WEAKLY CLOSE-TO-CONVEX MEROMORPHIC FUNCTIONS

LAURELLEN LANDAU-TREISNER AND ALBERT E. LIVINGSTON

1. Introduction. Classes of functions, meromorphic and univalent in

$$
\Delta=\{z:|z|<1\}
$$

with simple pole at $z=p, 0<p<1$, have been discussed in several places in the literature ([3], [6], [8], [10], [11], and [12]). The purpose of this paper is to discuss a class of Close-to-Convex functions with pole at p analogous to the class of Close-to-Convex functions with pole at zero studied by Libera and Robertson [9].

Let $\Sigma(p)$ be the class of functions which are univalent and analytic in $\Delta-\{p\}$, with a simple pole at $z=p, 0<p<1$. A function f in $\Sigma(p)$ with $f(0)=1$ is said to be in $\Lambda^{*}(p)$ if f maps Δ onto a domain whose complement is starlike with respect to the origin. The class $\Lambda^{*}(p)$ has been studied in ([3], [8], [10], [11], and [12]). Functions $f(z)$ in $\Lambda^{*}(p)$ are characterized by the fact that there exists F in Σ^{*}, the class of meromorphic univalent starlike functions with pole at zero of residue one, such that

$$
\begin{equation*}
f(z)=\frac{-p z}{(z-p)(1-p z)} F(z) . \tag{1.1}
\end{equation*}
$$

We let $I(0)$ be the class studied by Libera and Robertson [9]. Thus h is in $I(0)$, if h is analytic in $\Delta-\{0\}$ with a simple pole of residue one at $z=0$ such that there exists G in Σ^{*} and $\alpha,|\alpha| \leqq \pi$, so that

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{e^{i \alpha} G(z)}\right)>0
$$

for $0<|z|<1$.
Analogously, if $0<p<1$, we let $I(p)$ be the class of functions f, analytic in $\Delta-\{p\}$, with a simple pole at $z=p$ and such that there exists g in $\Lambda^{*}(p)$, an $\alpha,|\alpha| \leqq \pi$, and a $\delta, 0<\delta<1$, so that
(1.2) $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{e^{i \alpha} g(z)}\right)>0$
for $\delta<|z|<1$.

Received May 2, 1988.

In what follows we let P^{*} be the class of functions $P(z)$, analytic in Δ satisfying $\operatorname{Re} P(z)>0$ for z in Δ.

Theorem 1. Iff is in $I(p)$, there exists g in $\Lambda^{*}(p)$, an $\alpha,|\alpha| \leqq \pi$ and a $P(z)$ in P^{*} such that for z in $\Delta-\{p\}$,

$$
\begin{equation*}
f^{\prime}(z)=\frac{e^{i \alpha}}{(z-p)(1-p z)} g(z) P(z) \tag{1.3}
\end{equation*}
$$

Proof. There exists g in $\Lambda^{*}(p)$, an $\alpha,|\alpha| \leqq \pi$, and a $\delta, 0<\delta<1$, such that (1.2) holds.

Let $\delta<r<1$ and $f_{r}(z)=f(r z)$ and $g_{r}(z)=g(r z)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f_{r}^{\prime}(z)}{e^{i \alpha} g_{r}(z)}\right)>0 \tag{1.4}
\end{equation*}
$$

for $|z|=1$. The function $z f_{r}^{\prime}(z) / e^{i \alpha} g_{r}(z)$ in analytic in $\bar{\Delta}$ except for a simple pole at $z=p / r$. Let

$$
P_{r}(z)=\frac{\left(z-\frac{p}{r}\right)\left(1-\frac{p}{r} z\right)}{z}\left(\frac{z f_{r}^{\prime}(z)}{e^{i \alpha} g_{r}(z)}\right) .
$$

Since $(z-p / r)(1-p z / r)$ is real and positive for $|z|=1$, it follows from (1.4) that $\operatorname{Re} P_{r}(z)>0$ for $|z|=1$. Since $P_{r}(z)$ is analytic for $|z| \leqq 1$, it follows that $\operatorname{Re} P_{r}(z)>0$ for $|z| \leqq 1$. Since $P_{r}(0)=-p f^{\prime}(0) e^{-i \alpha}$ is independent of r, there exists a sequence r_{n} tending to 1 such that $P_{r_{n}}$ converges uniformly on compact subsets of Δ to $P(z)$ in \mathcal{P}^{*}. Since $f_{r_{n}}(z)$ and $g_{r_{n}}(z)$ converge uniformly on compact subsets of $\Delta-\{p\}$ to $f(z)$ and $g(z)$ respectively, it follows that

$$
P(z)=\frac{(z-p)(1-p z)}{z}\left(\frac{z f^{\prime}(z)}{e^{i \alpha} g(z)}\right)
$$

from which we obtain (1.3).
Corollary 1. If $f(z)$ is in $I(p)$, then $f^{\prime}(z) \neq 0$ for $z \neq p$.
Because of the corollary, there is no loss in generality in assuming that $f^{\prime}(0)=$ 1 for $f(z)$ in $I(p), 0<p<1$. In the sequel we therefore make the added assumption that $f^{\prime}(0)=1$ for f in $I(p), 0<p<1$.

Because of Theorem 1, we also define another class of functions $I^{*}(p)$. We will say that $f(z)$ is in $I^{*}(p), 0<p<1$, if it is analytic in $\Delta-\{p\}$ with a simple pole at $z=p$ and $f^{\prime}(0)=1$, and there exists $g(z)$ in $\Lambda^{*}(p)$, a $P(z)$ in \mathscr{P}^{*} and an $\alpha,|\alpha| \leqq \pi$, so that

$$
\begin{equation*}
f^{\prime}(z)=\frac{e^{i \alpha}}{(z-p)(1-p z)} g(z) P(z) \tag{1.5}
\end{equation*}
$$

A function f is said to be in $I^{*}(0)$ if it is analytic in $\Delta-\{0\}$ with a simple pole at $z=0$ and there exists $g(z)$ in $\Sigma^{*}, P(z)$ in P^{*} and $\alpha,|\alpha| \leqq \pi$, such that

$$
\begin{equation*}
f^{\prime}(z)=e^{i \alpha} g(z) P(z) \tag{1.6}
\end{equation*}
$$

Thus, by Theorem $1, I(p) \subset I^{*}(p)$. Also, $I(0)=I^{*}(0)$.
We widen the class $I^{*}(p)$ to allow for logarithmic singularities at $z=p$. In the sequel the statement " $f^{\prime}(z)$ is analytic in $\Delta-\{p\}$ " will refer to a function $f(z)$ which is analytic in $\Delta-\{z: p \leqq z<1\}$ and such that $f^{\prime}(z)$ can be analytically continued in $\Delta-\{p\}$. In what follows $\Lambda^{*}(0)=\Sigma^{*}$.

We will say that f is in $J^{*}(p), 0 \leqq p<1$, if $f^{\prime}(z)$ is analytic in $\Delta-\{p\}$ and there exists g in $\Lambda^{*}(p)$, and $\alpha,|\alpha| \leqq \pi$ and $P(z)$ in P^{*} such that

$$
\begin{equation*}
f^{\prime}(z)=\frac{e^{i \alpha}}{(z-p)(1-p z)} g(z) P(z) . \tag{1.7}
\end{equation*}
$$

The essential difference between $J^{*}(p)$ and $I^{*}(p)$ is that in $J^{*}(p)$ we are allowing the function to possibly have a logarithmic type singularity at $z=p$. That is, for z in $\{z:|z-p|<1-p\}-\{z: p \leqq z<1\}$

$$
f(z)=\frac{\alpha}{z-p}+\beta \log (z-p)+\sum_{n=0}^{\infty} c_{n}(z-p)^{n} .
$$

If f satisfies (1.7) with $0<p<1$, then it is easily seen that $f^{\prime}(z) / f^{\prime}(0)$ has the form (1.7). We will thus assume, without loss of generality, that $f^{\prime}(0)=1$ for all f in $J^{*}(p), 0<p<1$. Similarly we may assume with loss of generality that

$$
\operatorname{Res}\left(z f^{\prime} ; 0\right)=-1 \quad \text { for all } f \text { in } J^{*}(0)
$$

The following two functions will be important in the sequel. Let F_{1} and F_{2} be defined by

$$
\begin{equation*}
F_{1}^{\prime}(z)=\frac{p^{2}(1-z)^{3}}{(z-p)^{2}(1-p z)^{2}(1+z)} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}^{\prime}(z)=\frac{p^{2}(1+z)^{3}}{(z-p)^{2}(1-p z)^{2}(1-z)} \tag{1.9}
\end{equation*}
$$

Both functions $F_{1}(z)$ and $F_{2}(z)$ are members of $J^{*}(p)$ but not of $I^{*}(p)$.
2. An alternate definition of $J^{*}(p)$. In [8], functions of $\Lambda^{*}(p)$ were defined by their relationship with functions of Σ^{*}. A somewhat different relationship can
be found between functions of $J^{*}(p), 0<p<1$, and $J^{*}(0)$. We first need the following lemma.

Lemma 1. If g is in $\Lambda^{*}(p)$ and $\beta_{p}=\operatorname{Res}(g ; p)$ then

$$
G(z)=\frac{1-p^{2}}{\beta_{p}} g\left(\frac{z+p}{1+p z}\right)
$$

is in Σ^{*} and $\beta_{p}=\left(1-p^{2}\right) / G(-p)$. Conversely, if G is in Σ^{*} and $\beta_{p}=(1-$ $\left.p^{2}\right) / G(-p)$, then

$$
g(z)=\frac{\beta_{p}}{1-p^{2}} G\left(\frac{z-p}{1-p z}\right)
$$

is in $\Lambda^{*}(p)$ and $\beta_{p}=\operatorname{Res}(g ; p)$.
Proof. The proof follows from the fact that a properly normalized function is a member of Σ^{*} or $\Lambda^{*}(p)$ if and only if it maps Δ onto a domain whose complement is starlike with respect to the origin.

Theorem 2. If f is in $J^{*}(p)\left[I^{*}(p)\right]$ and $\alpha_{p}=-\operatorname{Res}\left((z-p) f^{\prime} ; p\right)\left[\alpha_{p}=\right.$ $\operatorname{Res}(f ; p)]$ then there exists h in $J^{*}(0)\left[I^{*}(0)\right]$ such that

$$
\begin{equation*}
f(z)=\frac{\alpha_{p}}{1-p^{2}} h\left(\frac{z-p}{1-p z}\right) \tag{2.1}
\end{equation*}
$$

Conversely, if h is in $J^{*}(0)\left[I^{*}(0)\right]$ and $\alpha_{p}=1 / h^{\prime}(-p)$, then $f(z)$, defined by (2.1) is in $J^{*}(p)\left[I^{*}(p)\right]$.

Proof. We will prove the statement about $J^{*}(p)$. The proof concerning $I^{*}(p)$ is similar. If f is in $J^{*}(p)$ then there exists g in $\Lambda^{*}(p), P$ in P^{*} and an $\alpha,|\alpha| \leqq \pi$, such that

$$
P(z)=\frac{(z-p)(1-p z) f^{\prime}(z)}{e^{i \alpha} g(z)}
$$

Thus

$$
P_{1}(z)=\frac{1}{1-p^{2}} P\left(\frac{z+p}{1+p z}\right)
$$

is also in \mathcal{P}^{*}. Now consider the functions

$$
h(z)=\frac{1-p^{2}}{\alpha_{p}} f\left(\frac{z+p}{1+p z}\right)
$$

where $\alpha_{p}=-\operatorname{Res}\left((z-p) f^{\prime} ; p\right)$ and

$$
G(z)=\frac{1-p^{2}}{\beta_{p}} g\left(\frac{z+p}{1+p z}\right)
$$

where $\beta_{p}=\operatorname{Res}(g ; p)$. Then,

$$
\begin{equation*}
P_{1}(z)=\frac{\alpha_{p}}{\beta_{p}} \frac{z h^{\prime}(z)}{e^{i \alpha} G(z)}=\left|\frac{\alpha_{p}}{\beta_{p}}\right| \frac{z h^{\prime}(z)}{e^{i \gamma} G(z)} \tag{2.2}
\end{equation*}
$$

for a suitably chosen γ.
Since g is in $\Lambda^{*}(p), G$ is in Σ^{*} by Lemma 1 . Also h^{\prime} is analytic in $\Delta-\{0\}$ with a pole of order 2 at $z=0$ and $\operatorname{Res}\left(z h^{\prime} ; 0\right)=-1$. From (2.2) we have

$$
h^{\prime}(z)=\frac{e^{i \gamma} G(z) Q(z)}{z}
$$

where $Q(z)=\left|\beta_{p} / \alpha_{p}\right| P_{1}(z)$ is in \mathscr{P}^{*}. Thus h is in $J^{*}(0)$ and (2.1) holds. The proof of the converse is similar.

Remark. Since functions in $I^{*}(0)$ need not be univalent [9], it follows from Theorem 2, that functions in $I^{*}(p)$ need not be univalent.
3. Integral means. In this section we use a technique of Baernstein [1] as employed by Leung [7] to obtain bounds on the integral means of $\left|f^{\prime}\right|$. For this purpose we first mention some results that will be used.

For $g(x)$, a real valued integrable function on $[-\pi, \pi]$, the Baernstein $*-$ function is defined by

$$
g^{*}(\theta)=\sup _{|E|=2 \theta} \int_{E} g,
$$

for $0<\theta \leqq \pi$, where $|E|$ is the Lebesque measure of the set E in $[-\pi, \pi]$.
Statements A, B and C of the following Lemma were proven by Baernstein [1] and statement D was proven by Leung [7].

Lemma 2. (A) For g, h in $L^{1}[-\pi, \pi]$, the following are equivalent:
(i) For every convex non-decreasing function Φ on $(-\infty, \infty)$

$$
\int_{-\pi}^{\pi} \Phi(g(x)) d x \leqq \int_{-\pi}^{\pi} \Phi(h(x)) d x .
$$

(ii) For every t in $(-\infty, \infty)$

$$
\int_{-\pi}^{\pi}[g(x)-t]^{+} d x \leqq \int_{-\pi}^{\pi}[h(x)-t]^{+} d x .
$$

(iii) $g^{*}(\theta) \leqq h^{*}(\theta)$ for $0 \leqq \theta \leqq \pi$.
(B) If f is in $S=\{f: f$ is analytic and univalent in Δ with $f(0)=0$ and $\left.f^{\prime}(0)=1\right\}$, then for each $r, 0<r<1$,

$$
\left(\pm \log \left|f\left(r e^{i \theta}\right)\right|\right)^{*} \leqq\left(\pm \log \left|K\left(r e^{i \theta}\right)\right|\right)^{*}
$$

for any Koebe function $K(z)=z /\left(1-e^{i \alpha} z\right)^{2}$.
(C) For g in $L^{1}[-\pi, \pi]$, if $\bar{g}(x)$ is the symmetric non-increasing rearrangement of g [4], then

$$
g^{*}(\theta)=\int_{-\theta}^{\theta} \bar{g}(x) d x=(\bar{g})^{*}(\theta) .
$$

(D) For g, h in $L^{1}[-\pi, \pi]$,

$$
[g(\theta)+h(\theta)]^{*} \leqq g^{*}(\theta)+h^{*}(\theta)
$$

with equality if and only if g and h are both symmetric and non-increasing on $[0, \pi]$.

Theorem 3. For any f in $J^{*}(p)$ and every convex non-decreasing function Φ on $(-\infty, \infty)$,

$$
\int_{-\pi}^{\pi} \Phi\left(\pm \log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta \leqq \int_{-\pi}^{\pi} \Phi\left(\pm \log \left|F_{2}^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta
$$

where F_{2} is in $J^{*}(p)$ and is defined by (1.9).
Proof. If f is in $J^{*}(p)$ then combining (1.1) and (1.7), there exists G in Σ^{*} an $\alpha,|\alpha| \leqq \pi$, and P in P^{*} such that

$$
f^{\prime}(z)=\frac{-p e^{i \alpha} z}{(z-p)^{2}(1-p z)^{2}} G(z) P(z)
$$

Thus

$$
\begin{align*}
\log \left|f^{\prime}\left(r e^{i \theta}\right)\right| & =\log \frac{p r}{\left|r e^{i \theta}-p\right|^{2}\left|1-p r e^{i \theta}\right|^{2}} \tag{3.1}\\
& +\log \left|G\left(r e^{i \theta}\right)\right|+\log \left|P\left(r e^{i \theta}\right)\right|
\end{align*}
$$

The first term on the right side of (3.1) is symmetric and non-increasing on $[0, \pi]$. For the second term, since G is in $\Sigma^{*}, 1 / G$ is in S and by Lemma 2 (B)

$$
\left[\log \left|G\left(r e^{i \theta}\right)\right|\right]^{*}=\left[-\log \frac{1}{\left|G\left(r e^{i \theta}\right)\right|}\right]^{*} \leqq\left[-\log \left|K\left(r e^{i \theta}\right)\right|\right]^{*}
$$

Choose $K(z)=z /(1+z)^{2}$, then
(3.2) $\quad\left[\log \left|G\left(r e^{i \theta}\right)\right|\right]^{*} \leqq\left[\log \frac{\left|1+r e^{i \theta}\right|^{2}}{r}\right]^{*}$

For the third term, since $p^{-1} P(z)$ is a function of positive real part and $\left|p^{-1} P(0)\right|=1$, by Corollary 1 of [7]

$$
\begin{equation*}
\left[\log \left|P\left(r e^{i \theta}\right)\right|\right]^{*} \leqq\left[\log p\left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|\right]^{*} \tag{3.3}
\end{equation*}
$$

Using Lemma 2 (D), we have from (3.1)

$$
\begin{aligned}
{\left[\log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right]^{*} } & \leqq\left[\log \frac{p r}{\left|r e^{i \theta}-p\right|^{2}\left|1-p r e^{i \theta}\right|^{2}}\right]^{*} \\
& +\left[\log \left|G\left(r e^{i \theta}\right)\right|\right]^{*}+\left[\log \left|P\left(r e^{i \theta}\right)\right|\right]^{*}
\end{aligned}
$$

Now using (3.2) and (3.3), we obtain

$$
\begin{align*}
{\left[\log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right]^{*} } & \leqq\left[\log \frac{p r}{\left|r e^{i \theta}-p\right|^{2}\left|1-p r e^{i \theta}\right|^{2}}\right]^{*} \tag{3.4}\\
& +\left[\log \frac{\left|1+r e^{i \theta}\right|^{2}}{r}\right]^{*}+\left[\log p\left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|\right]^{*} .
\end{align*}
$$

Since all three functions on the right of (3.4) are symmetric and non-increasing on $[0, \pi]$, by Lemma 2 (D)

$$
\begin{aligned}
{\left[\log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right]^{*} } & \leqq\left[\log \frac{p^{2}\left|1+r e^{i \theta}\right|^{3}}{\left|r e^{i \theta}-p\right|^{2}\left|1-p r e^{i \theta}\right|^{2}\left|1-r e^{i \theta}\right|}\right]^{*} \\
& =\left[\log \left|F_{2}^{\prime}\left(r e^{i \theta}\right)\right|\right]^{*} .
\end{aligned}
$$

By Lemma 2, Part A

$$
\int_{-\pi}^{\pi} \Phi\left(\log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta \leqq \int_{-\pi}^{\pi} \Phi\left(\log \left|F_{2}^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta .
$$

The proof of the inequality

$$
\int_{-\pi}^{\pi} \Phi\left(-\log \left|f^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta \leqq \int_{-\pi}^{\pi} \Phi\left(-\log \left|F_{2}^{\prime}\left(r e^{i \theta}\right)\right|\right) d \theta
$$

is similar.
Corollary 2. For any f in $J^{*}(p)$ and any real λ,

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \leqq \int_{-\pi}^{\pi}\left|F_{2}^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \tag{3.5}
\end{equation*}
$$

Proof. Apply Theorem 3 with $\Phi(x)=e^{t x}, t>0$.
Corollary 3. If f is in $J^{*}(p)$, then for $r \neq p$

$$
\begin{equation*}
F_{2}^{\prime}(-r) \leqq\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqq F_{2}^{\prime}(r) \tag{3.6}
\end{equation*}
$$

where $F_{2}^{\prime}(z)$ is defined by (1.9).

The bounds in (3.6) are of course sharp in $J^{*}(p)$ and the upper bound gives

$$
\max _{|z|=r}\left|f^{\prime}(z)\right|=O\left(\frac{1}{1-r}\right)
$$

for f in $J^{*}(p)$ and hence for f in $I^{*}(p)$. The order estimate $O(1 /(1-r))$ can not be improved in $I^{*}(p)$.

To see this we will construct a function f_{ϵ} for each $\epsilon, 0<\epsilon<1$, such that f_{ϵ} is in $I^{*}(p)$ and

$$
\lim _{r \rightarrow 1}(1-r)^{\epsilon}\left|f_{\epsilon}^{\prime}(r)\right|=\infty
$$

Given any $\epsilon, 0<\epsilon<1$, choose ϵ^{\prime} with $\epsilon<\epsilon^{\prime}<1$, then

$$
G_{\epsilon}(z)=\frac{(1-z)^{1-\epsilon^{\prime}}(1+z)^{1+\epsilon^{\prime}}}{z}
$$

is in Σ^{*}, and

$$
g_{\epsilon}(z)=\frac{-p(1-z)^{1-\epsilon^{\prime}}(1+z)^{1+\epsilon^{\prime}}}{(z-p)(1-p z)}=-\frac{p z}{(z-p)(1-p z)} G_{\epsilon}(z)
$$

is in $\Lambda^{*}(p)$. Let

$$
f_{\epsilon}(z)=\frac{1}{g_{\epsilon}^{\prime}(0)} g_{\epsilon}(z)
$$

then f_{ϵ} is in $I^{*}(p)$ and

$$
\lim _{r \rightarrow 1}(1-r)^{\epsilon}\left|f_{\epsilon}^{\prime}(r)\right|=\infty
$$

4. Coefficient estimates.

Lemma 3. If g is in $\Lambda^{*}(p)$ and

$$
g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

for $|z|<p$, then for $n \geqq 1$
(4.1) $\left|b_{n}\right| \leqq \frac{(1+p)\left(1-p^{2 n}\right)}{(1-p) p^{n}}$.

Equality is attained in (4.1) by the function

$$
g(z)=\frac{-p(1+z)^{2}}{(z-p)(1-p z)}
$$

Proof. Using a result of Jenkins [5] it was pointed out in [10] that (4.1) would be true for all n for which the Bieberbach conjecture is true. Thus, due to the proof of the conjecture by L. deBranges [2], we can say that (4.1) is valid for all n.

Using a comparison of coefficients, some detailed computations and Lemma 3 , we can prove the following theorem. We omit the proof, choosing instead to prove a slightly different type of inequality in Theorem 5 , which relates the coefficients of a function in $J^{*}(p)$ to those of a function in $I^{*}(p)$.

Theorem 4. If f is in $J^{*}(p)$ and

$$
f(z)=a_{0}+z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

for $|z|<p$, then for $n \geqq 2$

$$
\begin{aligned}
\left|a_{n}\right| & \leqq\left|a_{n}^{(2)}\right|=\frac{1-p^{n}}{p^{n-1}(1-p)} \sum_{j=0}^{n-1}\left[(2 j+1)-\frac{2 j(j+1)}{n}\right] p^{j} \\
& =\frac{1-p^{2 n}}{p^{n-1}} \frac{(1+p)}{(1-p)^{3}}\left[1-\frac{4 p\left(1-p^{n}\right)}{n\left(1+p^{n}\right)\left(1-p^{2}\right)}\right]
\end{aligned}
$$

where $a_{n}^{(2)}$ is the n-th coefficient of F_{2} in $J^{*}(p)$ defined by (1.9).
In what follows we let $\alpha_{p}=-\operatorname{Res}\left((z-p) f^{\prime} ; p\right)$. Note that for f in $I^{*}(p)$, $\alpha_{p}=\operatorname{Res}(f ; p)$.

Lemma 4. For f in $J^{*}(p)$

$$
\begin{equation*}
\frac{p^{2}(1-p)}{(1+p)^{3}} \leqq\left|\alpha_{p}\right| \leqq \frac{p^{2}(1+p)}{(1-p)^{3}} . \tag{4.2}
\end{equation*}
$$

These bounds are sharp, being attained by F_{1} and F_{2} given by (1.8) and (1.9).
Proof. For f in $J^{*}(p)$, there exists G in Σ^{*}, an $\alpha,|\alpha| \leqq \pi$, and P in P^{*} so that

$$
f^{\prime}(z)=\frac{-p e^{i \alpha} z}{(z-p)^{2}(1-p z)^{2}} G(z) P(z)
$$

We then have

$$
\alpha_{p}=\lim _{z \rightarrow p}(z-p)^{2} f^{\prime}(z)=\left[-p^{2} e^{i \alpha} /\left(1-p^{2}\right)^{2}\right] G(p) P(p)
$$

Using well known bounds on $|G(p)|$ and $|P(p)|$, we obtain (4.2).

Lemma 5. If h is in $J^{*}(0)$ and

$$
h(z)=\frac{1}{z}+d \log z+\sum_{n=0}^{\infty} c_{n} z^{n}
$$

for $0<|z|<1$, then

$$
|d| \leqq 4
$$

Equality is attained by h in $J^{*}(0)$, defined by

$$
h^{\prime}(z)=\frac{-(1+z)^{3}}{z^{2}(1-z)}
$$

Proof. There exists $G(z)=1 / z+B_{0}+B_{1} z+\cdots$ in Σ^{*}, and $P(z)=p_{0}+p_{1} z+\cdots$ in P^{*} so that

$$
z h^{\prime}=e^{i \alpha} G(z) P(z)
$$

It follows that

$$
\begin{equation*}
d=e^{i \alpha}\left(B_{0} p_{0}+p_{1}\right) \tag{4.3}
\end{equation*}
$$

It is well known that $\left|B_{0}\right| \leqq 2$ and $\left|p_{1}\right| \leqq 2\left|p_{0}\right|=2$. We thus obtain $|d| \leqq 4$, from (4.3).

Lemma 6. If f is in $J^{*}(p)$ and

$$
f(z)=\frac{\alpha_{p}}{(z-p)}+d \log (z-p)+\sum_{n=0}^{\infty} c_{n}(z-p)^{n}
$$

for $\{z:|z-p|<1-p\}-\{z: p \leqq z<1\}$, then

$$
\left|\frac{d}{\alpha_{p}}\right| \leqq \frac{4}{1-p^{2}}
$$

and the bound is sharp.
Proof. By Theorem 2 there exists h in $J^{*}(0)$ so that

$$
\begin{equation*}
\frac{f(z)}{\alpha_{p}}=\frac{1}{1-p^{2}} h\left(\frac{z-p}{1-p z}\right) . \tag{4.4}
\end{equation*}
$$

Let
(4.5) $h(z)=\frac{1}{z}+c \log z+\sum_{n=0}^{\infty} d_{n} z^{n}$
for $\{z:|z|<1\}-\{z: 0 \leqq z<1\}$. Substituting (4.5) in (4.4) and equating coefficients, we obtain

$$
\frac{d}{\alpha_{p}}=\frac{c}{1-p^{2}} .
$$

Lemma 6 now follows by applying Lemma 5.
For sharpness, consider the function

$$
f(z)=\frac{\alpha_{p}}{1-p^{2}} h\left(\frac{z-p}{1-p z}\right)
$$

where h in $J^{*}(0)$ is the function given in Lemma 5 and $\alpha_{p}=1 / h^{\prime}(-p)$. For this function we have

$$
d / \alpha_{p}=-4 /\left(1-p^{2}\right)
$$

Theorem 5. If f is in $J^{*}(p)$ and

$$
f(z)=a_{0}+z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

for $|z|<p$, then

$$
\lim _{n \rightarrow \infty}\left[\frac{\sup _{f \in J^{*}(p)}\left|\frac{a_{n}}{\alpha_{p}}\right|}{\left|\frac{a_{n}^{(1)}}{\alpha_{p}^{(1)}}\right|}\right]=1
$$

where $a_{n}^{(1)}$ and $\alpha_{p}^{(1)}$ are the coefficients in the expansion about $z=0$ and the residue at $z=p$ of

$$
f_{1}(z)=\frac{-p^{2}(1-z)^{2}}{(1-p)^{2}(z-p)(1-p z)},
$$

which is in $I^{*}(p)$.
Proof. For $\frac{(1+p)}{2}<R<1$ and sufficiently small δ,

$$
\begin{equation*}
n a_{n}=\frac{1}{2 \pi i} \int_{|w|=R} \frac{f^{\prime}(w)}{w^{n}} d w-\frac{1}{2 \pi i} \int_{|w-p|=\delta} \frac{f^{\prime}(w)}{w^{n}} d w . \tag{4.6}
\end{equation*}
$$

The first integral on the right side of (4.6) can be bounded by using Corollary 2 and the inequality

$$
\int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r e^{i \theta \mid}\right|} \leqq C \log \frac{1}{1-r},
$$

where C is a constant independent of r [13].

$$
\begin{align*}
& \left|\frac{1}{2 \pi i} \int_{|w|=R} \frac{f^{\prime}(w)}{w^{n}} d w\right| \tag{4.7}\\
& \leqq \frac{1}{2 \pi R^{n-1}} \int_{-\pi}^{\pi}\left|F_{2}^{\prime}\left(R e^{i \theta}\right)\right| d \theta \\
& =\frac{1}{2 \pi R^{n-1}} \int_{-\pi}^{\pi} \frac{p^{2}\left|1+R e^{i \theta}\right|^{3} d \theta}{\left|R e^{i \theta}-p\right|^{2}\left|1-p R e^{i \theta}\right|^{2}\left|1-R e^{i \theta \mid}\right|} \\
& \leqq \frac{p^{2}(1+R)^{3}}{2 \pi R^{n-1}(R-p)^{2}(1-p R)^{2}} \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-R e^{i \theta}\right|} \\
& \leqq \frac{C}{R^{n}} \log \left(\frac{1}{1-R}\right)
\end{align*}
$$

where C is a constant independent of f and R.
For the second integral, we note that

$$
\frac{1}{2 \pi i} \int_{|w-p|=\delta} \frac{f^{\prime}(w)}{w^{n}} d w=\operatorname{Res}\left(\frac{f^{\prime}(z)}{z^{n}} ; p\right)
$$

Let

$$
f^{\prime}(z)=-\frac{\alpha_{p}}{(z-p)^{2}}+\frac{d}{(z-p)}+\sum_{n=0}^{\infty} c_{n}(z-p)^{n}
$$

for $|z-p|<1-p$, then

$$
\frac{f^{\prime}(z)}{z^{n}}=\frac{-\alpha_{p}}{p^{n}(z-p)^{2}}+\left(\frac{d}{p^{n}}+\frac{n \alpha_{p}}{p^{n+1}}\right) \frac{1}{z-p}+\cdots
$$

for $|z-p|<1-p$. Thus

$$
\frac{1}{2 \pi i} \int_{|w-p|=\delta} \frac{f^{\prime}(w)}{w^{n}} d w=\frac{\alpha_{p}}{p^{n+1}}\left[\frac{p d}{\alpha_{p}}+n\right] .
$$

Using Lemma 6, we obtain

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{|w-p|=\delta} \frac{f^{\prime}(w)}{w^{n}} d w\right| \leqq \frac{\left|\alpha_{p}\right|}{p^{n+1}}\left[\frac{4 p}{1-p^{2}}+n\right] . \tag{4.8}
\end{equation*}
$$

Combining (4.6), (4.7) and (4.8) we have,
(4.9) $n\left|a_{n}\right| \leqq \frac{-C \log (1-R)}{R^{n}}+\frac{\left|\alpha_{p}\right|}{p^{n+1}}\left[\frac{4 p}{1-p^{2}}+n\right]$.

Using the fact that $1 /\left|\alpha_{p}\right| \leqq(1+p)^{3} / p^{2}(1-p)$ from Lemma 4, we obtain for $R>(1+p) / 2$.

$$
\begin{aligned}
\left|\frac{a_{n}}{\alpha_{p}}\right| & \leqq \frac{1}{p^{n+1}}\left[\frac{-C p(p / R)^{n} \log (1-R)}{n\left|\alpha_{p}\right|}+\frac{4 p}{n\left(1-p^{2}\right)}+1\right] \\
& \leqq \frac{1}{p^{n+1}}\left[\frac{C_{R, p}}{n}+1\right]
\end{aligned}
$$

where $C_{R, p}$ is a constant independent of n and f.
Since

$$
\left|\frac{a_{n}^{(1)}}{\alpha_{p}^{(1)}}\right|=\frac{1-p^{2 n}}{p^{n+1}}
$$

we obtain from (4.9)

$$
1 \leqq \frac{\sup _{f \in J^{*}(p)}\left|\frac{a_{n}}{\alpha_{n}}\right|}{\left|\frac{a_{n}^{1(1)}}{\alpha_{p}^{1(1)}}\right|} \leqq \frac{1}{1-p^{2 n}}\left[\frac{C_{R, p}}{n}+1\right] .
$$

We thus obtain

$$
\lim _{n \rightarrow \infty} \frac{\sup _{f \in J^{*}(p)}\left|\frac{a_{n}}{\alpha_{p}}\right|}{\left|\frac{a_{n}^{1(1)}}{\alpha_{p}^{11)}}\right|}=1 .
$$

References

1. A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139-169.
2. L. deBranges, A proof of the Bieberbach conjecture, Acta. Math. 154 (1985), 137-152.
3. P. J. Eenigenberg and A. E. Livingston, Meromorphic starlike functions, Rocky Mountain J. 11 (1981), 441-457.
4. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (Cambridge Univ. Press, New York, 1959).
5. J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25-27.
6. W. E. Kirwan and G. Schober, Extremal problems for meromorphic univalent functions, J. D'Analyse Math. 30 (1976), 330-348.
7. Y. J. Leung, Integral means of the derivatives of some univalent functions, Bull. London Math. Soc. 11 (1979), 289-294.
8. R. J. Libera and A. E. Livingston, Weakly starlike meromorphic univalent functions, Trans. Amer. Math. Soc. 202 (1975), 181-191.
9. R. J. Libera and M. S. Robertson, Meromorphic close-to-convex functions, Michigan Math. J. 8 (1961), 167-175.
10. A. E. Livingston, Weakly starlike meromorphic univalent functions II, Proc. Amer. Math. Soc. 62 (1977), 47-53.
11. _- A class of meromorphic starlike functions, Rocky Mountain J. 13, (1983), 259-269.
12. J. Miller, Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607613.
13. Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269.

University of Delaware,
Newark, Delaware

