator first finds all components in C that satisfy
the example. Because the desired output 2 is the value of the second parameter y, y
is added to the set of blocks. The search continues by hypothesizing about all possible
structures of the other blocks. Suppose it attempts to find blocks of the form S (· · · ),
generating a hypothesis S(�1). The hole �1 is associated with (1, 2) �→ 1 where the out-
put example is obtained by removing the constructor head S from the output example
2. Because the desired output 1 is the value of the first parameter x, S(x) is added to
the block set. For other possible blocks in place of �1, it attempts to find blocks of the
form add (· · · ). To generate hypotheses involving the external operator, it uses the inverse
map of add. Since add−1(1) = {(0, 1), (1, 0)}, it generates two hypotheses S(add (�2, �3))
and S(add (�3, �2)) where �2 and �3 are associated with (1, 2) �→ 0 and (1, 2) �→ 1,
respectively. By finding components satisfying the holes, S(add (Z, x)), S(add (x, Z)),
S(add (S−1(x), x)), · · · are added to the block set. It further refines the holes �2 and
�3 by recursively generating other hypotheses in a similar manner to find more blocks.

During the search, hypotheses containing recursive calls and match expressions are not
taken into account because resulting blocks should be recursion- and conditional-free. Let
us denote Bi as the set of blocks for the i-th input–output example. We obtain the following
blocks.

(0, 1) �→ 0: B0 = {0, x, add (0, 0), add (0, x), ...}
(1, 2) �→ 2: B1 = {2, y, S(add (0, x)), add (S−1(x),y), ...}
(2, 1) �→ 2: B2 = {x, S(y), add (x, 0), add (add (S−2(x), y), y), ...}

Because there are often infinitely many blocks satisfying each example, we limit the max-
imum number of steps of top-down propagation to ensure the termination of the block
generation phase. For example, if we set the maximum number to be 1, in the above exam-
ple, we would not recursively generate other hypotheses for the holes �2 and �3 as we
already went through one step of top-down propagation. Even though we finitize the search
space, there are often still many blocks. To efficiently enumerate and store them, we use
a version space representation, which is a data structure that compactly represents a large
set of programs (see Section 4.4).

Candidate generation. Equipped with the blocks generated by Block generator,
Candidate generator searches for the desired recursive program by performing top-down
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propagation, similar to what Block generator does but with a few differences: recursive
calls and match expressions are generated, and all the input–output examples are consid-
ered at once, in contrast to Block generator that only considers one input–output example
at a time. Suppose Candidate generator hypothesizes that the solution is a match expres-
sion with a guessed scrutinee x. Then, it generates the following hypothesis, distributing
the input–output examples of �in into the two different branches.

P0 = rec mul (x : nat, y : nat) : nat = match x with Z -> �1 | S _ -> �2

where �1 = {(0, 1) �→ 0} and �2 = {(1, 2) �→ 2, (2, 1) �→ 2}. Suppose Candidate generator
fills the hole �1 with component x that satisfies the example and moves on to the hole �2,
trying to generate a hypothesis of the form add (· · · ) in that position. Similarly to what
Block generator did, Candidate generator uses the inverse map of add to generate new
hypotheses. Because two output examples in �2 are 2 and there are three inputs of add
that lead to the desired output 2 (add−1(2) = {(0, 2), (1, 1), (2, 0)}), it deduces 9(= 32) new
hypotheses. Among them, let us consider the following hypothesis

P1 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add �3

where �3 = {(1, 2) �→ (0, 2), (2, 1) �→ (1, 1)}. Observing the desired outputs are tuples of
length 2, Candidate generator distributes the input–output examples into two new holes,
generating the following hypothesis.

P2 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add
(�4, �5)

where �4 = {(1, 2) �→ 0, (2, 1) �→ 1} and �5 = {(1, 2) �→ 2, (2, 1) �→ 1}. Suppose now it
refines the hole �4 by generating a hypothesis of the form mul (· · · ).

P3 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add
((mul �6), �5)

Because mul is the target function yet to be defined, we cannot deduce examples for �6.
In such a case, we try enumerating all the components in C that can be used as argu-
ments. Recall that we only consider structurally decreasing arguments for recursive calls.
For example, mul (S−1(x), y) is a valid recursive call as the first parameter decreases. By
plugging it into the hole, we obtain

P4 = rec mul (x : nat, y : nat) : nat =
match x with Z -> x | S _ -> add (mul (S−1(x), y), �5)

Whenever a hypothesis containing recursive calls is generated, Candidate generator
checks the feasibility of the hypothesis. It first performs symbolic evaluation interleaved
with concrete evaluation with each input example on the hypothesis to obtain blocks. Our
symbolic evaluation obeys the following rules.

• The body of the hypothesis is substituted into every position of a recursive call, and
actual parameters are substituted for formal parameters.

• Every scrutinee in a match expression is concretely evaluated with a given input to
take a branch.

• Calls to external operators and holes are left unchanged.
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8 H. Cho and W. Lee

We call this process unfolding. As a result of unfolding, we obtain an open block, i.e., a
block possibly with holes. Let us denote →∗ as one or more steps of the symbolic eval-
uation. The followings show how to derive a block Bj from the hypothesis for each j-th
input–output example associated with �in.

(0, 1) �→ 0: mul (x,y)
→ match x with Z -> x | S _ -> add (mul (S−1(x), y), �5)
→ match 0 with Z -> x | S _ -> add (mul (S−1(x), y), �5)
→ x (= B0)
(1, 2) �→ 2: mul (x,y)
→ match x with Z -> x | S _ -> add (mul (S−1(x), y), �5)
→∗ add (mul (S−1(x), y), �5)
→ add (match S−1(x) with Z -> S−1(x) | S _ -> add (mul (S−2(x), y), �5), �5)
→ add (match 0 with Z -> S−1(x) | S _ -> add (mul (S−2(x), y), �5), �5)
→ add (S−1(x), �5) (= B1)
(2, 1) �→ 2: mul (x,y)
→ match x with Z -> x | S _ -> add (mul (S−1(x), y), �5)
→∗ add (mul (S−1(x), y), �5)
→ add (match S−1(x) with Z -> S−1(x) | S _ -> add (mul (S−2(x), y), �5), �5)
→ add (match 1 with Z -> S−1(x) | S _ -> add (mul (S−2(x), y), �5), �5)
→∗ add (add (mul (S−2(x), y), �5), �5)
→ add (add (match S−2(x) with Z -> S−2(x) | S _ -> add (mul (S−3(x), y), �5),

�5), �5)
→∗ add (add (S−2(x), �5), �5) (= B2)

where S−2(x) is a shorthand for S−1(S−1(x)). Then, for all j, it checks if each block Bj can
be identical to another block in Bj by properly substituting each hole. B0, which is x, is
identical to x in B0. B1, which is add (S−1(x), �5), can be identical to add (S−1(x), y) in
B1. Lastly, B2, which is add (add (S−2(x), �5), �5), can be identical to add (add (S−2(x),
y), y) in B2. This matching process can be efficiently done by traversing the version spaces
of the blocks. The fact that the hypothesis can be unfolded into blocks satisfying the exam-
ples suggests that we may find a solution if we further refine the hypothesis. Thus, P4 is
determined to be feasible. Next, the hole �5 can be filled with y, which is a component
satisfying the example over the hole, and we find the solution.

Feedback loop for guaranteeing search completeness. Although the block-based
pruning presented may be unsound in some cases, the overall algorithm eventually finds a
solution if it exists. A feasible hypothesis may be mistakenly rejected if Block generator
misses some satisfying blocks because of its limited search in a finitized space. TRIO uses a
feedback loop to avoid such unsound pruning. If a solution cannot be found using a current
set of components, TRIO will add larger components into the component pool and repeat
the entire process, so that Block generator can generate more blocks and hopefully avoid
mistakenly rejecting correct hypotheses.

Also, when constructing inverse maps, despite restricting the domain of external func-
tions to be the set of values each of which is not greater than the greatest value in the
examples, we do not miss a solution involving external functions. This is because the
bottom-up enumerator will eventually enumerate necessary function call expressions of
finite size.
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Inductive synthesis of structurally recursive functional programs 9

Fig. 2. Our ML-like language.

3 Problem definition

In this section, we define our problem of inductive synthesis of recursive functional
programs. We first define an ML-like functional language in which we synthesize
programs.

3.1 Language

We consider an idealized functional language similar to the core of ML. Our target lan-
guage features algebraic data types and recursive functions with the syntax definition
depicted in Figure 2. Programs P are recursive functions whose bodies are expressions
e. Application is written e1 e2, κ ranges over data type constructors, a(κ) denotes the arity
of κ , κ−1 denotes a destructor which extracts all the subcomponents of a constructor appli-
cation of κ as a tuple. An expression e.n projects the n-th component of a tuple. We use
ML-style pattern match expressions. We use κj _ → ej

k to denote κ1 _ → e1 | · · · | κk _ →
ek . A hole is written �u, where u is the hole name, which we tacitly assume is unique. Each
hole is associated with input–output examples, a finite function from input values to out-
put values. Values v are made up of constructor values for data types, tuples, and recursive
functions. Recursive functions can be used as input examples when synthesizing higher-
order functions but cannot be used as output examples. Environments σ map variables to
values. For conciseness, we assume that all functions take a single argument, which does
not harm the expressivity of the language since we can represent multiple inputs as a single
tuple.

Example 1. The solution program Psol for the overview example in Section 2 is
represented as follows in our language.

Psol = rec mul (x : nat * nat) : nat =
match x.1 with Z -> Z | S _ -> add (mul (S−1(x.1), x.2), x.2)

Though we use two parameters x and y in the overview example for better readability, we
use a single tuple parameter x in the actual program since our language assumes a single
argument for functions.

3.2 Notations

We will use some notations throughout the remaining sections. An open hypothesis (resp.
open expression) is a program (resp. expression) that contains one or more holes. A closed
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10 H. Cho and W. Lee

hypothesis is a program that does not contain any holes. We will use the fixed variables
f and x to denote the target function and its formal parameter, respectively. We use σ �
P ⇒ v to denote the standard multistep call-by-value operational semantics of a program
P without holes under environment σ . Lastly, we denote the set of all subexpressions of
an expression e as SubExprs(e).

3.3 Problem definition

Given an environment σ that provides definitions of external functions and an ini-
tial open hypothesis Pin = rec f(x) =�in where �in = ⋃

1≤j≤n{ij �→ oj} represents input–
output examples that should be satisfied by the function body, our goal is to find a
closed hypothesis of form P = rec f(x) = e that satisfies the input–output examples of �in.
Formally, ∀1 ≤ j ≤ n. σ [f �→ rec f(x) = e, x �→ ij] � P x⇒ oj (denoted P |=σ �in). We just
use the user-provided external functions without inventing new ones.

4 Algorithm

This section formally describes our algorithm, inspired by the previous methods by Lee
(2021) and Feser et al. (2015).

4.1 Overall algorithm

Figure 1 shows the high-level structure of our algorithm. The algorithm takes as input an
environment σ that provides definitions of external functions, which we tacitly assume
to be globally accessible throughout the algorithm, an initial open hypothesis with input–
output examples, and initial component size n. Finally, it returns a program P that satisfies
the input-output examples. With initially empty component set C, the main loop of our
synthesis procedure (lines 2–28) is repeated until a solution is found. The loop starts by
invoking the COMPONENTGENERATION procedure (line 3) which takes a current compo-
nent pool C, the input-output examples �in, and the target component size n. The procedure
generates new components by composing existing components in C. It applies the standard
pruning technique based on observational equivalence with respect to the input examples.
Expressions with recursive calls to the target function being synthesized can be included
in the resulting component pool. Because we cannot evaluate such recursive components
as the function is unknown yet, we cannot apply the observational equivalence reduction
based on their outputs. Instead, we exploit functional congruence, i.e., the same input to
the function always results in the same output. For example, we do not maintain both of f 2
and f (1 + 1) in the component pool. Next, the LibrarySampling procedure (Section 4.2)
is invoked to derive an inverse map for each function expression in the component pool
(line 4). Next, the BlockGen procedure is invoked to obtain satisfying blocks for each
input-output example (line 6). Each block must be recursion- and conditional-free because
the target function is unknown yet and conditionals are not necessary when it comes to
a single input-output example. Therefore, any components containing recursive calls and
conditionals must not be used in blocks. We exclude such components from C (line 5)
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Algorithm 1 The TRIO Algorithm
Require: (Global variable) environment σ that provides definitions of external functions
Require: Initial component size n
Require: A hypothesis Pin = rec f(x) =�in where �in = ⋃

1≤j≤n{ij �→ oj}
Ensure: A solution program P

1: C := ∅
2: repeat
3: C := COMPONENTGENERATION(C, �in, n) � C : P (Exp)

4: I := LibrarySampling(C, �in) � I : P (Val × Val × Val)
5: Csimple := C − RecursiveOrMatchExprs(C)
6: B := BlockGen(Csimple, I, �in) � B : Val × Val →P (Exp)

7: Q := {Pin}
8: while Q �= ∅ do
9: Remove P from Q s.t. P has minimal cost � Using a cost model in Section 5.3

10: if ¬Terminate(P) then
11: continue
12: end if
13: if Holes(P) = ∅ then
14: if P |=σ �in then return P
15: else continue
16: end if
17: end if
18: Pick a hole �u in P
19: for e ∈ Deduce(C, I, �u) do
20: P′ := P[e/�u]
21: if Holes(P′) = ∅ then insert P′ into Q
22: else if BlockConsistent(P′, B, �in) then
23: insert P′ into Q
24: end if
25: end for
26: end while
27: n := n + 1
28: until false

Bottom-Up
Enumerator

Block
Generator

Candidate
Generator

and provide the reduced component set to the BlockGen procedure (Section 4.4). With
inverse maps I and blocks B, the inner loop (lines 8–26) iteratively processes elements
in the priority queue Q. The priority queue Q contains hypotheses (initially only Pin) and
is sorted according to the cost (Section 5.3) of each hypothesis. In each iteration, we pick
a minimum-cost hypothesis P from the queue (line 9). We first check if P is structurally
recursive and guaranteed to terminate (line 10) (Section 4.6). If not, we continue to the next
hypothesis. If P is closed (line 13) and correct with respect to the top-level input–output
examples, P is returned as a solution (line 14). Otherwise, we continue investigating other
hypotheses in the queue. If a chosen hypothesis P is open, we pick a hole �u in P (line 18).
Then, the Deduce procedure (Section 4.3) returns possible replacements for the hole �u

(line 19). A replacement e for the hole may be a closed expression satisfying the example
of �u, or an open expression with new holes. For each replacement e, we obtain a new
hypothesis P′ by replacing the hole with e (line 20). If P′ is closed, there are no unknowns
left to be synthesized (line 21). Hence, we add P′ into the queue, so that its correctness
can be checked in the next iterations. If P′ is open, we check its consistency with the
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blocks B before adding it to the queue (line 22) by invoking the BlockConsistent proce-
dure (Section 4.5). If the queue becomes empty before a solution is found, we increase the
component size n by 1 (line 27) and restart the main loop.

Our algorithm is sound and complete in that it finds a program correct with respect to
the given input–output examples if it exists in the search space.

Theorem 2. Algorithm 1 finds a solution to a given synthesis problem if it exists.

Proof Available in the appendix. �

4.2 Getting inverse maps of external functions by library sampling

This section describes the LibrarySampling procedure that derives a set I whose each
element is a triple (g, vo, vi) where g is a function value and vi and vo are non-function
values, meaning that σ � g vi ⇒ vo. We will write (g, vo, vi) as g−1(vo) = vi.

Given the component pool C and the top-level input–output examples �in =⋃
1≤j≤n{ij �→ oj} as input, we first compute a finite domain D = {v ∈ Val | ∃1 ≤ j ≤ n. v �

ij} where � denotes a well-founded ordering on values. In our implementation, we repre-
sent values as abstract syntax trees and use the subtree relation. Using the values in D as
inputs, we compute a set of inverse maps as follows:

I = {g−1(vo) = vi | g, vo ∈ Val, vi ∈ D, ∃e ∈ C, 1 ≤ j ≤ n. σ [x �→ ij] � e ⇒ g, σ � g vi ⇒ vo}
The use of the component pool C is for computing inverse maps of functions provided as
input examples, which is useful for synthesizing higher-order functions.

Example 3. Consider the following hypothesis.

type nat = Z | S of nat
rec f (x : (nat -> nat) * nat) : nat = �in

where �in = {(rec one (n) = S(Z), 1) �→ 1, (rec inc (n) = S(n), 0) �→ 1}. The solution is

rec f (x : (nat -> nat) * nat) : nat = x.1 x.2

Suppose the component pool C = {x.1, x.2}. The domain D is {0, 1}. We derive
(rec one(n) = S(Z))−1(1) = 0 ∈ I because σ [x �→ (rec one(n) = S(Z), 1)] � x.1 ⇒
rec one(n) = S(Z) and σ � (rec one(n) = S(Z)) 0 ⇒ 1. In a similar manner, we conclude
(rec inc(n) = S(n))−1(1) = 0, (rec inc(n) = S(n))−1(2) = 1 ∈ I. In conclusion,

I = {(rec one(n) = S(Z))−1(1) = 0, (rec one(n) = S(Z))−1(1) = 1,
(rec inc(n) = S(n))−1(1) = 0, (rec inc(n) = S(n))−1(2) = 1}.

We consider D to be the domain for sampling for the following reason. We permit recur-
sive calls on values that are strictly smaller than the input to ensure that our synthesized
programs terminate, and inputs to a function often flow to other functions called inside of
it. Therefore, it is likely that I captures input–output behaviors of library functions that
can be observed during the evaluation of the desired program with the user-provided input
examples.

https://doi.org/10.1017/S0956796825100063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100063


Inductive synthesis of structurally recursive functional programs 13

Fig. 3. Inference rules for Deduce.

4.3 The Deduce procedure

We now describe the Deduce procedure that returns a set of expressions that are either
closed or open as possible replacements for a given hole �u.

Deduce(C, I, �u) is the smallest set of expressions satisfying the constraints depicted
in Figure 3. The D_COMPONENT rule says if we have components in C that immediately
satisfy �u, every such component can fill the hole (e |=σ �u denotes ∀i �→ o ∈�u. σ [x �→
i] � e ⇒ o). D_REC indicates that all recursive components in C are considered potential
replacements for the hole. This rule is under an optimistic assumption that any recursive
expressions whose semantics is unknown yet may satisfy the hole, although in reality not
all recursive expressions can do. Later, any hypothesis containing a recursive call that is
determined to be infeasible will be discarded (will be detailed in Section 4.5). D_CTOR

generates new examples for arguments of a constructor application. If the example values
in the hole �u consist of constructor values with a shared constructor κ of arity k, then it
creates k new examples constraints over the k arguments of the constructor value. D_DTOR

creates a new example for the argument of a destructor value. The new example consists
of constructor values with a shared constructor κ where κ can be any constructor. D_PROJ

creates closed expressions as replacements for the hole. D_TUPLE is for creating new
examples corresponding to arguments that must be synthesized for a tuple expression. The
deductive reasoning process is similar to that of D_CTOR. D_MATCH first identifies com-
ponents that can be used as scrutinees. Then, for each match expression whose scrutinee
is such a component, it distributes the given examples in the hole to each branch. Lastly,

https://doi.org/10.1017/S0956796825100063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100063


14 H. Cho and W. Lee

D_EXTCALL uses the inverse maps of external functions. For example, for an input-output
example i �→ o, if we can find a triple g−1(o) = v in I, then we can deduce an example
i �→ g for the function part and another example i �→ v for the argument part.

Comparison with prior work. Compared to the IREFINE rules in MYTH (Osera
and Zdancewic, 2015) and the deductive reasoning rules in λ2 (Feser et al., 2015) that
also propagate examples to holes in a top-down manner, the novelty of Deduce lies in
the D_EXTCALL rule. In MYTH, new function applications are generated by enumerating
all possible combinations of functions and arguments. In contrast, by using the inverse
maps in the D_EXTCALL rule, we can expedite the search in a goal-directed manner. The
deductive reasoning of λ2 is only applicable to a fixed set of predefined functions such as
filter and map. In contrast, Deduce is applicable to any external function.

Example 4. Consider the overview example in Section 2. Let us denote the target func-
tion as f. Suppose we have a hole �u = {(1, 2) �→ 2} and a component pool C = { x,
f (S−1(x.1), x.2), 2, add }. We can deduce the following constraints by applying the rules
in Figure 3.

By D_COMPONENT, 2 ∈ Deduce(C, I, �u) (∵ 2 ∈ C, 2 |=σ �u)

By D_REC, f (S−1(x.1), x.2) ∈ Deduce(C, I, �u)

By D_CTOR, S(�u1 ) ∈ Deduce(C, I, �u) (�u1 = {(1, 2) �→ 1})
By D_DTOR, S−1(�u2 ) ∈ Deduce(C, I, �u) (�u2 = {(1, 2) �→ 3})
By D_PROJ, x.2 ∈ Deduce(C, I, �u) (∵ x ∈ C, x.2 |=σ �u)

By D_MATCH, match 2 with Z→�u3 | S _ →�u ∈ Deduce(C, I, �u) (�u3 = ∅)

(∵ 2 ∈ C, σ [x �→ (1, 2)] � 2 ⇒ S _)

By D_EXTCALL,

�u4 �u5 ∈ Deduce(C, I, �u) (�u4 = {(1, 2) �→ rec add . . .}, �u5 = {(1, 2) �→ (2, 0)})
�u4 �u6 ∈ Deduce(C, I, �u) (�u6 = {(1, 2) �→ (1, 1)})
�u4 �u7 ∈ Deduce(C, I, �u) (�u7 = {(1, 2) �→ (0, 2)})

(∵ {(rec add · · · )−1(2) = (2, 0), (rec add · · · )−1(2) = (1, 1), (rec add · · · )−1(2) = (0, 2)} ⊆ I)

Note that we cannot apply the D_TUPLE rule because �u does not contain any tuple. Also,
when applying the D_MATCH rule, we cannot use the components x and f (S−1(x.1), x.2) as
a scrutinee because neither of them evaluates to a constructor application (in particular,
f (S−1(x.1), x.2) cannot evaluate to a concrete value as f is not defined yet). The following
is the smallest solution satisfying the constraints over Deduce(C, �u).

Deduce(C, I, �u) = {2, f (S−1(x.1), x.2), S(�u1 ), S−1(�u2 ), x.2, match 2 with Z→�u3 | S_ →�u,
�u4 �u5 , �u4 �u6 , �u4 �u7 }

The Deduce procedure is sound in the following sense.

Definition 5 (Soundness of Deduction). Let �u be a set of input–output examples, and let
C and I be a set of components and a set of inverse maps, respectively. If there exists an
expression satisfying �u, for every open expression e ∈ Deduce(C, I, �u), for every hole
�u′ in e, there exists an expression satisfying the hole �u′ .
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Intuitively, the deduction procedure is sound if there exists a solution to a synthesis
task, then there also exists a solution to every synthesis subtask derived from the original
synthesis task.

Theorem 6. Without using the D_EXTCALL rule, the Deduce procedure is sound.

Proof Available in the appendix.
�

The following example shows that the Deduce procedure can be unsound when using
the D_EXTCALL rule.

Example 7. Recall Example 3. Let us denote the first and second input examples in �in

as i1 and i2 respectively (i.e., i1 = (rec one (n) = S(Z), 1), i2 = (rec inc (n) = S(n), 0)). We
can deduce the following fact by applying the D_EXTCALL rule because (rec one · · · )−1(1) =
0 ∈ I.

�u1 �u2 ∈ Deduce(C, �in) (�u1 = {i1 �→ rec one · · · , i2 �→ rec one · · · }, �u2 = {i1 �→ 0, i2 �→ 0})

We cannot synthesize an expression satisfying the hole �u1 . That is because we cannot
synthesize an expression that evalutes to the one function under the environment where
x is bound to i2 (the only available function is inc). Recall that we do not synthesize any
new auxiliary functions.

4.4 Constructing blocks from each input–output example

This section describes the BlockGen procedure for computing satisfying blocks for each
input–output example in �in. The set of blocks is stored in a version space (Gulwani, 2011)
which is a compact representation of expressions.

We begin with the definition of version spaces.

Definition 8 (Version Space). A version space is either

• A union:
⋃

V where V is a set of version spaces
• An expression
• An application: written (ẽ1 ẽ2) where ẽi are version spaces
• A tuple: written (ẽ1, · · · , ẽk) where ẽi are version spaces
• A constructor: written κ(ẽ1, · · · , ẽk) where ẽi are version spaces and κ is a

constructor
• A destructor: written κ−1(̃e) where ẽ is a version space and κ is a constructor
• The empty set, ∅

A version space can be understood as an E-graph where each node represents a set of
expressions. Each leaf node represents a single expression, and they are composed into
larger sets. The union operator

⋃
symbolizes a nondeterministic choice between multiple

expressions, allowing version spaces to compactly represent huge sets of expressions.
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Fig. 4. Inference rules for BlockGen.

Example 9. The version space (add (
⋃{x, Z}, ⋃{x, Z}) encodes four different expres-

sions: add (x, x), add (x, Z), add (Z, x), and add (Z, Z).

The set of expressions encoded by a version space is defined as follows:

Definition 10. The set represented by a version space is written � ẽ � and is defined
recursively as

�e� = e (e is an expression) �∅� = ∅ �⋃V� = {e ∈ �̃e� | ẽ ∈ V}
�(ẽ1, · · · , ẽk)� = {(e1, · · · , ek) | ∀1 ≤ j ≤ k. ej ∈ �ẽj�}

�κ(ẽ1, · · · , ẽk)� = {κ(e1, · · · , ek) | ∀1 ≤ j ≤ k. ej ∈ �ẽj�}�
κ−1(̃e)

� = {κ−1(e) | e ∈ �̃e�} �(ẽ1 ẽ2)� = {(e1 e2) | ∀1 ≤ j ≤ 2. ej ∈ �ẽj�}

With this in mind, we are ready to describe how to obtain a version space of blocks.
Given a set C of components and the top-level input–output examples �in, the BlockGen
procedure computes the smallest version spaces satisfying the constraints in Figure 4.
The result maps each input–output example to a version space of satisfying blocks. In
the B_GEN_PER_EX rule, Blocks(C, i �→ o) denotes the version space of blocks satisfy-
ing a single input-output example i �→ o. The other rules depict how to compute a version
space for a single example. SimpleBlocks denotes a set of component expressions sat-
isfying that example. CompoundBlocks denotes a set of version spaces each of which
is not a single expression. We reuse the Deduce procedure to obtain CompoundBlocks,
which can be derived by the other remaining rules B_CTOR, · · · , B_APP. Note that the
given set of components C only includes recursion- and conditional-free expressions (by
line 5 in Algorithm 1), and there are no rules for deriving version spaces containing match
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expressions and recursive calls, thereby ensuring that the resulting version space represents
a set of blocks.

Example 11. Recall Deduce(C, I, �u) in Example 4. We describe how to obtain a version
space of blocks for the input–output example �u = {(1, 2) �→ 2} using the rules in Figure 4.
Blocks(C, I, �u) is computed as follows: first, by the B_GEN_PER_EX rule,

Blocks(C, I, �u) =
⋃

CompoundBlocks(C, I, �u) ∪ SimpleBlocks

where SimpleBlocks = {2} because 2 is the only component satisfying the example. We can
deduce the following constraints over CompoundBlocks(C, I, �u) as follows:

By B_CTOR, S(Blocks(C, I, �u1 )) ⊆ CompoundBlocks(C, I, �u) (∵ S(�u1 ) ∈ Deduce(C, I, �u))

By B_DTOR, S−1(Blocks(C, I, �u2 )) ⊆ CompoundBlocks(C, I, �u) (∵ S−1(�u2 ) ∈ Deduce(C, I, �u))

By B_PROJ, x.2 ∈ CompoundBlocks(C, I, �u) (∵ x.2 ∈ Deduce(C, I, �u))

By B_APP

(Blocks(C, I, �u4 ) Blocks(C, I, �u5 )) ⊆ CompoundBlocks(C, I, �u)

(Blocks(C, I, �u4 ) Blocks(C, I, �u6 )) ⊆ CompoundBlocks(C, I, �u)

(Blocks(C, I, �u4 ) Blocks(C, I, �u7 )) ⊆ CompoundBlocks(C, I, �u)

where �u1 , · · · , �u7 are the ones defined in Example 4. We keep applying the rules to
generate constraints over Blocks(C, I, �u1 ), · · · , Blocks(C, I, �u7 ). For example, by the
B_GEN_PER_EX rule, Blocks(C, I, �u1 ) = ⋃

CompoundBlocks(C, I, �u1 ) ∪ SimpleBlocks
where SimpleBlocks = ∅ because no component in C satisfies the example �u1 =
{(1, 2) �→ 1}. Constraints over CompoundBlocks(C, I, �u1 ) are generated by apply-
ing the rules in a similar manner. For instance, by the B_PROJ rule, a constraint
x.1 ∈ CompoundBlocks(C, I, �u1 ) will be generated since x.1 ∈ Deduce(C, I, �u1 ).
Blocks(C, I, �u4 ) will include a version space of a single expression add since add is a
component satisfying the example. Blocks(C, I, �u6 ) (where �u6 = {(1, 2) �→ (1, 1)}) will
include a version space of a tuple (Blocks(C, I, �u1 ), Blocks(C, I, �u1 )) by the B_TUPLE

rule.
When generating constraints, a cycle that leads to blocks of infinite length may occur.

For example, we may generate the following two constraints: S(Blocks(C, I, �u1 )) ⊆
CompoundBlocks(C, I, �u) and S−1(Blocks(C, I, �u)) ⊆ CompoundBlocks(C, I, �u1 )
that can be used to generate blocks of form S(S−1(S(S−1(· · · ))). In our implementation,
we bound the maximum height of version spaces to avoid generating blocks of infinite
length.

We can derive the final version space of blocks for �u by finding the following smallest
version space satisfying the above constraints.

Blocks(C, I, �u) =⋃{2, x.2, S(x.1), (add (
⋃{x.1, S−1(x.2), · · · }, ⋃{x.1, S−1(x.2), · · · })), · · · }.

Comparison with prior work. The previous methods for version space construction
for synthesis (Gulwani, 2011; Lee, 2021; Polozov and Gulwani, 2015) construct a version
space of possible solutions directly. On the other hand, our version space construction is
different in that it is used for pruning the search space. In addition, the previous methods
rely on inverse semantics (also called witness functions) specialized for operators available
in the target language for synthesis. Developers need to manually craft inverse semantics
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for each operator. In contrast, our method does not require inverse semantics for arbitrary
operators provided as library functions thanks to the use of inverse maps.

4.5 Pruning infeasible hypotheses using blocks

Finally, in this section, we describe the BlockConsistent procedure that prunes infeasible
hypotheses using the blocks generated by the BlockGen procedure.

Deriving blocks from a hypothesis by unfolding. We first describe how to obtain
blocks from an open hypothesis which we want to determine the feasibility of by a tech-
nique we call unfolding. Suppose a currently considered hypothesis is P = rec f(x) = ebody.
For each input example i in the top-level input–output example �in, we perform symbolic
evaluation (interleaved with concrete evaluation) over ebody and obtain a block, which pos-
sibly contains holes. We call such a block possibly with holes (resp. without holes) an
open block (resp. closed block). We formalize our symbolic evaluation via the transition
relation e →P,i e′ induced by the target hypothesis P and the input i. The relation says that
the expression e takes a single step to the expression e′. The transition relation is formally
defined by the rules in Figure 5. The rules U_CTOR, U_DTOR, U_TUPLE, and U_PROJ per-
form symbolic evaluation on the arguments of constructor, destructor, tuple, and projection
expressions, respectively. U_APP_L and U_APP_R perform symbolic evaluation on the left
and right hand sides of applications. The most notable part is the remaining two rules.
U_MATCH for match expressions concretely evaluates the scrutinee e of a given match
expression with input i. Then, a branch is chosen by the concrete value of the scrutinee. To
obtain concrete values of scrutinees, we require scrutinees not to contain recursive calls to
the target function, which is unknown yet. Therefore, any hypothesis containing a match
expression that pattern matches on a recursive call to the target function (called inside-
out recursion (Osera, 2015)) will get stuck and thus will be determined to be infeasible.
This means Candidate generator will never generate programs with inside-out recursion.
However, such programs can still be synthesized by our algorithm as Bottom-up enumer-
ator will eventually enumerate all programs. U_REC is a special rule for recursive calls.
Any recursive call to the target function f is replaced by the body of the function where
every occurrence of the parameter x is replaced by the argument expression. Note that
there are no transition rules for variables and holes. That is, every variable and hole in the
hypothesis remains unchanged.

Given the top-level input-output examples �in = ⋃
1≤j≤n{ij �→ oj}, the set of open blocks

derivable from hypothesis P = rec f(x) = ebody (denoted BP) is defined as follows:

BP = {(ij, oj) �→ e | ebody →∗
P,ij

e, 1 ≤ j ≤ n}.
where →∗

P,ij
is the transitive closure of →P,ij . That is, with each input example, we apply

the transition rules till the end to obtain an open block.

Example 12. Recall the hypothesis P4 in the overview example in Section 2.

P4 = rec f (x) = match x.1 with Z -> x.1 | S _ -> add (f (S−1(x.1), x.2), �5)
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Fig. 5. Rules for unfolding (symbolic evaluation interleaved with concrete evaluation) for deriving
open blocks from P = rec f(x) = ebody with input i.

Using the rules in Figure 5, we can derive an open block from P4 with input example
i = (1, 2) as follows:

match x.1 with Z -> x.1 | S _ -> add (f (S−1(x.1), x.2), �5)
→P4,i add (f (S−1(x.1), x.2), �5) (By U_MATCH)
→P4,i add (match S−1(x.1) with Z -> S−1(x.1)

| S _ -> add (f (S−2(x.1), x.2), �5), �5)(By U_REC, U_TUPLE, and U_APP_R)
→P4,i add (S−1(x.1), �5) (By U_MATCH, U_TUPLE, and U_APP_R)

Checking feasibility of a hypothesis. We check the feasibility of a hypothesis P
by checking if it is block consistent with respect to the set B of closed blocks from the
BlockGen procedure, which is formally defined as follows:

Definition 13. Given the top-level input-output examples �in, a hypothesis P = rec f(x) =
e is block consistent with respect to a set B of blocks if and only if

∀ij �→ oj ∈�in. BP(ij, oj) ∼ B(ij, oj)

where ∼ is a binary relation over Exp and version spaces, which is defined in Figure 6.

The relation ∼ relates an open block to a set of closed blocks. Specifically, for an open
block e and a version space of closed blocks ẽ, e ∼ ẽ holds if we can obtain an expres-
sion in ẽ by properly filling each occurrence of the holes in e. Checking if e ∼ ẽ resembles
conventional syntactic matching between different expressions but with the following dif-
ferences. Syntactic matching has as a goal to determine whether two expressions can be
made equal by searching for a proper substitution from variables into expressions. For
example, add (x, Z) can be matched with add (Z, Z) since we can substitute x with Z. On
the other hand, in our method, not variables but only holes are targets for substitution.
In addition, in contrast to syntactic matching that traverses two expressions, our method
simultaneously traverses one expression and a version space to figure out if an open block
can be matched with a closed block in the version space.
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Fig. 6. Matching rules for checking block consistency.

The first rule in Figure 6 says that any hole can be matched with any expression in ẽ as
long as ẽ is not empty. The other rules recursively traverse the version space ẽ of blocks
and check if e can be matched with any expression in ẽ.

Finally, the BlockConsistent procedure is defined as follows:

BlockConsistent(P, B, �in) =
{

true (if ∀ij �→ oj ∈�in. BP(ij, oj) ∼ B(ij, oj))

false (otherwise)

Example 14. The following derivation tree shows how the open block in Example 12 can
be matched with the version space (add (

⋃ {Z, S−1(x.1)}, ⋃ {x.2, S(x.1)}) using the rules
in Figure 6.

add∼ add

S−1(x.1) ∼ S−1(x.1)

S−1(x.1) ∼ ⋃ {Z, S−1(x.1)} �5 ∼ ⋃ {x.2, S(x.1)}
(S−1(x.1), �5) ∼ (

⋃ {Z, S−1(x.1)}, ⋃ {x.2, S(x.1)})
add (S−1(x.1), �5) ∼ (add (

⋃ {Z, S−1(x.1)}, ⋃ {x.2, S(x.1)})

As already mentioned in Section 2, the block-based pruning presented may be unsound;
a valid open hypothesis that can be a solution in the future may be pruned by the block-
based pruning. Such a situation may occur if Block generator is not able to generate closed
blocks for the valid hypothesis due to a lack of components. However, as the component
pool grows, such unsoundness may be mitigated.

Please recall that even though the block-based pruning is unsound, our algorithm finds
a solution if exists by resorting to Bottom-up enumerator that will eventually generate a
solution of finite size.

Comparison with prior work. Our rules for unfolding are similar to the evaluation
past holes in the Hazel system (Omar et al., 2019), which supports evaluation of incomplete
programs for interactive editing of programs. However, we use the rules to prune the search
space of recursive programs.

The novelty of our block-based pruning is discussed in Section 7.

4.6 Ensuring termination of synthesized programs

In this section, we describe how to ensure termination of synthesized programs. Through
the Terminate procedure on line 10 of Algorithm 1, we check if a chosen candidate pro-
gram P = rec f(x) = ebody is guaranteed to terminate. If P is an open hypothesis containing
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(a)

(b)

Fig. 7. Termination checking procedure.

holes, the Terminate judgment answers if P can be completed to a terminating program. If
P is a closed program, the Terminate judgment checks if P is terminating.

The pseudo-code and the inference rules in Figure 7 define our termination check-
ing procedure. Figure 7(a) shows the Terminate procedure and its helper functions. The
Terminate procedure takes a target function of the form rec f(x) = ebody and returns true if
the program is guaranteed to terminate. If there is no recursive call, the program is guaran-
teed to terminate (line 3).Otherwise, the program is guaranteed to terminate if all recursive
calls are structurally decreasing. This is checked by the Struct function (line 5). For every
recursive call f e in the body of the target function (denoted RecursiveCalls(ebody)), we
check if the recursive call is valid. The judgment Struct(f e, K) states that the argument
expression e of the recursive call is deemed structurally decreasing where K is a set of
indices of the arguments that may have to be structurally decreasing. Let us call such
arguments key arguments. To see the role of K in ensuring termination of recursive calls,
consider the following example.
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Example 15. The following function is a solution to the problem of synthesizing a function
that reverses a given list in a tail-recursive manner.

type nat = Z | S of nat
type list = Nil | Cons of nat * list

rec f (x : list * list) : list =
match x.1 with
| Nil -> x.2
| Cons _ -> f (Cons−1(x.1).2, Cons(Cons−1(x.1).1, x.2))

The first component of the input tuple is a list to be reversed, and the second component
is an accumulator. The function pattern matches on the first component of the input tuple.
Therefore, the first component should be structurally decreasing in each recursive call to
ensure termination. On the other hand, the second component does not affect the termina-
tion of the function. To see if the function is terminating, we keep track of the indices of
the key arguments and check if the arguments are structurally decreasing. In this case, the
key argument is the first component of the input tuple and the set K is {1}.

The function KeyArgs takes an expression e as input and returns a set of indices of the
key arguments. If e is a match expression (line 17), the key arguments are the indices of
the arguments that appear in the scrutinee of the match expression (line 18). The reason
is as follows: recursive calls are typically made in the branches of match expressions
(otherwise, the program would never terminate because of unconditional recursion), and
the arguments that appear in the scrutinee of the match expression determine which branch
to take, deciding whether recursive calls are made further or not. Therefore, it is likely that
the arguments that appear in the scrutinee of the match expression are key arguments.
Because match may be nested, key arguments in the branches are collected and merged
(line 19). If e is not a match expression, the KeyArgs function recursively calls itself on
the sub-expressions of e and collects the key arguments by unioning the results (line 21).

Given a set of key arguments K and an expression e that may contain a tuple of
arguments or a single argument, the function Struct(e, K) checks if the arguments are
structurally decreasing. If e is a tuple expression (line 8), it first checks if K is empty
(line 9). If K is empty, the function returns false because there is no key argument to
check (line 9). Otherwise, the function extracts the components of e at the indices in K
and the corresponding components of x (line 10 and 11). Here, (ek)k∈K denotes a tuple
of (ek1 , ek2 , · · · ) where k1, k2, · · · are the indices in K and (x.i)i∈K denotes a tuple of
(x.k1, x.k2, · · · ) where k1, k2, · · · are the indices in K. The function then checks if the
extracted components are structurally decreasing (line 12) using the partial order relation
� defined in Figure 7(b). The partial order relation � is defined by the rules ORD_DTOR,
ORD_PROJ, and ORD_TUPLE. The rule ORD_DTOR states that a destructor expression is
structurally smaller than the expression it destructs. The rule ORD_PROJ states that a pro-
jection expression is structurally smaller than the expression it projects if the expression
itself is structurally smaller than the projected expression or the two expressions are equal.
The rule ORD_TUPLE states that a tuple expression e = (e1, · · · , em) is structurally smaller
than another tuple expression e′ = (e′

1, · · · , e′
m) if any components of e are structurally

smaller than the corresponding components of e′ and the rest of the components are equal.
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Lastly, if e is not a tuple expression (line 13), the function checks if e is structurally smaller
than x using the partial order relation � (line 14).

Example 16. Consider the solution in Example 15 where the function body is denoted
as ebody. Because the scrutinee of the match expression is x.1, KeyArgs(ebody) = {1}.
The recursive call in the function body is the one in the second branch of the match
expression. By the line 5 of the Terminate procedure and the ORD_TUPLE rule, we check
if Cons−1(x.1).2 � x.1 because Cons−1(x.1).2 is the first component of the argument tuple
in the recursive call and the key argument is the first component of the input tuple. By the
ORD_PROJ rule, we should check if Cons−1(x.1) � x.1, which is true by the ORD_DTOR rule.
Therefore, the function is terminating.

Theorem 17 guarantees that if the Terminate procedure accepts a closed hypothesis,
then it is guaranteed to terminate on any input.

Theorem 17. If Terminate accepts P, then P is guaranteed to terminate on any input.

Proof Available in the appendix. �

Comparison with prior work. The prior work on recursion synthesis (Osera and
Zdancewic, 2015; Lubin et al., 2020; Miltner et al., 2022) also ensures termination of
synthesized programs. But the termination checking in prior work is simpler than ours,
limiting the scope of programs that can be synthesized. For example, BURST cannot syn-
thesize tail-recursive programs and MYTH and SMYTH cannot synthesize tail-recursive
programs if the first parameter of the target function is a tail-recursive argument, which is
non-decreasing in each recursive call. Our termination checking procedure is more general
and can handle such cases. More details on the comparison with prior work are discussed
in Section 6.2.

4.7 Optimizations

We describe several optimizations that we use to improve the efficiency of our algorithm.

Normalization and type-based pruning. We also utilize a few standard optimiza-
tions in prior work. For ease of presentation, we have presented as if we do not type-check
any of the expressions during the search. However, in our implementation, we perform
type-based pruning to generate only well-typed expressions, similarly to prior work (Feser
et al., 2015; Osera and Zdancewic, 2015). We also generate expressions in β-normal η-long
form as done in prior work (Osera and Zdancewic, 2015; Frankle et al., 2016; Lubin et al.,
2020). Also, we apply constructor/destructor simplification (Lubin et al., 2020) to avoid
generating unnecessarily long programs containing sub-expressions of forms κ(κ−1 (· · · ))
or κ−1(κ (· · · )) for any constructor κ . Finally, in the COMPONENTGENERATION pro-
cedure, we avoid generating unnecessary components. When it comes to generating
projection expressions, we do not have to generate components of the form (e1, · · · , ek).n
because they can be replaced by en for 1 ≤ n ≤ k. Therefore, we only generate projection
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components of the form e.n where e is not a tuple. In addition, we do not generate all pos-
sible tuples of a product type. For example, if we have m algebraic data types available in
the specification and want to generate tuples of length n, the number of all product types of
tuples is mn. We observe that tuples likely to be used in the target program can be used for
constructor applications and function calls. Therefore, only product types that appear in the
data type definitions and input types of external (library) functions and the target function
are considered types of tuples to be generated. Lastly, we do not consider nested recursive
calls to the target function of the form f(· · · f(· · · ) · · · ) because they are unlikely to be
useful in practice.

Using another version of the D_EXTCALL rule. As described in Example 7 in
Section 4.3, the D_EXTCALL rule in Figure 3 may be unsound (i.e., some of generated
holes cannot be filled with any expression). This deduction unsoundness may lead to a
scalability issue by generating too many unsatisfiable holes if the number of examples is
greater than a certain threshold. In such a case, we use the following two rules instead of
the D_EXTCALL rule.

�u = ⋃
1≤j≤n{ij �→ oj} e1, e2 ∈ C ∀1 ≤ j ≤ n. σ [x �→ ij] � e1 ⇒ gj

∀1 ≤ j ≤ n. σ [x �→ ij] � e2 ⇒ vj ∀1 ≤ j ≤ n. gj
−1(oj) = vj ∈ I

e1 e2 ∈ Deduce(C, I, �u)
D_EXTCALL1

�u = ⋃
1≤j≤n{ij �→ oj} e1, e2 ∈ C ∀1 ≤ j ≤ n. σ [x �→ ij] � e1 ⇒ gj

e2 contains recursive calls. ∀1 ≤ j ≤ n.∃v. gj
−1(oj) = v ∈ I

e1 e2 ∈ Deduce(C, I, �u)
D_EXTCALL2

Both rules use components to generate closed expressions without any holes. The differ-
ence between the two rules is in whether a component for the argument part contains
recursive calls. The D_EXTCALL2 rule considers every component cotaining recursive
calls to be the potential argument of a library function call. This is based on an optimistic
assumption that any recursive expression may be a proper argument (like the D_REC rule
in Figure 3). These rules do not generate any unsatisfiable holes, but the search space
explored in a single iteration of the main loop (lines 2–28 in Algorithm 1) is smaller than
the case where the D_EXTCALL rule is used.

5 Implementation

In this section, we describe various implementation details of our synthesis algorithm.

5.1 Preventing unsafe destructor applications

We do not permit potentially unsafe destructors to be used in any candidate program. For
example, suppose the following candidate is explored during the search.

rec f (x : nat) : nat =
match x with Z -> x | S _ -> f (S−1(S−1(x)))
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This program is considered invalid and not generated during the search. In the branch of
S, the expression S−1(S−1(x)) is not allowed because the pattern match does not guaran-
tee that the input x is of the form S(S(...)). The only safe destructor usable in the branch
of S is S−1(x). To prevent such unsafe destructor applications, Deduce(C, I, �u) on line
19 in Algorithm 1 is changed to Deduce(RemoveUnsafeComp(P, �u, C), I, �u) where
RemoveUnsafeComp(P, �u, C) returns a subset of C whose components do not contain
any unsafe destructor applications at the position of �u in P. This filtering prevents compo-
nents of unsafe destructor applications from being used to fill the hole �u in the candidate
program P.

5.2 Ensuring termination of block and candidate generation

In our implementation, to guarantee the termination of the BlockGen procedure and the
Deduce procedure, we limit the maximum number of subsequent steps of deduction to a
certain number.5

In other words, to avoid generating infinitely many open hypotheses from a given initial
hypothesis, we permit the Deduce procedure to be terminated after a certain number of
steps of applications of rules in Figure 3. Because the BlockGen procedure relies on the
Deduce procedure, this also guarantees termination of the BlockGen procedure. Note that
despite this finitization, the search space is still infinite because there is no limit on the
maximum component size (i.e., the component pool will keep growing until a solution is
found).

5.3 Program selection

In order to synthesize likely programs, we utilize a cost function: the cost of each candidate
program P = rec f(x) = e is determined by the cost of its body e (denoted C(e)), which is
a nonnegative number. Costs of expressions satisfy the following constraints (some cases
are omitted):

• C(e1 e2) > C(e1) + C(e2) • C(κ(e1, · · · , ek)) >
∑

1≤j≤k C(ej) • C(x) = 0

• C(e.n) = C(e) • C(κ−1(e)) = C(e)

Intuitively, we penalize the use of constructors (thereby constants) and prioritize the use of
variables, destructors, and projections. The reason for this is that they are used to extract
subcomponents of constructors, which are essentially the same as variables bound by
patterns in match expressions. For example, consider the solution Psol of the overview
example problem in Section 2.

rec mul (x : nat, y : nat) : nat = match x with Z -> Z | S _ -> add (mul
(S−1(x), y), y)

This program can be written as the following program by introducing a new variable x’
bound by the pattern of S.

5 The Deduce procedure may derive additional holes for a given hole and a sketch with the added holes is
added into the queue in line 23 in Algorithm 1. This may cause the algorithm to not terminate if the Deduce
procedure keeps generating holes because the queue will never be empty.
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rec mul (x : nat, y : nat) : nat = match x with Z -> Z | S x’ -> add (mul
(x’, y), y)

Note that S−1(x) and x’ play the same role. Therefore, destructors and projections can be
understood as variables in many cases, and prioritizing variables has been proved to be a
good heuristic to avoid overfitting (Feser et al., 2015; Gulwani, 2011). Lastly, in case of a
tie, we pick a smaller program in terms of AST size. This heuristic has also been popularly
used in the majority of previous approaches (Albarghouthi et al., 2013; Feser et al., 2015;
Wang et al., 2017; Miltner et al., 2022).

5.4 Checking block consistency

We describe implementation details for improving the pruning power of the
BlockConsistent procedure. In Algorithm 1, when choosing a hole in a hypothesis of a
match expression, we prefer holes for base cases to ones for inductive cases. By fill-
ing holes for base cases first, we can effectively prune infeasible recursive hypotheses.
For example, suppose we encounter the following hypothesis while synthesizing mul in
Section 2.

P1 = rec mul (x : nat, y : nat) : nat = match x with Z -> �1 | S _ -> mul
(S−1(x), �2)

Suppose we first fill the hole �2 with y, obtaining the following hypothesis.

P2 = rec mul (x : nat, y : nat) : nat = match x with Z -> �1 | S _ -> mul
(S−1(x), y)

Note that this hypothesis cannot become a solution no matter what expression we put in
the remaining hole. To check block consistency, for every input, we will obtain the open
block �1 as a result of our symbolic evaluation. Although the hypothesis P2 is infeasible,
because a hole can be matched with any expression according to the rules in Figure 6, the
hypothesis will be determined to be block consistent with respect to any set of blocks, and
will not be pruned.

Now, suppose we first fill the hole �1 in P1 with x, obtaining the following hypothesis.

P3 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> mul
(S−1(x), �2)

Note that this hypothesis also cannot become a solution no matter what expression we put
in the remaining hole. For every input, we will obtain a closed block x as a result of our
symbolic evaluation. Because x is not included in the blocks for the example (1, 2) �→ 2,
the hypothesis P3 is determined to be block inconsistent and will be pruned.

5.5 Finding a solution vs. all solutions

We allow the user to choose between finding all possible solutions synthesizable using
some set of components and picking the best one, and stopping the search as soon as a
solution is found. This allows the user to find a good balance between speed of synthesis
and accuracy (i.e., the possibility of generating intended programs). Finding all solutions
and picking the best one only requires a slight modification in Algorithm 1 as follows:
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even if a solution is found on line 14, the main loop continues to explore the search space
until the queue becomes empty. Then, we pick the best one among the multiple solutions
found so far. In addition, we can further expedite the process of finding a single solution
with a slight modification in Figure 3. Instead of including all components consistent with
a given set of input–output examples in the D_COMPONENT rule, we just include a single
component whose score is the best among the satisfying components.

6 Evaluation

We have implemented our approach in a tool TRIO. TRIO consists of about 4K lines of
OCaml code. We evaluate TRIO on synthesis tasks used in prior work and on new tasks
collected from an online tutorial. We aim to answer the following research questions:

• RQ1: How does TRIO perform on various synthesis tasks?
• RQ2: How does TRIO compare with existing techniques for recursive program

synthesis?
• RQ3: How effective are block-based pruning and library sampling for accelerating

synthesis?

All of our experiments were conducted on a 2.0 GHz Intel Core i5 processor with 16GB
of memory running macOS Big Sur. We set the timeout limit to 120 seconds for each
synthesis task.

6.1 Experimental setup

Benchmarks. We use 65 recursive functional programs. 45 out of 65 have been used
to evaluate prior work (Osera and Zdancewic, 2015; Lubin et al., 2020; Miltner et al.,
2022). The remaining 20 programs are from the exercises in the official OCaml online
tutorial and their slight variants. The details can be found in Table 1.

For these benchmarks, we consider the following two classes of specifications to
evaluate TRIO over different specifications.

• IO: We use input–output examples written by developers of SMYTH (Lubin et al.,
2020) and BURST (Miltner et al., 2022).

• Ref: For 45 benchmarks, we use reference implementations from prior work written
by developers of BURST (Miltner et al., 2022). For the other 20 benchmarks, we
use reference implementations from the official OCaml online and the ones written
by us.

Baselines. We compare TRIO to state-of-the-art tools for synthesizing recursive
functional programs. SMYTH (Lubin et al., 2020) performs top-down synthesis from
input-output examples. It performs partial evaluation to propagate constraints from par-
tial programs to the remaining holes. BURST (Miltner et al., 2022) performs bottom-up
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Table 1. List of new 20 benchmarks collected from the exercises in the official OCaml online

tutorial (https://ocaml.org/exercises) and their variants

Name External Operators Description

Arithmetic nat_mul add Multiplication of two natural numbers.
nat_sub Subtraction of two natural numbers.
nat_fac_tailcall add, mul Factorial of a natural number using tail

recursion.
nat_fib_tailcall add Fibonacci number using tail recursion.
expr_boolean not, and, or Logical expression evaluator.
expr add, mul Calculator using addition and

multiplication operators.
expr_sub add, mul, sub Calculator using addition, subtraction,

and multiplication operators.
expr_div add, mul, sub, div Calculator using addition, subtraction,

multiplication, and division operator.

Lists list_dropeven is_even Drop the even number(s) in a list.
list_last2 Return the last two elements in a list.
list_make Return the 0 padded list of length n
list_range compare Return the sequence of the given numbers

in descending order.
list_append_tailcall Append two lists using tail recursion.
list_length_tailcall Return the length of a list using tail

recursion.
list_sum_tailcall add Return the sum of numbers in a list using

tail recursion.

Trees tree_height compare, max Return the height of a tree.
tree_balanced compare, max, Check whether a tree is height-balanced.

tree_height, and
tree_lastleft Return the node at the left end of the tree.
tree_notexist compare, and Check if a number is in a tree
tree_sum add Return the sum of numbers in a tree.

synthesis from input-output examples or logical specifications. Neither of them requires
trace-complete specifications. We aim to confirm the benefits of our bidirectional search
strategy by comparing TRIO against the top-down synthesizer SMYTH and the bottom-up
synthesizer BURST. The result of the comparison to SMYTH and BURST is presented
in all the following sections except for Section 6.6. In addition, we compare TRIO to
SYRUP (Yuan et al., 2023) but in a different aspect compared to the above two synthe-
sizers. SYRUP uses version space algebra to avoid overfitting when synthesizing recursive
programs. It focuses on minimizing the number of examples required for synthesizing the
desired programs rather than the synthesis time. Also, SYRUP is known to be less sensitive
to the quality of the input-output examples. Therefore, we compare against SYRUP focus-
ing on the quantity and quality of examples required for synthesizing the desired programs.
The result of the comparison to SYRUP is presented in Section 6.6.
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6.2 Effectiveness of TRIO for input-output examples

We evaluate TRIO on synthesis problems with IO specifications. The initial component
size n for TRIO is set to be 6. For each instance, we measure the running time of TRIO and
the size of the synthesized program.

The results are summarized in Table. 2. The column “Correct” shows if the synthesized
program is the one intended by the user. We manually checked if the synthesized program
is semantically equivalent to the known solution for each problem.

TRIO outperforms the other baselines in terms of both the number of solved problems
and synthesis time. TRIO can synthesize 65 out of 65 problems, with an average time of
1.5 seconds. On the other hand, BURST and SMYTH can synthesize 54 and 53 problems,
with average times of 2.6 and 2.7 seconds, respectively. In addition, TRIO is the fastest tool
in 42 problems, whereas BURST and SMYTH are the fastest tools in 14 and 27 problems,
respectively.6

For every problem, the time taken for synthesizing blocks and constructing inverse maps
is negligible (usually less than a second).

We observe BURST and SMYTH occasionally take a large amount of memory, whereas
TRIO only requires a small amount of memory. While solving all of the tasks, the peak
memory usage of BURST is 5.3GB and that of SMYTH is 1.2GB. On the other hand, TRIO

only requires 88 MB even in the worst case. On average, BURST and SMYTH use 647 and
40 MB of memory respectively, whereas TRIO uses 24 MB. Thus, we can conclude TRIO

is more memory efficient than the other baselines.
Thanks to the performance gain of TRIO, we can synthesize programs that are hard for

the other baselines. The problem expr_div is hard in that it requires complex pattern
matching involving many external operators. It concerns synthesizing a simple calcula-
tor with addition, subtraction, multiplication, and division. The specification is given as
follows:

type nat = Z | S of nat
type expr = NAT of nat | ADD of expr and expr | SUB of expr and expr

| MUL of expr and expr | DIV of expr and expr

rec add (x:nat, y:nat) : nat = ... rec sub (x:nat, y:nat) : nat = ...
rec mul (x:nat, y:nat) : nat = ... rec div (x:nat, y:nat) : nat = ...

rec eval (x:nat, y:nat) : nat = �in

where �in is the set of input–output examples {NAT 1 �→ 1, ADD(NAT 1, NAT 2) �→ 3, · · · },
and add, sub, mul, and div are the external operators. Finding the following solution
is non-trivial because there are extremely many possible combinations of recursive calls,
external operators, and case matching.

rec eval (x : expr) : nat =
match x with NAT n -> n
| ADD (x1, x2) -> add (eval x1, eval x2)
| SUB (x1, x2) -> sub (eval x1, eval x2)
| MUL (x1, x2) -> mul (eval x1, eval x2)
| DIV (x1, x2) -> div (eval x1, eval x2)

6 If there are ties in a synthesis problem, all tools with the same synthesis time are considered to be the fastest.
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Table 2. Results for the IO benchmark suite (with 15 easy problems omitted), where “Time” gives

synthesis time in seconds, and “Size” shows the size of the synthesized program (measured by

number of AST nodes). Synthesis time of the fastest tool for each problem is highlighted in bold.

TRIO BURST SMYTH

Benchmark Time(s) Size Correct Time(s) Size Correct Time(s) Size Correct

bool_band 0.01 14 � 0.02 14 � 0.02 23 �
list_append 0.05 44 � 0.15 31 � 0.02 33 �
list_compress 0.14 56 � 0.74 56 � Timeout N/A N/A
list_drop 0.03 31 � 2.78 24 � 0.05 32 �
list_even_parity 0.02 25 � 0.05 23 � 0.03 22 �
list_filter 0.03 47 � 0.31 46 � 0.08 44 �
list_fold 0.08 38 � 0.13 43 � 1.42 49 �
list_map 0.03 37 � 0.03 37 � 0.39 51 �
list_pairwise_swap 0.03 38 � 0.32 38 � 0.02 27 �
list_rev_append 0.08 35 � 1.32 22 � 0.06 20 �
list_rev_fold 0.01 10 � 0.03 10 � 0.04 15 �
list_rev_snoc 0.05 18 � 1.43 18 � 0.02 16 �
list_rev_tailcall 0.02 37 � 0.17 43 � 0.02 33 �
list_snoc 0.03 36 � 1.9 36 � 0.03 37 �
list_sort_sorted_insert 0.04 18 � 0.08 18 � 0.02 16 �
list_sorted_insert 0.46 60 � Timeout N/A N/A 1.53 55 �
list_stutter 0.02 23 � 4.3 23 � 0.03 21 �
list_sum 0.01 10 � 0.08 10 � 0.04 10 �
list_take 0.04 38 � Timeout N/A N/A 0.04 38 �
nat_iseven 0.02 16 � 0.06 16 � 0.02 13 �
nat_max 0.19 23 � 0.27 23 � 0.07 34 �
tree_binsert 1.59 87 � 3.53 87 � Timeout N/A N/A
tree_collect_leaves 0.06 27 � 0.49 27 � 0.04 24 �
tree_count_leaves 0.06 22 � 0.24 22 � 0.48 25 �
tree_count_nodes 0.14 22 � 0.11 22 � 0.18 20 �
tree_inorder 0.12 27 � 8.21 27 � 0.07 24 �
tree_map 0.07 47 � 0.41 49 � 0.94 61 �
tree_nodes_at_level 0.83 47 � 35.52 47 � Timeout N/A N/A
tree_postorder 0.47 32 � 3.21 32 � Timeout N/A N/A
tree_preorder 0.11 27 � 0.1 27 � 0.09 24 �
expr_boolean 6.78 59 � 0.58 52 � Timeout N/A N/A
expr 0.67 36 � Timeout N/A N/A Timeout N/A N/A
expr_sub 3.48 51 � Timeout N/A N/A 11.46 58 �
expr_div 26.99 66 � Timeout N/A N/A Timeout N/A N/A
list_dropeven 0.03 28 � Timeout N/A N/A 0.05 25 �
list_last2 0.04 40 � 0.11 39 � 0.09 29 �
list_make 0.02 14 � 0.78 14 � 0.01 13 �
list_range 0.24 60 � Timeout N/A N/A Timeout N/A Timeout
nat_mul 1.7 27 � Timeout N/A N/A 109.46 31 �
nat_sub 0.13 29 � 8.34 29 � 0.04 30 �
tree_balanced 9.48 46 � 21.12 37 � Timeout N/A N/A
tree_height 0.51 23 � 0.22 22 � 16.51 20 �
tree_lastleft 0.19 21 � 0.03 21 � 0.03 18 �
tree_notexist 24.2 79 � 0.79 79 � Timeout N/A N/A
tree_sum 0.36 28 � 35.56 28 � 0.47 25 �
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Table 2. Continued.

TRIO BURST SMYTH

Benchmark Time(s) Size Correct Time(s) Size Correct Time(s) Size Correct

list_append_tailcall 0.11 51 � Timeout N/A N/A 0.02 33 �
list_length_tailcall 0.02 24 � 0.06 24 � 0.02 30 �
list_sum_tailcall 0.04 32 � 3.33 32 � 0.04 31 �
nat_fac_tailcall 2.04 27 � Timeout N/A N/A Timeout N/A N/A
nat_fib_tailcall 14.01 56 � Timeout N/A N/A Timeout N/A N/A

# Solved (# correct) 65 (57) 54 (49) 53 (48)
# Timeout 0 11 12

However, TRIO can find the solution in 27 seconds.7 On the other hand, the other baselines
fail to solve all the problems that concern synthesizing calculators (i.e., expr, expr_sub,
expr_div).

Analysis of overfitting. We manually inspect the programs synthesized by the three
tools to investigate how they are prone to overfitting. 57 out of 65 programs (88%) syn-
thesized by TRIO are the intended ones. 49 out of 54 programs (91%) and 48 out of 53
programs (91%) synthesized by BURST and SMYTH are the intended ones, respectively.
Therefore, all the tools are roughly equal in terms of solution quality.

We can mitigate overfitting by making TRIO find all solutions that can be found with
a current set of components and choose the best one according to the cost described in
Section 5.3. For the 8 problems for which TRIO synthesizes unintended programs, if TRIO

is configured to find all solutions and pick the best one, it could find the desired programs
for 7 problems except for list_rev_append at the cost of overhead ranging from a second
to a few minutes. In the case of list_rev_append, the specification is not constraining
enough for finding the solution. In the experiment with reference implementations based on
CEGIS where additional input–output examples can be provided whenever the synthesizer
fails, we confirm that TRIO successfully finds the desired solution.

Tail-recursive functions. TRIO can synthesize all of the 6 tail-recursive benchmarks
(the benchmarks with the suffix _tailcall) thanks to the termination checking mecha-
nism that permits tail-recursive calls. On the other hand, neither of the other baselines can
synthesize all of the tail-recursive benchmarks.

BURST cannot synthesize tail-recursive calls because its termination checker is based
on the default value order which does not permit tail-recursive calls. For example,
list_rev_tailcall requires a recursive call on ([2],[1]) for input ([1;2],[]), but
its value ordering does not consider ([2],[1]) to be strictly smaller than ([1;2],[]).
However, it produces the correct solution for some of the tail-recursive benchmarks
(list_sum_tailcall and list_length_tailcall) by finding a non-tail-recursive

7 In our previous work (Lee and Cho, 2023), we could not synthesize the solution for this problem. The
performance improvement is due to the optimization of the implementation of TRIO.
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solution that is semantically equivalent to the tail-recursive one. For example, BURST

synthesizes the following solution for list_sum_tailcall:

rec f (x : list * nat) : nat =
match x.1 with
| Nil _ -> x.2
| Cons _ -> add Cons−1(x.1).1 (f (Cons−1(x.1).2, x.2))

which is not tail-recursive but semantically equivalent to the tail-recursive solution.
SMYTH employs a check during synthesis to ensure that the argument to a recursive

function recursive call is a strict subterm of the parameter to the recursive call. However,
all functions in SMYTH are single-parameter functions, and multi-parameter functions
are curried. As a result, only recursive calls that are structurally decreasing on the first
parameter of multi-parameter (curried) functions are allowed (Lubin, 2020). This restric-
tion limits the scope of programs that can be synthesized by SMYTH. As an evidence, we
have tried to put the tail-recursive argument (i.e., the accumulator) as the first parameter
for list_sum_tailcall. As expected, Smyth fails to synthesize the solution because the
first parameter is not strictly decreasing within the timeout limit. Burst also times out for
the same reason. However, TRIO can synthesizing the solution. This observation suggests
that the termination checking mechanism in TRIO is more flexible than the one in SMYTH.

The overhead of the termination checking mechanism in TRIO is negligible. On aver-
age, the termination checking mechanism takes 0.05 seconds. With the exceptions of
tree_notexist that require 1.5 seconds respectively because of the large number of can-
didates explored during the search, the termination checking mechanism takes less than
0.1 seconds for all the other benchmarks.

Summary of results. When synthesizing recursive programs from input–output
examples, TRIO outperforms state-of-the-art baseline tools in terms of both synthesis time
and memory usage. Also, TRIO solves harder synthesis problems beyond the reach of the
baselines.

6.3 Effectiveness of TRIO for reference implementations

In this section, we evaluate TRIO on synthesis problems with Ref specifications. We follow
the same evaluation procedure as the evaluation of BURST (Miltner et al., 2022) for Ref
specifications. The authors of BURST integrated BURST and SMYTH into a CEGIS loop
and, for each candidate program proposed by each tool, they use the verifier to determine
whether the candidate is semantically equivalent to the reference implementation. If not,
a new input–output example comprising a counterexample input generated by the verifier
and its corresponding output is added.8 This process is repeated until the desired program
is found.

The goal of this experiment is to confirm how the tools deal with the random examples
generated by the verifier, rather than hand-crafted examples.

The results are summarized in Table 3. The column “# Iters” shows the number of
CEGIS iterations required until a solution is found. TRIO also outperforms the other

8 The authors of BURST use bounded testing instead of verification and manually checked the semantic equiva-
lence between the generated programs and the reference implementation. We use the same method by reusing
the artifacts of BURST.
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Table 3. Results for the Ref benchmark suite where “# Iter” shows the number of CEGIS iterations.

TRIO BURST SMYTH

Benchmark Time(s) Size # Iter Time(s) Size # Iter Time(s) Size # Iter

bool_band 0.02 14 3 0.02 14 3 0.02 23 3
list_append 0.48 31 6 0.4 31 6 0.66 33 8
list_compress 1.07 56 10 1.53 56 9 Timeout N/A N/A
list_drop 0.36 31 5 1.46 31 6 Timeout N/A N/A
list_even_parity 0.13 25 5 0.15 23 6 0.16 22 6
list_filter 0.91 56 8 1.13 56 8 Timeout N/A N/A
list_fold 0.86 42 6 12.25 42 6 Timeout N/A N/A
list_map 0.67 37 6 0.7 37 4 Timeout N/A N/A
list_pairwise_swap 0.36 38 7 0.47 38 6 Timeout N/A N/A
list_rev_append 0.96 22 5 11.65 22 5 Timeout N/A N/A
list_rev_fold 0.76 10 3 0.79 10 2 Timeout N/A N/A
list_rev_snoc 1.02 18 5 6.34 18 4 Timeout N/A N/A
list_rev_tailcall Timeout N/A N/A Timeout N/A N/A 0.52 33 9
list_snoc 0.35 36 3 0.43 36 3 0.48 36 7
list_sort_sorted_insert 1.33 18 6 1.65 18 5 1.32 16 6
list_sorted_insert 0.9 60 6 1.03 60 6 13.87 69 12
list_stutter 0.36 23 3 0.99 23 3 0.49 21 4
list_sum 0.82 10 2 0.71 10 2 0.8 10 2
list_take 0.38 38 9 15.74 38 9 0.42 38 7
nat_iseven 0.02 16 4 0.02 16 4 0.02 13 4
nat_max 0.29 23 5 4.88 23 5 0.15 34 7
tree_binsert 7.65 87 7 18.88 87 8 Timeout N/A N/A
tree_collect_leaves 5.7 27 4 6.54 27 5 7.8 24 5
tree_count_leaves 5.42 22 4 7.01 22 4 8.27 25 4
tree_count_nodes 5.66 22 4 5.83 22 4 6.83 20 4
tree_inorder 8.09 27 4 12.23 27 5 8.98 24 6
tree_map 6.07 49 7 7.1 49 5 Timeout N/A N/A
tree_nodes_at_level 5.88 47 7 Timeout N/A N/A 26.21 43 5
tree_postorder 9.75 32 6 10.54 32 7 Timeout N/A N/A
tree_preorder 10.18 27 6 39.27 27 5 9.38 24 5
expr_boolean 33.22 59 14 7.7 59 21 Timeout N/A N/A
expr 4.36 36 9 Timeout N/A N/A Timeout N/A N/A
expr_sub 28 51 12 Timeout N/A N/A Timeout N/A N/A
expr_div Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A
list_dropeven 0.43 28 6 0.37 28 6 Timeout N/A N/A
list_last2 0.72 40 7 1.9 39 5 1.02 29 6
list_make 0.04 14 3 0.03 14 3 0.03 13 3
list_range 1.04 49 7 118.64 49 6 Timeout N/A N/A
nat_mul 0.96 27 6 77.55 27 8 9.01 31 7
nat_sub 0.29 29 6 1.25 29 7 Timeout N/A N/A
tree_balanced 81.09 49 9 Timeout N/A N/A Timeout N/A N/A
tree_height 8.3 23 5 7.71 22 5 7.79 20 4
tree_lastleft 9.4 21 6 7.92 21 5 8.65 18 5
tree_notexist 11.76 79 8 12.07 79 9 Timeout N/A N/A
tree_sum 9.62 28 5 11.62 28 5 9.03 25 5
list_append_tailcall Timeout N/A N/A Timeout N/A N/A 0.55 33 9
list_length_tailcall 0.33 24 4 0.31 24 4 0.45 29 5
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Table 3. Continued.

TRIO BURST SMYTH

Benchmark Time(s) Size # Iter Time(s) Size # Iter Time(s) Size # Iter

list_sum_tailcall 0.67 32 5 2.53 32 6 1.07 34 6
nat_fac_tailcall Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A
nat_fib_tailcall Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A

# Solved 60 56 42
# Timeout 5 9 23

baselines in terms of both the number of solved instances and synthesis time. TRIO can syn-
thesize 60 instances, with an average time of 4.5 seconds and an average number of CEGIS
iterations of 5.2. BURST can synthesize 56 instances, with an average time of 5.0 seconds
and an average number of CEGIS iterations of 5. SMYTH can synthesize 42 instances, with
an average time of 3.0 seconds and an average number of CEGIS iterations of 4.7.

Overall these results suggest that TRIO can deal better with random examples generated
by the verifier compared to the other baselines.

Failure analysis. The timeout on 5 problems is due to many CEGIS iterations.
Because TRIO often synthesizes an overfit solution for these problems, the verifier gen-
erates many counterexamples. As the number of input–output examples increases, the
time required for each CEGIS iteration increases. This result suggests that TRIO can be
improved by adopting a better strategy for avoid overfitting.

Summary of results. Also when synthesizing recursive programs from reference
implementations, TRIO outperforms the other baselines in terms of both the number of
solved instances and synthesis time. The results suggest the TRIO’s robustness to randomly
given examples.

6.4 Ablation study for block-based pruning and library sampling

We now evaluate the effectiveness of the block-based pruning and library sampling tech-
niques used by TRIO. For this purpose, we compare the performance of four variants of
TRIO, each using a different combination: TRIO with block-based pruning and library
sampling, TRIOB only with block-based pruning, TRIOL only with library sampling, and
TRIO−− with both techniques disabled.

Table 4 summarizes the results of this ablation study (more detailed results can be found
in cactus plots in Figure 8). For each variant of TRIO, we report the number of solved
benchmarks with the IO and Ref specifications, respectively. In this experiment, we only
consider the 20 newly added benchmarks because we realize the other 45 benchmarks
from prior work are easy, so that they can be quickly solved by all the variants of TRIO.
We conjecture that the reason why even TRIO−− can solve all of the 45 benchmarks is
that it enjoys the benefit of the synergistic combination of top-down and bottom-up search
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Table 4. Number of instances that can be solved by four variants of TRIO among 20 newly added

benchmarks

TRIO TRIOB TRIOL TRIO−−

# Solved (IO spec.) 20 (100%) 18 (90%) 15 (75%) 14 (70%)
# Solved (Ref spec.) 16 (80%) 14 (70%) 12 (60%) 11 (55%)

Fig. 8. Comparison of different variants of TRIO.

strategies. As can be seen in the table, TRIO with the two techniques solves more bench-
marks than the other three variants. TRIO solved 100% of the new benchmarks with IO
specifications, whereas TRIO−− could solve 70% of the benchmarks. Such a trend can
also be observed in the reference implementation experiment. We notice the efficacy of
block-based pruning is higher than that of library sampling because the difference between
TRIO−− and TRIOB is more significant than the difference between TRIO−− and TRIOL.

6.5 Benefits of our method compared to prior work

In this section, we analyze why our method outperforms the previous methods. As a rep-
resentative example, we investigate how the tools work for a simpler version of the expr
benchmark where TRIO can quickly find the solution in contrast to the other baselines.

type nat = Z | S of nat
type expr = NAT of nat | ADD of expr and expr
rec add (x : nat, y : nat) : nat = ... rec mul (x : nat, y : nat) :

nat = ...
rec eval (x : nat, y : nat) : nat = �in

where �in = {i1 �→ 1, i2 �→ 4, i3 �→ 7}, i1 = NAT 1, i2 = ADD(NAT 3, NAT 1), and i3 =
ADD(NAT 4, NAT 3). The solution in our language (depicted in Figure 2) is as follows:

rec eval (x : expr) : nat =
match x with NAT _ -> NAT−1(x) | ADD _ -> add (eval ADD−1(x).1, eval

ADD−1(x).2)

Comparison to SMYTH. Similarly to our method, SMYTH explores the search space
by performing top-down propagation. There are two major differences between SMYTH
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and our method. First, whenever a hole is filled with some expression, SMYTH “updates”
the other remaining holes according to the hole filling, so that the holes are more likely
to be filled with the correct expressions. Second, SMYTH solely relies on a top-down
search strategy without any bottom-up search. We observe these two differences are the
main reasons why SMYTH fails to solve the benchmark. Consider the following hypothesis
generated by SMYTH during the search.

P1 = rec eval (x : expr) : nat = match x with NAT _ -> �1 | ADD _ -> �2

where �1 = {i1 �→ 1}, �2 = {i2 �→ 4, i3 �→ 7}. SMYTH further refines the hypothesis P1

by filling the hole �2 with a recursive call to eval. Like TRIO, SMYTH enumer-
ates structurally-decreasing recursive calls to guarantee the termination of synthesized
programs. Suppose the following hypothesis is generated.

P2 = rec eval (x : expr) : nat = match x with NAT _ -> �1 | ADD _ ->
eval ADD−1(x).1

Obviously, the hypothesis P2 is not desired because it cannot be the solution. However,
SMYTH cannot detect this problem for the following reason. As hole �2 is filled, SMYTH

updates the other remaining hole. SMYTH generates the following hypothesis.

P3 = rec eval (x : expr) : nat = match x with NAT _ -> �3 | ADD _ ->
eval ADD−1(x).1

where �3 =�1 ∪ {NAT 3 �→ 4, NAT 4 �→ 7}. The additional examples {NAT 3 �→
4, NAT 4 �→ 7} are originated from the original examples {i2 �→ 4, i3 �→ 7} and partial eval-
uation of P2 with the input examples. SMYTH refines the hole �3 by generating the
following hypothesis.

P4 = rec eval (x : expr) : nat =
match x with NAT _ ->
match S−1(NAT−1(x)) with Z -> �4 | S _ -> �5

| ADD _ -> eval ADD−1(x).1

where �4 = {i1 �→ 1} and �5 = {NAT 3 �→ 4, NAT 4 �→ 7}. SMYTH keeps refining this
hypothesis, which is fruitless. In summary, SMYTH’s updating holes by partial evaluation
sometimes makes the search more difficult.

On the other hand, TRIO can quickly identify the infeasibility of P2 as follows: TRIO

does not update the other remaining hole �1 after filling �2. Then, the hole �1 can be
easily filled with NAT−1(x), generating the following program, which can be easily proved
to be infeasible by concrete evaluation.

P′
3 = rec eval (x : expr) : nat =

match x with NAT _ -> NAT−1(x) | ADD _ -> eval ADD−1(x).1

In addition, we note that another source of inefficiency of SMYTH is that it redundantly
generates many semantically equivalent hypotheses. For instance, the followings are some
of hypotheses generated by SMYTH by filling �1 in P1 with different expressions. The
more library functions are usable, the more redundant hypotheses are generated.

match x with NAT _ -> NAT−1(x) | ADD _ -> �2

match x with NAT _ -> add (NAT−1(x), 0) | ADD _ -> �2
match x with NAT _ -> 1 | ADD _ -> �2
match x with NAT _ -> add (1, (mul (0, 0))) | ADD _ -> �2
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Note that the first two hypotheses and the last two hypotheses are semantically equiva-
lent respectively. However, TRIO avoids generating such redundant hypotheses because
Bottom-up enumerator exploits observational equivalence to avoid generating multiple
components of the same behaviors.

Comparison to BURST. BURST performs bottom-up synthesis with angelic execu-
tion.9 It first synthesizes a program assuming any recursive calls to the function being
synthesized angelically behave to make the program correct. Then, it checks if the assump-
tions made in the previous step are correct. If they are, the solution is found. Otherwise,
those assumptions are refuted and never made again by being added to the list of anti-
specifications. This process is repeated, progressively strengthening the specification of
the target function and eventually leading to a solution.

BURST fails to find the solution because it runs into extensive backtracking (i.e., too
many steps of specification strengthening). Specifically, given the specification of the tar-
get function eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 (which is from the three input-output
examples), BURST first enumerates the following candidate program.

rec eval (x : expr) : nat = match x with NAT _ -> NAT−1(x) | ADD _ ->
eval ADD−1(x).1

Obviously, the above program does not satisfy the second and third input-output examples.
However, at this stage, BURST generates a program assuming any recursive call to eval
can return anything to satisfy the constraints. The above program is generated by assuming
eval (NAT 3) = 4 ∧ eval (NAT 4) = 7. BURST then checks if this assumption is correct. It
clearly does not because eval (NAT 3) = 3 and eval (NAT 4) = 4. Then, it re-attempts
synthesis with the following strengthened specification.

eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 ∧ eval (NAT 3) = 4 ∧ eval (NAT 4) = 7.

After the search within a bounded space, BURST fails to find a program that satisfies
the strengthened specification. It concludes that the assumption made in the previous
step is incorrect. Then, it adds the negation of the assumption (i.e., ¬(eval (NAT 3) =
4 ∧ eval (NAT 4) = 7)) into the list of anti-specifications, searches for a program that does
not violate the anti-specifications and generates the following program.

rec eval (x : expr) : nat =
match x with NAT _ -> NAT−1(x) | ADD _ -> S (S (eval ADD−1(x).1))

Obviously, this program also does not satisfy the original specification. However, it
does not violate the anti-specification because the above program is correct assuming
eval (NAT 3) = 2 ∧ eval (NAT 4) = 5. Then, it re-attempts synthesis with the following
strengthened specification.

eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 ∧ ¬(eval (NAT 3) = 4 ∧ eval (NAT 4) = 7)
∧eval (NAT 3) = 2 ∧ eval (NAT 4) = 5

9 As a side note, this angelic execution-based method is agnostic to whether or not the underlying synthesis is
top-down or bottom-up (see Section 5 of Miltner et al. (2022)). We explain BURST as a bottom-up synthesis
tool just because it is how the BURST tool is currently implemented.

https://doi.org/10.1017/S0956796825100063 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825100063


38 H. Cho and W. Lee

Table 5. Comparison of TRIO and SYRUP on the 43 benchmarks with random input-output exam-

ples. Each row represents the results for a different number of examples. “Succ. Rate” gives the

success rate of each tool. “Avg Time” shows the average synthesis time for successful trials. “#

T/O” denotes the number of time-outs

TRIO SYRUP

#Examples Succ. Rate(%) Avg Time(s) #T/O Succ. Rate(%) Avg Time(s) #T/O

1 19.53 0.07 0 22.56 0.20 11
2 24.42 0.08 0 27.21 0.56 19
3 43.02 0.40 8 45.58 4.11 40
4 56.51 1.29 15 56.98 2.44 72
5 63.49 1.72 14 56.28 6.16 107
6 67.21 2.36 13 57.21 5.80 123
7 70.70 3.42 19 54.65 12.03 158
8 75.35 2.87 18 52.09 13.16 180

Again, after a bounded search, BURST fails to find a program that satisfies the strengthened
specification. It concludes that the assumption made in the previous step is incorrect. Then,
BURST refutes the assumption, increasing the list of anti-specifications. In this manner,
BURST initially overapproximates the specification of the target function and then refines
it by repeatedly adding anti-specifications. However, because the space of possible anti-
specifications is too large, this method is not effective.

6.6 Sensitivity to the quantity and quality of examples

In this section, we compare TRIO with SYRUP (Yuan et al., 2023) in terms of the number
of input-output examples (chosen randomly) required for synthesizing the desired pro-
grams. The goal of this experiment is to confirm how the quantity and quality of examples
affects the performance of TRIO by comparing it with SYRUP which aims to synthesize
generalizable programs from a few examples by leveraging a version space algebra.

Setup. We use the same benchmark set as the one used for evaluating SYRUP,
which consists of 43 benchmarks. This set is a subset of the benchmarks used in our
previous experiments with the 20 newly added benchmarks and two trivial benchmarks
(bool_always_true and bool_always_false) excluded.10 For each benchmark, we
generate 10 sets of random input–output examples with sizes ranging from 1 to 8. Every
set includes the base case for the recursive programming task (i.e., the example(s) with the
smallest input) because SYRUP is known to perform better with the base case according to
the paper of SYRUP.

Table 5 summarizes the results. For each size of example set, we report the success
rate, average synthesis time, and the number of timeouts for each tool. The success rate
is defined to be the ratio of the number of successful synthesis trials (i.e., the number of

10 Extending the benchmark set to include the 20 newly added benchmarks is not easy because SYRUP requires
all library functions to be first-order and monormorphic SMT functions that can be interpreted by Z3.
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Fig. 9. Success rates of TRIO and SYRUP for 12 chosen benchmarks for different numbers of exam-
ples (1–8). The x-axis label indicates the number of examples, and the y-axis label indicates the
success rate. The plots for the other 31 benchmarks are available in the appendix.

desired programs found) to the number of trials (i.e., the number of example sets multi-
plied by the number of benchmarks, which is 430 in this case). SYRUP performs better than
TRIO in terms of success rate when the number of examples is small (1–4). In terms of effi-
ciency, TRIO is faster than SYRUP as shown in the average synthesis time and the number
of timeouts. However, when the number of examples increases (5–8), TRIO consistently
outperforms SYRUP in both success rate and efficiency. We observe that SYRUP suffers
from the scalability issue as the number of examples grows. SYRUP’s lower success rate is
due to the fact that it often times out before finding the desired program when the number
of examples is large. This is because SYRUP performs computationally expensive version
space intersections, which become more expensive as the number of examples increases.
This performance degradation can be observed in terms of memory usage as well. The
average memory usage of SYRUP is 29MB when handling a single example and scales up
to 131.6MB when handling 8 examples. In contrast, TRIO’s memory usage is much lower,
starting at 16.4MB for 1 example and growing gradually to 22.1MB with 8 examples.

Figure 9 shows more detailed results for 12 chosen benchmarks. We present the
success rate of each tool for each benchmark. The x-axis label in each plot indi-
cates the number of examples, and the y-axis label indicates the success rate. There
are three cases: (1) the two tools show similar success rates (bool_band, bool_neg,
bool_xor, and list_sort_sorted_insert), (2) TRIO consistently outperforms SYRUP

irrespective of the number of examples (nat_max, list_rev_tailcall, tree_binsert,
tree_count_nodes, and tree_preorder), and (3) SYRUP outperforms TRIO when the
number of examples is small but SYRUP is comparable to or worse than TRIO when the
number of examples is large (nat_add, nat_iseven, and list_append). The lower
success rates of SYRUP is due to the version space intersection, which becomes more
expensive as the number of examples increases. In contrast, TRIO’s performance remains
stable or even improves as the number of examples grows because more examples can
resolve the ambiguity in the search space. In conclusion, SYRUP cannot enjoy the bene-
fits of more examples that can resolve the ambiguity in the search space because of the
computational cost of version space intersection.

Summary of results. When given a small number of examples less than 5, SYRUP

finds the desired programs more frequently than TRIO thanks to its version space
algebra-based approach. However, SYRUP’s performance degrades as the number of
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examples increases, leading to more timeouts and lower success rates. In contrast, TRIO’s
performance remains stable or even improves as the number of examples grows.

7 Related work

We divide the prior work related to our paper into three categories: (1) synthesis of
functional recursive programs, (2) version-space-based synthesis, and (3) bidirectional
search-based synthesis. We elaborate on these categories of work. For a broader survey
of program synthesis, we refer the reader to Gulwani et al. (2017).

Synthesis of recursive programs. There is a large body of work on the synthesis
of functional recursive programs. Various approaches have been proposed to synthesize
functional recursive programs from input–output examples (Osera and Zdancewic, 2015;
Feser et al., 2015; Lubin et al., 2020), refinement types (Polikarpova et al., 2016), logical
specifications (Kneuss et al., 2013; Itzhaky et al., 2021), and a reference implementation
with desired type invariants (Farzan and Nicolet, 2021). In the following, we will mainly
focus on the prior work of inductive synthesis of functional recursive programs.

THESYS (Summers, 1986) and its reincarnation IGOR2 (Kitzelmann and Schmid, 2006)
are similar to ours in the sense that they stage synthesis into (1) non-recursive program syn-
thesis and (2) recursive program synthesis. They first synthesize non-recursive programs
for the given example by a top-down search. Then, by identifying syntactic patterns, these
systems “fold” the synthesized non-recursive programs into a recursive one. Similarly,
CYPRESS (Itzhaky et al., 2021), which is for synthesizing recursive programs from sepa-
ration logic specifications, also generates a satisfying straight-line program, then folds it
into a generalized recursive one. Contrary to these systems, instead of exploring the space
of possible foldings, which is prohibitively large in our case, we prune the search space of
recursive programs by “unfolding” each candidate into a non-recursive program; we check
if it can be one of the non-recursive programs synthesized earlier.

The recursion-free approximation in SYNDUCE (Farzan and Nicolet, 2021) is related to
our block-based pruning. SYNDUCE is a system for synthesizing a recursive program from
a reference implementation and type invariants. It also synthesizes recursive programs
from non-recursive programs. It eliminates recursion in a given specification by replacing
each recursive call with a variable, synthesizes a satisfying non-recursive program, and
then changes the variables back to their corresponding recursive calls. This method differs
from ours in that we do not directly construct a recursive solution from a non-recursive
one. Instead, we prune the search space of recursive programs using non-recursive ones.

MYTH (Osera and Zdancewic, 2015) and λ2 (Feser et al., 2015) pioneered the idea
of top-down deductive search for functional recursive programs, which hypothesizes the
overall structure of a program and then tries to synthesize the subcomponents. The major
shortcoming of MYTH is the requirement for trace-complete specifications that our system
does not need. The major shortcoming of λ2 is that it only applies deductive reasoning to
a fixed set of primitive list and tree combinators such as filter and map. Our deductive rea-
soning is not limited to a certain set of operators but can be applied to any usable external
operators thanks to the use of inverse maps.
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SMYTH (Lubin et al., 2020) and BURST (Miltner et al., 2022) are recently proposed
systems for recursive program synthesis that do not require trace-complete specifications.
SMYTH explores the search space top-down and generates partial programs with holes. To
alleviate the trace-completeness requirement, for each partial program, SMYTH performs
partial evaluation to propagate example constraints over the entire program into holes in
it. However, as already shown in Section 6.5, SMYTH occasionally runs into the problem
of continuously refining infeasible candidates by updating constraints over holes. On the
other hand, our tool can quickly identify infeasible candidates, significantly outperform-
ing SMYTH as already shown in Section 6.5. BURST performs bottom-up synthesis with
angelic execution as already explained in Section 6.5. BURST inherits scalability issues of
the prior bottom-up strategies where a goal-directed search in top-down strategies is miss-
ing. In contrast, our method combines top-down and bottom-up synthesis to overcome the
limitation of bottom-up synthesis. In addition, BURST may run into the problem of exten-
sive backtracking as explained in Section 6.5, whereas we do not have such an issue since
we explore the full search space of recursive programs without any refinement process.

CONTATA (Miltner et al., 2024) is a recently proposed extension of BURST. CONTATA

aims to synthesize recursive functional programs from relational specifications. As
relational specifications do not constrain input–output behavior of individual functions
but rather the relationship between multiple functions represented by logical formulas,
CONTATA tackles a more challenging problem than ours. The major difference between
CONTATA and BURST is that CONTATA is free from the problem of extensive backtrack-
ing because it does not overapproximate the specification of the target function. CONTATA

discards infeasible candidates by checking their consistency with respect to the relational
specifications.

Eguchi et al. (2018) have proposed a technique for synthesizing both a functional
program and recursive helper functions from refinement types. Their method infers spec-
ifications of recursive helper functions by trying with a number of predefined templates.
Our work focuses on synthesizing the target function when library functions are given. We
expect our work can be combined with their work to synthesize the target function with a
mixture of known and unknown library functions.

PARA (Hong and Aiken, 2024) is a recently proposed system for synthesizing recursive
functional programs from input–output examples. Instead of general recursive programs,
PARA targets paramorphisms. A paramorphism is a generalization of catamorphism (like
fold) that only provides the recursive result. It retains both of the recursive result and the
original input at each recursive step. Based on the observation that a broad range of recur-
sive functions in practice can be expressed as paramorphisms, PARA constrains the search
space to paramorphisms. By leveraging the structure of paramorphisms and a stochastic
search strategy, PARA has been shown to outperform prior work on recursive program
synthesis. However, not all recursive functions can be expressed as paramorphisms. For
example, the McCarthy 91 function is not definable by a single paramorphism. Our tech-
niques can be used to synthesize general recursive functions in principle (if the termination
checker can handle them).

Version space-based synthesis. To efficiently represent the set of all programs cor-
rect with respect to a given specification, the prior version space approaches to synthesis
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use a space-efficient data structure. FLASHFILL (Gulwani, 2011) first used e-graphs like
version space representations to efficiently represent the set of all correct programs and
choose the best one among them. This method is generalized in the FLASHMETA (Polozov
and Gulwani, 2015) framework and its instantiations (Le and Gulwani, 2014; Kini and
Gulwani, 2015; Rolim et al., 2017) have shown successful applications of the version
space approach to synthesis in various domains. These methods construct version spaces
top-down as we do in our system. There have been also previous methods that construct
version spaces in a bottom-up fashion. Finite tree automata (FTAs) have been used to
represent version spaces of functional programs (Wang et al., 2017; Miltner et al., 2022).
In particular, BURST (Miltner et al., 2022) uses FTAs to represent the version space of
recursive functional programs.

The major difference between our method and these previous methods is that we do
not use the version space representation directly for finding a solution. Instead, we con-
struct the version space of non-recursive programs to prune the search space of recursive
programs.

DREAMCODER (Ellis et al., 2021) also indirectly uses version space representations
for synthesis. DREAMCODER stores a large number of possible refactorings to each
training program into version space representations. Those refactorings expose common
sub-expressions that correspond to library functions, which DREAMCODER can use for
other synthesis tasks. In contrast to DREAMCODER, we construct and use version spaces
within a single synthesis task rather than across different tasks.

SYRUP (Yuan et al., 2023) uses version space algebra to avoid overfitting when synthe-
sizing recursive functional programs from input–output examples. It uses pairs of recursive
programs and execution traces that capture chains of recursive calls in the program in order
to prioritize generalizable programs. SYRUP has a different goal from our work: SYRUP

aims to minimize the number of examples required to synthesize a desired recursive
program while we aim to improve the efficiency of synthesis.

Combining top-down and bottom-up search for recursive program
synthesis. The idea of combining top-down and bottom-up synthesis often appears
in prior work on recursive program synthesis. λ2 (Feser et al., 2015) enumerates open
hypotheses (i.e., partial programs with holes) by a top-down deductive search and closed
hypotheses by a bottom-up search. Such closed hypotheses are used to fill holes in open
hypotheses. MYTH (Osera and Zdancewic, 2015) also enumerates expressions bottom-up
up to a certain size, and uses them during a top-down deductive search.

Our work is different from these methods in that (1) we use bottom-up enumeration
for collecting not only sub-expressions but also inverse maps that enable top-down prop-
agation for arbitrary external operators and (2) we use a combination of top-down and
bottom-up synthesis not only for finding a recursive solution but also for finding all
non-recursive blocks.

8 Conclusion

We have presented a new technique for synthesizing recursive functional programs from
input-output examples. Our approach differs from prior work in that we first synthesize
satisfying blocks (straight-line programs) for each input–output example, and then we
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prune the space of recursive programs by removing candidates that are inconsistent with
the blocks. Additionally, we propose a technique we call library sampling, which acceler-
ates deductive reasoning over a library by using sampled input–output behaviors of library
functions. We have implemented our algorithm in a tool called TRIO. Our comparison
against the state-of-the-art synthesizers shows that TRIO advances the state of the art of
inductive synthesis of recursive functional programs.
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1 Proofs

We first prove the soundness of the overall synthesis algorithm in Section 4.1 and the
Deduce procedure in Section 4.3. Then, we prove the soundness of the termination check
in Section 4.6.

Theorem 2. Algorithm 1 finds a solution to a given synthesis problem if it exists.

Proof Suppose that a program Psol of size k is a solution to the synthesis problem.
The target component size n keeps increasing until Psol is found because of line 27 in
Algorithm 1. If n becomes k, Psol, or a program of size k that is observationally equivalent
to Psol, will be included in C by the COMPONENTGENERATION procedure (line 3). By the
D_COMPONENT rule in Figure 3, the solution will be included in the queue Q (lines 19–21)
and will be returned as a solution (line 14). �

Theorem 6. Without using the D_EXTCALL rule, the Deduce procedure is sound.

Proof Suppose C, I, and �u are provided to the Deduce procedure as input, and there
exists an expression eu satisfying �u.

We prove the theorem by contradiction. We will show that a contradiction occurs if there
exists an open expression e ∈ Deduce(C, I, �u) such that there is a hole in e that cannot
be satisfied by any expression. The Deduce procedure can generate an open expression
only via the rules D_CTOR, D_DTOR, D_TUPLE, and D_MATCH (because we assume the
D_EXTCALL rule is not used).

• Case 1: e = κ(�u1 , · · · , �uk ). We will show that there exists a destructor application
satisfying a hole. Because e must have been generated by the D_CTOR rule, �u =⋃

1≤j≤n{ij �→ κ(v1j, · · · , vkj)} and for 1 ≤ m ≤ k, �um = ⋃
1≤j≤n{ij �→ vmj}. From the

assumption there exists an expression eu satisfying �u,

∀1 ≤ j ≤ n. σ [x �→ ij] � eu ⇒ κ(v1j, · · · , vkj).

By the standard semantics of the language,

∀1 ≤ j ≤ n. σ [x �→ ij] � κ−1(eu) ⇒ (v1j, · · · , vkj)

and

∀1 ≤ j ≤ n, 1 ≤ m ≤ k. σ [x �→ ij] � κ−1(eu).m ⇒ vmj
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which can be rewritten as

∀1 ≤ m ≤ k. κ−1(eu).m |=σ �um .

This contradicts the assumption that there is a hole in e that cannot be satisfied by
any expression.

• Case 2: e = κ−1(�u′ ). We will show that there exists a constructor application
satisfying a hole. Because e must have been generated by the D_DTOR rule,
�u = ⋃

1≤j≤n{ij �→ oj} and for �u′ = ⋃
1≤j≤n{ij �→ κ(oj)}. From the assumption there

exists an expression eu satisfying �u,

∀1 ≤ j ≤ n. σ [x �→ ij] � eu ⇒ oj.

By the standard semantics of the language,

∀1 ≤ j ≤ n. σ [x �→ ij] � κ(eu) ⇒ κ(oj)

which can be rewritten as

κ(eu) |=σ �u′ .

This contradicts the assumption that there is a hole in e that cannot be satisfied by
any expression.

• Case 3: e = (�u1 , · · · , �uk ). We will show that there exists a projection satisfying a
hole. Because e must have been generated by the D_TUPLE rule, �u = ⋃

1≤j≤n{ij �→
(v1j, · · · , vkj)} and for 1 ≤ m ≤ k, �um = ⋃

1≤j≤n{ij �→ vmj}. From the assumption
there exists an expression eu satisfying �u,

∀1 ≤ j ≤ n. σ [x �→ ij] � eu ⇒ (v1j, · · · , vkj).

By the standard semantics of the language,

∀1 ≤ j ≤ n, 1 ≤ m ≤ k. σ [x �→ ij] � (eu).m ⇒ vmj

which can be rewritten as

∀1 ≤ m ≤ k. (eu).m |=σ �um .

This contradicts the assumption that there is a hole in e that cannot be satisfied by
any expression.

• Case 4: e = match e′ with κi _ →�ui

k
We will show that there exists an arbi-

trary expression satisfying a hole. Because e must have been generated by the
D_MATCH rule, �u = ⋃

1≤j≤n{ij �→ oj}, e′ ∈ C, ∀1 ≤ m ≤ k. �um = ⋃
j∈Im

{ij �→ oj}
where Im = {j | 1 ≤ j ≤ n, σ [x �→ ij] � e ⇒ κm(_)}. From the assumption there exists
an expression eu satisfying �u,

∀1 ≤ j ≤ n. σ [x �→ ij] � eu ⇒ oj.

Because ∀1 ≤ m ≤ k. Im ⊆ {j | 1 ≤ j ≤ n},
∀1 ≤ m ≤ k, j ∈ Im. σ [x �→ ij] � eu ⇒ oj

which can be rewritten as

∀1 ≤ m ≤ k. eu |=σ �um .
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This contradicts the assumption that there is a hole in e that cannot be satisfied by
any expression.

�

Now we prove the soundness of the termination check (the Terminate procedure in
Algorithm 7a).

Let ≺ be the standard subterm relation which is well-founded. The following lemma
relates the subterm relation ≺ to the partial order relation � (defined in Figure 7b) used in
the termination check.

Lemma 18. If e1 � e2, then σ � e1 ⇒ v1 and σ � e2 ⇒ v2 implies v1 ≺ v2.

Proof By the definition of �, there are three cases:

1. e1 = κ−1(e2) for some constructor κ ,
2. e1 = e2.n where e1 � e2 or e1 = e2 for some n ∈N,
3. e1 = (e1,1, · · · , e1,m) and e2 = (e2,1, · · · , e2,m) for some m ∈N.

The first case is for the base case of the induction, and the other two cases are for the
inductive step. We will show the lemma holds for each case.

(1) By the standard semantics of the language, if σ � e2 ⇒ κ(v′
1, · · · , v′

k) for some
values v′

1, · · · , v′
k , then σ � e1 ⇒ (v′

1, · · · , v′
k). Therefore, v1 = (v′

1, · · · , v′
k) and v2 =

κ(v′
1, · · · , v′

k), and v1 ≺ v2 holds by the definition of the subterm relation.
(2) Suppose σ � e1 ⇒ (v1,1, · · · , v1,k) for some values v1,1, · · · , v1,k , and σ � e2 ⇒

(v2,1, · · · , v2,k) for some values v2,1, · · · , v2,k (i.e., v1 = (v1,1, · · · , v1,k) and v2 =
(v2,1, · · · , v2,k)). By the standard semantics of the language, σ � e1.n ⇒ v1,n where 1 ≤ n ≤
k. If e1 = e2, then v1,n = v2,n. By the definition of the subterm relation, v1 ≺ v2 holds since
v1 is a component of v2. If e1 � e2, then by the induction hypothesis, (v1,1, · · · , v1,k) ≺
(v2,1, · · · , v2,k) holds. Because v1,n ≺ (v1,1, · · · , v1,k) by the definition of the subterm
relation, v1,n ≺ (v2,1, · · · , v2,k) holds by the transitivity of the subterm relation.

(3) Because e1 � e2, there exists 1 ≤ i ≤ m such that e1,i � e2,i and all other e1,j are equal
to e2,j or e1,j � e2,j for j �= i.

Let v1,k be the evaluation result of e1,k and v2,k be the evaluation result of e2,k for 1 ≤
k ≤ m. In other words, v1 = (v1,1, · · · , v1,m) and v2 = (v2,1, · · · , v2,m).

By the induction hypothesis, σ � e1,i ⇒ v1,i and σ � e2,i ⇒ v2,i implies v1,i ≺ v2,i. Since
v1,j = v2,j for j �= i, v1 ≺ v2 holds by the definition of the subterm relation.

�

The following two lemmas are used to prove the soundness of the termination check.

Lemma 19. For a given program P = rec f(x) = ebody, if e � x is true for every recursive
call f e in P, then P is guaranteed to terminate on any input.

Proof Proof by contradiction. Suppose P does not terminate on some input i. Then, an
infinite sequence of recursive calls will be generated:

f e1, f e2, f e3, · · ·
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where ei are the argument expressions of the recursive calls. When the first recursive
call f e1 is called, e1 � x by assumption. Let σ [x �→ i] � e1 ⇒ v1 for some value v1. By
Lemma 18, v1 ≺ i. When f e2 is called, e2 � x by assumption. Let σ [x �→ v1] � e2 ⇒ v2

for some value v2. By Lemma 18, v2 ≺ v1. In this way, the infinite sequence of recursive
calls will generate an infinite sequence of values

i � v1 � v2 � v3 � · · · .

However, since ≺ is a well-founded relation, no such infinite sequence of values can exist.
Therefore, the assumption that P does not terminate on some input i is false. Therefore, P
is guaranteed to terminate on any input. �

Lemma 20. For a given program P = rec f(x) = ebody where the input of P is a tuple
of length m, if (ek)k∈K � (x.i)i∈K where K is a non-empty set of indices is true for every
recursive call f (e1, · · · , em) in P, then P is guaranteed to terminate on any input.

Proof Proof by contradiction. Suppose P does not terminate on some input (i1, · · · , im).
Then, an infinite sequence of recursive calls will be generated:

f (e1,1, · · · , e1,m), f (e2,1, · · · , e2,m), f (e3,1, · · · , e3,m), · · ·
where ei,j comprise the argument expressions of the recursive calls. When the first
recursive call f (e1,1, · · · , e1,m) is called, (e1,k)k∈K � (x.i)i∈K by assumption. Let σ [x �→
(i1, · · · , im)] � e1,j ⇒ v1,j for some values v1,j where 1 ≤ j ≤ m. By Lemma 18, v1,k ≺ ik for
k ∈ K.

When f (e2,1, · · · , e2,m) is called, (e2,k)k∈K � (x.i)i∈K by assumption. Let σ [x �→
(v1,1, · · · , v1,m] � e2 ⇒ v2,j for some value v2,j where 1 ≤ j ≤ m. By Lemma 18, v2,k ≺ v1,k

for k ∈ K. In this way, the infinite sequence of recursive calls will generate infinite
sequences of values

ik � v1,k � v2,k � · · ·
for every k ∈ K. However, since ≺ is a well-founded relation, no such infinite sequences
of values can exist. Therefore, the assumption that P does not terminate on some input
(i1, · · · , im) is false. Therefore, P is guaranteed to terminate on any input. �

The following theorem shows that the termination check is sound.

Theorem 17. If Terminate accepts P, then P is guaranteed to terminate on any input.

Proof If P does not contain any recursive calls, then Terminate(P) is true by line 3 of
Algorithm 7a.

Otherwise, if P contains recursive calls, Terminate(P) is true if and only if for every
recursive call f e in P, Struct(f e, KeyArgs(ebody)) is true.

There are two cases for Struct(f e, KeyArgs(ebody)) to be true.
First, if e is not a tuple, e � x by line 14. By Lemma 19, P is guaranteed to terminate on

any input.
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Second, if e is a tuple, e′ � x′ is true where e′ and x′ are defined in lines 10 and 11. No
matter what K is, K is not empty by line 9. By Lemma 20, P is guaranteed to terminate on
any input.

Therefore, if Terminate accepts P, then P is guaranteed to terminate on any input.
�

2 Evaluation

In this section, we add the evaluation results omitted in the main paper due to space con-
straints. Tables 6 and 7 show the results for the 15 easy problems in the IO benchmark suite
and the Ref benchmark suite, respectively. Figure 10 shows the full results of Figure 9.

Table 6. Results for the 15 easy problems in the IO benchmark suite, where “Time” gives synthesis

time in seconds, and “Size” shows the size of the synthesized program (measured by number of AST

nodes). Synthesis time of the fastest tool for each problem is highlighted in bold.

TRIO BURST SMYTH

Benchmark Time(s) Size Correct Time(s) Size Correct Time(s) Size Correct

bool_always_false 0.09 4 � 0.02 4 � 0.02 4 �
bool_always_true 0.01 4 � 0.02 4 � 0.02 4 �
bool_bor 0.01 14 � 0.02 14 � 0.02 23 �
bool_impl 0.01 13 � 0.02 13 � 0.02 23 �
bool_neg 0.01 8 � 0.02 8 � 0.02 8 �
bool_xor 0.02 20 � 0.02 20 � 0.02 27 �
list_concat 0.04 19 � 0.03 19 � 0.03 17 �
list_hd 0.02 10 � 0.02 10 � 0.02 9 �
list_inc 0.03 18 � 0.02 18 � 0.03 12 �
list_last 0.03 22 � 0.02 22 � 0.02 19 �
list_length 0.02 13 � 0.02 13 � 0.02 12 �
list_nth 0.04 33 � 1.99 33 � 0.07 34 �
list_tl 0.06 9 � 0.02 9 � 0.02 9 �
nat_add 0.11 22 � 0.04 22 � 0.02 27 �
nat_pred 0.01 7 � 0.02 7 � 0.02 7 �

# Solved (# correct) 15 (15) 15 (15) 15 (15)
# Timeout 0 0 0
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Table 7. Results for the 15 easy problems in the Ref benchmark suite where “# Iter” shows the

number of CEGIS iterations

TRIO BURST SMYTH

Benchmark Time(s) Size # Iter Time(s) Size # Iter Time(s) Size # Iter

bool_always_false 0.02 4 1 0.01 4 0 0.02 4 0
bool_always_true 0.01 4 0 0.01 4 1 0.02 4 1
bool_bor 0.02 14 3 0.02 14 4 0.03 23 4
bool_impl 0.02 13 2 0.02 13 3 0.02 23 3
bool_neg 0.02 8 2 0.01 8 2 0.02 8 2
bool_xor 0.02 20 3 0.02 20 3 0.04 27 4
list_concat 1.06 19 5 1.19 19 4 1.14 17 4
list_hd 0.19 10 2 0.21 10 2 0.22 9 2
list_inc 0.42 18 4 0.49 18 3 0.63 12 2
list_last 0.38 22 4 0.47 22 3 0.43 19 5
list_length 0.43 13 4 0.35 13 4 0.36 12 3
list_nth 0.38 33 6 0.45 33 7 0.45 34 5
list_tl 0.18 9 2 0.21 9 2 0.23 9 2
nat_add 0.15 22 5 0.08 22 6 0.07 27 6
nat_pred 0.02 7 2 0.01 7 2 0.02 7 2

# Solved 15 15 15
# Timeout 0 0 0
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Fig. 10. Full results of Figure 9. The x-axis represents the number of examples, and the y-axis
represents the success rate. The empty plot indicates that both tools failed to synthesize a program
within the time limit.
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