A new description of the Bowen-Margulis measure

URSULA HAMENSTÄDT
Department of Mathematics, University of California, Berkeley, CA 94720, USA

(Received 22 July 1987 and revised 5 May 1988)

Abstract

The Bowen-Margulis measure on the unit tai:gent bundle of the universal covering of a compact manifold of negative curvature is determined by its restriction to the leaves of the strong unstable foliation. We describe this restriction to any strong unstable manifold W as a spherical measure with respect to a natural distance on W.

Let M be a compact connected Riemannian manifold of negative curvature $-\infty<$ $-b^{2} \leq K \leq-a^{2}<0$ and fundamental group Γ. The geodesic flow g^{\prime} acts on the unit tangent bundle $\boldsymbol{S} \tilde{M}$ of the universal covering \tilde{M} of $M . S \tilde{M}$ admits foliations $W^{s s}$, $W^{s}, W^{s u}, W^{u}$ which are invariant under g^{t} and the action of Γ on $\boldsymbol{S} \tilde{M}$. The leaves of $W^{s s}$ (resp. $W^{s}, W^{s u}, W^{u}$) are called the strong stable (resp. stable, strong unstable, unstable) manifolds of $S \tilde{M}$ (see [6]) We write $A \subset W^{i}$ if $A \subset S \tilde{M}$ is contained in a leaf of $W^{i}(i=s s, s, u, s u)$.

The Bowen-Margulis measure $\tilde{\mu}$ on $S \tilde{M}$ is the lift to $\boldsymbol{S M}$ of the unique g^{t}-invariant Borel-probability measure on $S M$ of maximal entropy ([2], [6]). $\tilde{\mu}$ has natural restrictions to measures $\tilde{\mu}^{i}$ on the leaves of $W^{i}(i=s s, s, u, s u)$ and is determined by $\tilde{\mu}^{s u}$.

The purpose of this paper is to show that for every $v \in S \tilde{M}$ the measure $\tilde{\mu}^{s u}$ on the leaf $W^{s u}(v)$ of $W^{s u}$ containing v is a spherical measure with respect to a natural distance on $W^{s u}(v)$. In order to define this distance we have to fix some notations:

For $v \in S \tilde{M}$ let φ_{v} be the geodesic line in \tilde{M} with initial direction $\varphi_{v}^{\prime}(0)=v . \varphi_{v}$ determines a point $\varphi_{v}(-\infty)=\xi$ of the ideal boundary $\partial \tilde{M}$ of $\tilde{M} . W^{u}(v)$ then consists of all unit tangent vectors of geodesic lines γ in \tilde{M} which satisfy $\gamma(-\infty)=\xi$. In particular the restriction to $W^{u}(v)$ of the canonical projection $P: S \tilde{M} \rightarrow \tilde{M}$ is a diffeomorphism of $W^{u}(v)$ onto \tilde{M}.
$v \in S \tilde{M}$ determines a Busemann function θ_{v} at ξ which is normalized by $\theta_{v} \varphi_{v}(0)=0$. For $t \in \mathbb{R} \cup\{\infty\}$ denote by $\pi_{t, v}: \tilde{M} \cup(\partial \tilde{M}-\xi) \rightarrow \theta_{v}^{-1}(t)$ the projection along the geodesics which are asymptotic to ξ. Then for every $y \in \partial \tilde{M}-\xi$ the curve $\gamma: t \rightarrow \pi_{t, v}(y)$ is the unique unit-speed geodesic in \tilde{M} with $\gamma^{\prime}(0) \in W^{s u}(v)$ and $\gamma(\infty)=y$.

The projection $\pi: S \tilde{M} \rightarrow \partial \tilde{M}, w \rightarrow \varphi_{w}(\infty)$ maps $W^{s u}(v)$ homeomorphically onto $\partial \tilde{M}-\xi$ and $\pi(w)=\pi_{\infty, w} \circ P(w)$ for all $w \in S \tilde{M}$. If $w \in W^{s u}(v)$ then $\varphi_{w}(-\infty)=\varphi_{v}(-\infty)$ and $\theta_{w}=\theta_{v}$, hence $\pi_{t, w}=\pi_{t, v}$ for all $t \in \mathbb{R}$.

In the sequel we will suppress the index v of the various objects depending on $v \in S \tilde{M}$ whenever v is arbitrarily fixed.

The level sets $\theta^{-1}(t)$ of $\theta(t \in \mathbb{R})$ are C^{1}-manifolds, the horospheres through ξ. The restriction of the Riemannian metric to $\theta^{-1}(t)$ induces a distance $d_{t, v}=d_{t}$ on $\theta^{-1}(t)$. Fix $R>0$ and define, for $x, y \in \partial \tilde{M}-\xi, f(x, y)=\sup \left\{t \in \mathbb{R} \mid d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right) \leq R\right\}$. The function $\eta=\eta_{v, R}:(\partial \tilde{M}-\xi) \times(\partial \tilde{M}-\xi) \rightarrow \mathbb{R}_{+},(x, y) \rightarrow e^{-f(x, y)}$ is symmetric and $\eta(x, y)=0$ if and only if $x=y$.

Using the upper curvature bound $-a^{2}$ on \tilde{M}, η can be estimated as follows:
Lemma 1. If $x, y \in \partial \tilde{M}-\xi$ and $d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right)=\varepsilon \leq R$, then

$$
\eta(x, y) \geq e^{-t}\left(\frac{\varepsilon}{R}\right)^{1 / a}
$$

Proof. Let $\tau=a^{-1}(\log R / \varepsilon)$; then $K \leq-a^{2}$ implies by the estimates in [4] that $d_{t+\tau}\left(\pi_{t+\tau}(x), \pi_{t+\tau}(y)\right) \geq R$. Thus $\eta(x, y) \geq e^{-t}(\varepsilon / R)^{1 / a}$.

As a corollary we find how $\eta_{v, R}$ varies with $R>0$:
Corollary 2. If $0<r<R$ then $\eta_{\nu, R} \leq \eta_{\nu, r} \leq(R / r)^{1 / a} \eta_{v, R}$.
Proof. Let $x, y \in \partial \tilde{M}-\xi$ and $t=-\log \left(\eta_{v, r}(x, y)\right)$. Then $d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right)=r$ hence $\eta_{v, R}(x, y) \geq \eta_{v, r}(x, y)(r / R)^{1 / a}$ by Lemma 1. Moreover clearly $\eta_{v, R} \leq \eta_{v, r}$.
Corollary 3. $\eta^{a}:(x, y) \rightarrow(\eta(x, y))^{a}$ is a distance on $\partial \tilde{M}-\xi$.
Proof. We have to check the triangle inequality. For this let $x, y, z \in \partial \tilde{M}-\xi$ and $t=-\log (\eta(x, y))$, i.e. $d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right)=R$. Then

$$
\eta^{a}(x, y) \leq e^{-a t}\left(d_{t}\left(\pi_{t}(x), \pi_{t}(z)\right)+d_{t}\left(\pi_{t}(z), \pi_{t}(y)\right)\right) / R
$$

hence the claim follows from Lemma 1.
Using the identification of $W^{s u}(v)$ with $\partial \tilde{M}-\varphi_{v}(-\infty)$ via the map $\pi, \eta_{v, R}^{a}$ can be viewed as a distance on $W^{s u}(v)$. Let h be the topological entropy of the geodesic flow on SM. Our aim is to prove the following

Theorem. The measure $\tilde{\mu}^{\text {su }}$ on $W^{s u}(v)$ equals up to a constant the h/a-dim. spherical measure associated to $\eta_{v, R}^{a}$.

It will be convenient to show first the analogous theorem for a slightly different function $\rho=\rho_{v, R}:(\partial \tilde{M}-\xi) \times(\partial \tilde{M}-\xi) \rightarrow \mathbb{R}_{+}(v \in S \tilde{M}, R>0)$ which is defined as $\eta_{v, R}$ but using the distance d on \tilde{M} which is induced by the Riemannian metric: For $x, y \in \partial \tilde{M}-\xi$ let $\bar{f}(x, y)=\sup \left\{t \in \mathbb{R} \mid d\left(\pi_{t}(x), \pi_{t}(y)\right) \leq R\right\}$ and $\rho(x, y)=e^{-\vec{f}(x, y)}$. Clearly $\rho_{v, R}=\rho_{w, R}$ if $w \in W^{s u}(v)$.
ρ is related to η as follows:
Lemma 4. There is a number $\nu>0$ such that $\nu \eta \leq \rho \leq \eta$ on $\partial \tilde{M}-\xi$.
Proof. If $x, y \in \partial \tilde{M}-\xi$ and $d\left(\pi_{t}(x), \pi_{t}(y)\right)=R$ for some $t \in \mathbb{R}$, then $d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right) \geq$ R which implies $\rho \leq \eta$. To show the first inequality, assume again $d\left(\pi_{t}(x), \pi_{t}(y)\right)=$ R. Since the curvature K on \tilde{M} is bounded from below by $-b^{2}$, it follows from [4] that $d_{t}\left(\pi_{t}(x), \pi_{t}(y)\right) \leq 2 / b \sinh \left(\frac{1}{2} b R\right)$, i.e. if we define $r=2 b^{-1} \sinh \left(\frac{1}{2} b R\right)$, then $\eta_{v, r} \leq \rho_{v, R}$. The claim now follows from Corollary 2.

Corollary 5. There is a number $c>0$ such that $\rho(x, z) \leq \varepsilon, \rho(z, y) \leq \varepsilon$ implies $\rho(x, y) \leq c \varepsilon$.
Proof. If $\rho(x, z) \leq \varepsilon$ and $\rho(z, y) \leq \varepsilon$, then by Lemma $4 \eta(x, z)$ and $\eta(z, y)$ are not larger than ε / ν. Since η^{a} satisfies the triangle inequality, this implies $\eta^{a}(x, y) \leq$ $2(\varepsilon / \nu)^{a}$. Thus by Lemma $4 \rho(x, y) \leq 2^{1 / a} \varepsilon / \nu$.

Lemma 6. If $0<r<R$ then $\rho_{v, R} \leq \rho_{\nu, r} \leq\left(\left(\sinh \frac{1}{2} a R\right) /\left(\sinh \frac{1}{2} a r\right)\right)^{1 / a} \rho_{v, R}$.
Proof. Assume that for all $x, y \in \partial \tilde{M}-\varphi_{v}(-\infty)$ and all $t \in \mathbb{R}, s \geq 0$

$$
\begin{equation*}
d\left(\pi_{t+s}(x), \pi_{t+s}(y)\right) \geq \frac{2}{a} \sinh ^{-1}\left(e^{a s} \sinh \frac{a}{2} d\left(\pi_{t}(x), \pi_{t}(y)\right)\right) \tag{}
\end{equation*}
$$

(here again $\pi_{t}=\pi_{t, v}$). With

$$
\tau=\frac{1}{a} \log \left(\left(\sinh \frac{a}{2} R\right) /\left(\sinh \frac{a}{2} r\right)\right)
$$

we then obtain $d\left(\pi_{t+\tau}(x), \pi_{t+\tau}(y)\right) \geq R$ whenever $d\left(\pi_{t}(x), \pi_{t}(y)\right) \geq r$, i.e. $\rho_{v, r} \leq$ $e^{\tau} \rho_{v, R}$. Since $\rho_{v, R} \leq \rho_{v, r}$ is obvious, it rests to prove formula (${ }^{*}$). Consider a comparison situation in the hyperbolic plane H_{a} of constant curvature $-a^{2}$, given by a point $\bar{\xi} \in \partial H_{a}$, a Busemann function $\bar{\theta}$ at $\bar{\xi}$ and geodesic lines $\bar{\gamma}, \bar{\varphi}$ in H_{a} such that $\bar{\gamma}(-\infty)=\bar{\xi}=\bar{\varphi}(-\infty), \bar{\theta} \bar{\gamma}(0)=0=\bar{\theta} \bar{\varphi}(0)$ and $d(\bar{\gamma}(0), \bar{\varphi}(0))=d\left(\pi_{t}(x), \pi_{t}(y)\right)$. Then

$$
d(\bar{\gamma}(s), \bar{\varphi}(s))=\frac{2}{a} \sinh ^{-1}\left(e^{a s} \sinh \frac{a}{2} d(\bar{\gamma}(0), \bar{\varphi}(0))\right)
$$

(see [4]) and the comparison arguments in [4] show $d\left(\left(\pi_{t+s}(x), \pi_{t+s}(y)\right) \geq d(\bar{\gamma}(s)\right.$, $\bar{\varphi}(s))$.

Lemma 7. Let $v \in S \tilde{M}, \Omega \subset \partial \tilde{M}-\varphi_{v}(-\infty)$ compact and $\varepsilon>0$. Then there is a neighbourhood U of v in $S \tilde{M}$ such that

$$
(1-\varepsilon) \rho_{w, R}(x, y) \leq \rho_{v, R}(x, y) \leq(1+\varepsilon) \rho_{w, R}(x, y) \quad \text { for all } w \in U \quad \text { and } x, y \in \Omega
$$

Proof. Choose an open, relative compact neighbourhood D of Ω in $\partial \tilde{M}-\varphi_{v}(-\infty)$ and an open neighbourhood V of v in $S \tilde{M}$. Since $\Omega \subset \partial \tilde{M}-\varphi_{v}(-\infty)$ is compact, $\mu=\sup \left\{\rho_{v}(x, y) \mid x, y \in \Omega\right\}$ is finite. Let $\tau=\log (1 / \mu)$ and define $\Psi: D \times V \rightarrow \tilde{M}$ by $\Psi(x, w)=\pi_{\tau, w}(x)$. Since Ψ is clearly continuous there is for a fixed number $\delta>0$ and every $y \in \Omega$ an open neighbourhood $D(y)$ of y in D and an open neighbourhood $U(v)$ of v in V such that $d(\Psi(z, w), \Psi(y, v))<\delta / 2$ for every $z \in D(y)$ and $w \in U(v)$. By compactness Ω can be covered by finitely many of the sets $D(y)$, say $\Omega \subset$ $\bigcup_{i=1}^{k} D\left(y_{i}\right)$ for some $y_{i} \in \Omega . U=\bigcap_{i=1}^{k} U\left(y_{i}\right)$ is an open neighbourhood of v in V. If $y \in \Omega$, then $y \in D\left(y_{i}\right)$ for some $i \in\{1, \ldots, k\}$, hence

$$
\begin{gathered}
d\left(\pi_{\tau, v}(y), \pi_{\tau, w}(y)\right) \leq d\left(\pi_{\tau, v}(y), \pi_{\tau, v}\left(y_{i}\right)\right)+d\left(\pi_{\tau, v}\left(y_{i}\right), \pi_{\tau, w}(y)\right)<\delta \text { for all } \\
w \in U \subset U\left(y_{i}\right) .
\end{gathered}
$$

Now for all $y \in \Omega$ and $w \in U$ the function $t \rightarrow d\left(\pi_{t, v}(y), \pi_{t, w}(y)\right)$ is decreasing. Thus given $y, z \in \Omega$ and $t \geq \tau$ we have

$$
d\left(\pi_{t, v}(y), \pi_{t, v}(z)\right)-2 \delta \leq d\left(\pi_{t, w}(y), \pi_{t, w}(z)\right) \leq d\left(\pi_{i, v}(y), \pi_{t, v}(z)\right)+2 \delta
$$

and consequently

$$
\rho_{w, R+2 \delta}(y, z) \leq \rho_{v, R}(y, z) \leq \rho_{w, R-2 \delta}(y, z) \quad \text { for all } y, z \in \Omega \quad \text { such that } \rho_{v}(y, z) \leq e^{-\tau}
$$

i.e. for all $y, z \in \Omega$ by the choice of τ. Since $\delta>0$ was arbitrary, the claim now follows from Lemma 6.

The function $\rho=\rho_{v, R}$ determines a family of balls $B_{\rho}(x, \varepsilon)=$ $\{y \in \partial \tilde{M}-\xi \mid \rho(x, y)<\varepsilon\} \quad(x \in \partial \tilde{M}-\xi, \varepsilon>0)$. Our aim is to show that these balls together with their radii give rise by Carathéodory's construction (see [3]) to a Borel measure on $\partial \tilde{M}-\xi$ which is finite on compact and positive on nontrivial open subsets of $\partial \tilde{M}-\xi$. This fact is derived from the analogous property of an auxiliary function $\beta=\beta^{v, R}$ which is defined on the subsets of $\partial \tilde{M}-\xi$ in the following way: For a compact set $\Omega \subset \partial \tilde{M}-\xi$ and $\varepsilon>0$ let $q_{\varepsilon}(\Omega)$ be the maximal cardinality of a subset E of Ω with the property that $B_{\rho}(x, \varepsilon) \cap B_{\rho}(y, \varepsilon)=\varnothing$ if $x, y \in E$ and $x \neq y$. As above denote by h the topological entropy of the geodesic flow on $S M$ and define $\beta_{\varepsilon}(\Omega)=q_{\varepsilon}(\Omega) \cdot \varepsilon^{h}$ and $\beta(\Omega)=\lim \sup _{\varepsilon \rightarrow 0} \beta_{\varepsilon}(\Omega)$. If $\Omega_{1}, \Omega_{2} \subset \partial \tilde{M}-\xi$ are compact and $\Omega_{1} \subset \Omega_{2}$, then $\beta \Omega_{1} \leq \beta \Omega_{2}$. Thus for $A \subset \partial \tilde{M}-\xi$ arbitrary we can define $\beta A=\sup \{\beta \Omega \mid \Omega \subset A$ compact $\}$.

Notice that β may not be subadditive, i.e. β may not be a measure on $\partial \tilde{M}-\xi$. However β has the following properties:
(1) If $A \subset B$, then $\beta A \leq \beta B$.
(2) If $\Omega_{i}(i \in \mathbb{Z})$ are compact and $\Omega \subset \bigcup_{i} \Omega_{i}$, then $\beta \Omega \leq \sum_{i} \beta \Omega_{i}$.

We will need the following lemma which is due to Margulis (it is essentially proved in [6]):

Lemma 8. For every $r>0$ there are numbers $0<\alpha_{1}(r)<\alpha_{2}(r)<\infty$ suct, that $\alpha_{1}(r) \leq$ $\tilde{\mu}^{u}\left\{w \in W^{u}(v) \mid d(P w, P v)<r\right\} \leq \alpha_{2}(r)$ for all $v \in S \tilde{M}$.

Lemma 8 shows in particular that $\tilde{\mu}^{u}$ is finite on compact and positive on nontrivial open subsets of $W^{u}(v)$.

For $p \in \tilde{M}$ let $B_{d}(p, r)$ be the open r-ball around p in (\tilde{M}, d).
Lemma 9. If $p \in \theta^{-1}(t)$ then $\pi_{\infty} B_{d}(p, R / 2) \subset \pi_{\infty}\left(B_{d}(p, R) \cap \theta^{-1}(t)\right)$.
Proof. Let $y \in \partial \tilde{M}-\xi$ such that $d\left(p, \pi_{t}(y)\right) \geq R$. Determine a number $\tau \in \mathbb{R}$ with the property that $d\left(p, \pi_{\tau}(y)\right)$ realizes the distance of p to the geodesic $s \rightarrow \pi_{s}(y)$. Then $\pi_{\tau}(y) \in \theta^{-1}(\tau)$, hence $d\left(p, \pi_{\tau}(y)\right) \geq|t-\tau|=d\left(\pi_{t}(y), \pi_{\tau}(y)\right)$ and $2 d\left(p, \pi_{\tau}(y)\right) \geq$ $d\left(p, \pi_{\tau}(y)\right)+d\left(\pi_{\tau}(y), \pi_{t}(y)\right) \geq R$. But this shows $y \notin \pi_{\infty} B_{d}(p, R / 2)$ which is the claim.

Recall that the geodesic flow g^{\prime} on $\boldsymbol{S M}$ transforms $\tilde{\mu}^{u}$ by $\tilde{\mu}^{u} \circ g^{t}=e^{h t} \tilde{\mu}^{u}$ (h as in the theorem). This and Lemma 9 is used in the proof of
Lemma 10. β is finite on compact subsets of $\partial \tilde{M}-\xi$.
Proof. Identify \tilde{M} with $W^{u}(v)$, the set of all unit tangent vectors of geodesics γ in \tilde{M} with $\gamma(-\infty)=\varphi_{v}(-\infty)=\xi$. With respect to this identification the geodesic flow g^{t} acts on \tilde{M} by $w \in \theta^{-1}(s) \rightarrow g^{t} w=\pi_{s+t} w \in \theta^{-1}(s+t)$. The restriction of $\tilde{\mu}^{u}$ to $W^{u}(v)$ can be viewed as a measure on \tilde{M}.

Let $\Omega \subset \partial \tilde{M}-\xi$ be compact and $B_{1}=\{y \in \partial \tilde{M}-\xi \mid \rho(y, z) \leq 1$ for some $z \in \Omega\}$. Then

$$
B_{2}=\left\{\pi_{t}(w) \mid w \in B_{1},-\frac{R}{2} \leq t \leq \frac{R}{2}\right\}
$$

is a compact subset of \tilde{M}, hence $\lambda=\tilde{\mu}^{u} B_{2}<\infty$.
Let $\varepsilon \in(0,1)$ and $\left\{x_{1}, \ldots, x_{q}\right\} \subset \Omega$ be a set of maximal cardinality such that the balls $B_{\rho}\left(x_{i}, \varepsilon\right)$ are pairwise disjoint. This means

$$
B_{d}\left(\pi_{\log 1 / \varepsilon}\left(x_{i}\right), R\right) \cap B_{d}\left(\pi_{\log 1 / \varepsilon}\left(x_{j}\right), R\right) \cap \theta^{-1}\left(\log \frac{1}{\varepsilon}\right)=\varnothing \quad \text { for } i \neq j .
$$

By Lemma 9 , the balls $B_{d}\left(\pi_{\log 1 / e}\left(x_{i}\right), R / 2\right)$ are pairwise disjoint and moreover they are contained in $g^{\log 1 / \varepsilon} B_{2}$ by the definition of B_{2}. With $\alpha=\alpha_{1}(R / 2)$ as in Lemma 8 this implies $q \alpha \leq \tilde{\mu}^{u} g^{\log 1 / \varepsilon} B_{2}=(1 / \varepsilon)^{R} \cdot \lambda$ and $q \cdot \varepsilon^{h} \leq \lambda / \alpha$. Since $\varepsilon \in(0,1)$ was arbitrary, this is the claim.

Lemma 11. β is positive on nontrivial open subsets of $\partial \tilde{M}-\xi$.
Proof. It suffices to show that β is positive on compact sets B with nonempty interior. Define $B_{3}=\left\{\pi_{t} y \mid y \in B,-R \leq t \leq 0\right\}$ and $\lambda=\tilde{\mu}^{u} B_{3}>0$. For $\varepsilon>0$ let $\left\{x_{1}, \ldots, x_{q}\right\} \subset B$ be a subset of maximal cardinality such that the balls $B_{\rho}\left(x_{i}, \varepsilon\right)$ are pairwise disjoint. By the definition of ρ this means that the balls $B_{d}\left(\pi_{\log 1 / \varepsilon}\left(x_{i}\right), 2 R\right)$ cover $\pi_{\log 1 / \varepsilon} B$, hence the balls $B_{d}\left(\pi_{\log 1 / \varepsilon}\left(x_{i}\right), 3 R\right)$ cover $g^{\log 1 / \varepsilon} B_{3}$. If $\alpha=\alpha_{2}(3 R)$ is chosen as in Lemma 9, then $q \alpha \geq(1 / \varepsilon)^{h} \lambda$ and $q \cdot \varepsilon^{h} \geq \lambda / \alpha$ which yields the lemma.
Remark. In fact we have shown that $\lim \inf _{\varepsilon \rightarrow 0} \beta_{\varepsilon} \Omega>0$ for all nontrivial open subsets Ω of $\partial \tilde{M}-\xi$.

For a fixed number $R>0$ we investigate now how $\beta^{v}=\beta^{v, R}$ varies with $v \in S \tilde{M}$.
Lemma 12. Let $\Omega \subset \partial \tilde{M}$ be a compact subset with nonempty complement. Then the map $v \rightarrow \beta^{\nu} \Omega$ is continuous on $\operatorname{Si}-\left\{w \mid \varphi_{w}(-\infty) \in \Omega\right\}$.
Proof. We show first that $v \rightarrow \beta^{v} \Omega$ is upper semi-continuous on its domain of definition.

Let $v \in S \tilde{M}-\left\{w \mid \varphi_{w}(-\infty) \in \Omega\right\}$; since $\beta^{v} \Omega<\infty$ by Lemma 10 it suffices to find for every $\delta>0$ an open neighbourhood U of v in $S \tilde{M}-\left\{w \mid \varphi_{w}(-\infty) \in \Omega\right\}$ such that $\beta^{w} \Omega \leq(1+\delta) \beta^{\nu} \Omega$ for all $w \in U$.

Since $\Omega \subset \partial \tilde{M}-\varphi_{v}(-\infty)$ is compact, $A=\left\{y \in \partial \tilde{M} \mid \rho_{v, R}(x, y) \leq 1\right.$ for some $\left.x \in \Omega\right\}$ is a compact subset of $\partial \tilde{M}-\varphi_{v}(-\infty)$. By Lemma 7 there is for $\lambda=(1 /(1+\delta))^{1 / h}$ a neighbourhood U of v in $S \tilde{M}$ such that for all $x, y \in A$ and all $w \in U \lambda \rho_{w, R}(x, y) \leq$ $\rho_{v}(x, y)$. Let $\varepsilon \in(0,1)$ and $\left\{y_{1}, \ldots, y_{m}\right\} \subset \Omega$ be a subset of maximal cardinality with the property that the balls $B_{\rho_{n ; R}}\left(y_{i}, \varepsilon\right)$ are pairwise disjoint. Then the sets $B_{\rho_{v, R}}\left(y_{i}, \lambda \varepsilon\right) \cap A$ are pairwise disjoint. But by the choice of A for every $y \in \Omega$ the $\rho_{v, R}$-ball of radius $\lambda \varepsilon<1$ centred at y is contained in A. This implies $\beta_{\varepsilon}^{w}(\Omega) \leq$ $(1+\delta) \beta_{\lambda \varepsilon}^{v}(\Omega)$ and since $\varepsilon \in(0,1)$ was arbitrary, $\beta^{\omega}(\Omega) \leq(1+\delta) \beta^{v}(\Omega)$. The lower semi-continuity of the map is shown similarly.
Remark. The proof of Lemma 12 yields the following fact: If $\Omega \subset \partial \tilde{M}-\varphi_{v}(-\infty)$ is compact and $\beta^{v}(\Omega)=0$, then $\beta^{w}(\Omega)=0$ for all $w \in \partial \tilde{M}-\Omega$.

For $\rho=\rho_{v, R}$ let $\bar{B}_{\rho}(x, \varepsilon)(x \in \partial \tilde{M})$ be the closure of $B_{\rho}(x, \varepsilon)$ in $\partial \tilde{M}$. Let $\beta=\beta^{v, R}$ be as above and $\xi=\varphi_{v}(-\infty)$.

Corollary 13. There is a number $\kappa>0$ such that for all $x \in \partial \tilde{M}-\xi$ and all $\varepsilon>0$, $\kappa \varepsilon^{h} \leq \beta \bar{B}_{\rho}(x, \varepsilon) \leq \kappa^{-1} \varepsilon^{h}$.
Proof. Use the notations of the proof of Lemma 12. Let $D \subset \tilde{M}$ be a compact fundamental domain for $\Gamma=\pi_{1} M$ and define $u:\left.S \tilde{M}\right|_{D} \rightarrow \mathbb{R}, w \rightarrow u(w)=$ $\beta^{w} \bar{B}_{\rho_{n}}\left(\varphi_{w}(\infty), 1\right)$.

Let $\left.\left\{w_{j}\right\} \subset S \tilde{M}\right|_{D}$ be a sequence such that $u\left(w_{j}\right) \rightarrow \sup \left\{u(w)|w \in S \tilde{M}|_{D}\right\}$. By the compactness of $\left.\boldsymbol{S} \tilde{M}\right|_{D}$ we may assume that $\left\{w_{j}\right\}$ converges to $\left.w \in S \tilde{M}\right|_{D}$ as $j \rightarrow \infty$.

Since by Lemma $7 \rho_{w}$ depends continuously on $w \in S \tilde{M}$, there is a number $i_{0}>0$ such that the closed ball of radius 1 around $\varphi_{w_{i}}(\infty)$ with respect to $\rho_{w_{i}}$ is contained in $B=\bar{B}_{\rho_{w}}\left(\varphi_{w}(\infty), 2\right)$. Thus $u\left(w_{i}\right) \leq \beta^{w_{i}} B$ for all $i \geq i_{0}$ and Lemma 12 shows $\lim \sup _{j \rightarrow \infty} u\left(w_{j}\right) \leq \beta^{w} B<\infty$. A similar argument yields inf $\left\{u(w)|w \in S \tilde{M}|_{D}\right\}>0$, i.e. there is a number $\kappa>0$ such that $\kappa \leq u(w) \leq 1 / \kappa$ for all $\left.w \in S \tilde{M}\right|_{D}$.

For $\rho=\rho_{v, R}$ and $x \in \partial \tilde{M}-\varphi_{v}(-\infty), \bar{B}_{\rho}(x, \varepsilon)$ is the projection in $\partial \tilde{M}-\varphi_{v}(-\infty)$ of the set $\bar{B}_{d}\left(\pi_{\log 1 / \varepsilon, v} x, R\right) \cap \theta_{v}^{-1}(\log 1 / \varepsilon)$ along the geodesics which are tangent to $W^{u}(v)$. Choose $\Phi \in \Gamma$ such that $\Phi\left(\pi_{\log 1 / \varepsilon, v} x\right) \in D$. If $w \in S \tilde{M}$ is the tangent at $\log 1 / \varepsilon$ of the geodesic $t \rightarrow \Phi\left(\pi_{t, v} x\right)$, then $\Phi \bar{B}_{\rho}(x, \varepsilon)=\bar{B}_{\rho_{x}}(\Phi x, 1)$ and $\Phi \bar{B} \rho(y, \delta)=$ $\bar{B}_{\rho_{w}}\left(\Phi y, \varepsilon^{-1} \delta\right)$ for all $y \in \bar{B}_{\rho}(x, \varepsilon)$ and all $\delta>0$ (recall that Γ acts on $\partial \tilde{M}$ in a natural way). By the definition of β this means $\beta \bar{B}_{\rho}(x, \varepsilon)=\varepsilon^{h} \beta^{\omega} \bar{B}_{\rho_{w}}(\Phi x, 1)$, hence $\kappa \varepsilon^{h} \leq$ $\beta \bar{B}_{\rho}(x, \varepsilon) \leq \kappa^{-1} \varepsilon^{h}$.

Recall the definition of the h-dim. spherical measure $\sigma=\sigma^{0, R}=\sigma_{\rho}$ on $\partial \tilde{M}-\xi=$ $\partial \tilde{M}-\varphi_{v}(-\infty)$ associated to $\rho=\rho_{v, R}$ (see [3]). For $\Omega \subset \partial \tilde{M}-\xi, \sigma(\Omega)=\sup _{\varepsilon \rightarrow 0} \sigma_{\varepsilon}(\Omega)$ where $\sigma_{\varepsilon}(\Omega)=\inf \left\{\sum_{j=1}^{\infty} \varepsilon_{j}^{h} \mid \varepsilon_{j} \leq \varepsilon\right.$ and $\Omega \subset \bigcup_{j=1}^{\infty} \bar{B}_{\rho}\left(x_{j}, \varepsilon_{j}\right)$ for some $\left.x_{j} \in \Omega\right\}$. Corollary 5 implies that σ is a Borel regular measure, i.e. $\sigma(\Omega)=\sup \{\sigma(B) \mid B \subset \Omega$ compact $\}$ for every Borel-subset Ω of $\partial \tilde{M}-\xi$ (compare the argument in [3] for spherical measures associated to distances).

Corollary 14. Let $c>0$ be as in Corollary 5 and $\kappa>0$ be as in Corollary 13. Then $c^{h} \beta(\Omega) \geq \sigma(\Omega) \geq \kappa \beta(\Omega)$ for every Borel set $\Omega \subset \partial \tilde{M}-\xi$.
Proof. By the definition of β and the fact that σ is Borel-regular it suffices to show the claim for compact subsets Ω of $\partial \tilde{M}-\xi$.

Let $\Omega \subset \partial \tilde{M}-\xi$ be compact, let $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{q}\right\} \subset \Omega$ be a set of maximal cardinality with the property that the balls $B_{\rho}\left(x_{i}, \varepsilon\right)$ are pairwise disjoint. Then for every $y \in \Omega$ there is $i \in\{1, \ldots, q\}$ and $z \in B_{\rho}\left(x_{i}, \varepsilon\right)$ such that $\rho(y, z)<\epsilon$. Hence by Corollary 5 the balls $B_{\rho}\left(x_{i}, c \varepsilon\right)$ cover Ω, which shows $\sigma_{c \varepsilon}(\Omega) \leq q \varepsilon^{h} c^{h}=c^{h} \beta_{\varepsilon}(\Omega)$. Thus $\sigma(\Omega) \leq c^{h} \beta(\Omega)$. On the other hand, for each $\delta>0$ there is a covering of Ω by balls $\bar{B}_{\rho}\left(x_{i}, \varepsilon_{i}\right)(i \geq 1)$ such that $\sum_{i=1}^{\infty} \varepsilon_{i}^{h} \leq \sigma(\Omega)+\delta$. Corollary 13 and property (2) of β implies

$$
\beta(\Omega) \leq \frac{1}{\kappa} \sum \varepsilon_{i}^{h} \leq \frac{1}{\kappa} \sigma(\Omega)+\frac{\delta}{\kappa} .
$$

Since $\delta>0$ was arbitrary, this is the claim.

Now we are left with showing that the measures $\sigma^{v, R}$ indeed give rise to the Bowen-Margulis measure on $\boldsymbol{S M}$.

For a fixed $R>0$ recall that $\sigma^{v}=\sigma^{v, R}$ depends on the choice of $v \in S \tilde{M}$ and $\sigma^{v}=\sigma^{v}$ if $\boldsymbol{w} \in W^{s u}(v)$. Now the strong unstable manifold $W^{s u}(v)$ has a canonical identification with $\partial \tilde{M}-\varphi_{v}(-\infty)$ via the map $\pi: w \rightarrow \varphi_{w}(\infty)$. Thus σ^{v} can be viewed as a Borel measure on $W^{s u}(v)$. In this way we obtain a Borel measure $\mu^{s u}$ on the leaves of the foliation $W^{s u}$. If $v \in S \tilde{M}$ and $t \in \mathbb{R}$, then $\theta_{v}=\theta_{g^{\prime} v}+t$, hence $\rho_{g^{\prime} v}=e^{t} \rho_{v}$ and $\mu^{s u} \circ g^{\prime}=e^{h t} \mu^{s u}$.

We have to construct a measure on $S \tilde{M}$ which is invariant under the geodesic flow and the isometry group of \tilde{M} and restricts to the measures $\mu^{s u}$ on the leaves of $W^{s u}$. We first define a Borel measure μ^{u} on the leaves of the foliation W^{u} as follows: For $A \subset W^{u}$ let $\mu^{u}(A)$ be the infimum of all numbers $\sum_{j=1}^{\infty} \int_{T_{i}} \mu^{s u}\left(g^{\prime} A_{j}\right) d t$ corresponding to all families of Borel sets $T_{j} \subset \mathbb{R}, \quad A_{j} \subset W^{s u}$ with $A \subset$ $\bigcup_{j=1}^{\infty}\left(\bigcup_{t \in T_{j}} g^{\prime} A_{j}\right) . \mu^{u}$ can be viewed as a weighted product measure on $W^{u}(v) \approx$ $W^{s u}(v) \times \mathbb{R}\left(v \in A\right.$; see [3] p. 114). If $A=\bigcup_{s \in T} g^{s} \tilde{A}$ for some Borel-set $\tilde{A} \subset W^{s u}$ and a Borel-set $T \subset \mathbb{R}$, then $\mu^{u}(A)=\int_{T} \mu^{s u}\left(g^{t} \tilde{A}\right) d t=\mu^{s u}(\tilde{A}) \int_{T} e^{h t} d t$ (this follows as the analogous statement for product measures, see [3]). Furthermore $\mu^{u}\left(g^{t} A\right)=$ $e^{h t} \mu^{u}(A)$ for all $t \in \mathbb{R}$.

For $v, w \in \boldsymbol{S} \tilde{M}$ such that $\varphi_{v}(-\infty) \neq \varphi_{w}(\infty)$ there is a geodesic γ joining $\varphi_{v}(-\infty)=$ $\gamma(-\infty)$ to $\varphi_{w}(\infty)=\gamma(\infty)$, and γ is unique up to reparametrization. Thus the intersection $\boldsymbol{W}^{u}(v) \cap \boldsymbol{W}^{s s}(\boldsymbol{w})$ consists of a unique point. Following Margulis ([6]) we call sets $A_{1} \subset W^{u}, A_{2} \subset W^{u}(w)$ equivalent if $A_{2}=\left\{W^{u}(w) \cap W^{s s}(v) \mid v \in A_{1}\right\}$. If $A_{1} \subset W^{u}$ and $w \in S \tilde{M}$ is such that $\varphi_{w}(-\infty) \notin \pi A_{1}$, then A_{1} is equivalent to a subset of $W^{u}(w)$.

For equivalent sets $A_{1}, A_{2} \subset W^{u}$ there is a homeomorphism $\Psi: A_{1} \rightarrow A_{2}$ such that $\Psi(v) \in W^{s s}(v)$ for all $v \in A_{1} . A_{1}$ and A_{2} are called ε-equivalent if A_{1} and A_{2} are equivalent and if furthermore the homeomorphism $\Psi: A_{1} \rightarrow A_{2}$ satisfies $d(P w, P \Psi w)<\varepsilon$ for all $w \in A_{1}$. If A_{1} and A_{2} are ε-equivalent for some $\varepsilon>0$, then $\tilde{\mu}^{u}\left(A_{1}\right)=\tilde{\mu}^{u}\left(A_{2}\right)([6])$. This is also true for μ^{u}.

Lemma 15. If $A_{1}, A_{2} \subset W^{u}$ are relatively compact and equivalent, then $\mu^{u} A_{1}=\mu^{u} A_{2}$.
Proof. We want to show $\mu^{4} A_{1} \geq \mu^{4} A_{2}$ if A_{1}, A_{2} are as above. Since μ^{4} is Borel regular we may assume that A_{1} is compact. Denote by W_{i}^{u} the leaft of the foliation W^{u} which contains A_{i}.
Let $\bar{v} \in A_{1}, w \in A_{2}$ and choose a compact subset Ω of $W^{s u}(\bar{v})$ such that $\pi \Omega$ is a compact neighbourhood of πA_{1} in $\partial \tilde{M}-\varphi_{w}(-\infty)$. Then there is a number $\tau>0$ such that $V=\bigcup_{-\tau \leq 1 \leq \tau} g^{\prime} \Omega$ is a compact neighbourhood of A_{1} in W_{1}^{u}.

By the choice of Ω, V is equivalent to a subset of W_{2}^{u}. This means that there is a homeomorphism Ψ of V onto a compact neighbourhood ΨV of A_{2} in W_{2}^{u} such that $\Psi A_{1}=A_{2}$ and $\Psi(v) \in W^{s s}(v) \cap W_{2}^{u}$ for all $v \in V$.

By the definition of μ^{μ}, for every $\delta>0$ there are Borel sets $S_{j} \subset(-\tau, \tau), \Omega_{j} \subset$ $\Omega(j \geq 1) \quad$ such that $\quad A_{1} \subset \bigcup_{j=1}^{\infty}\left(\bigcup_{s \in S_{i}} g^{s} \Omega_{j}\right) \subset V \quad$ and $\mu^{\prime \prime}\left(A_{1}\right) \geq$ $\sum_{j=1}^{\infty} \int_{S_{j}} \mu^{s u}\left(g^{s} \Omega_{j}\right) d s-\delta . \quad$ Since $\quad \mu^{u}\left(A_{2}\right) \leq \sum_{j=1}^{\infty} \mu^{u}\left(\Psi\left(\cup_{s \in s_{j}} g^{s} \Omega_{j}\right)\right) \quad$ and $\mu^{u}\left(\bigcup_{s \in s,} g^{s} \Omega_{j}\right)=\int_{S_{j}} \mu^{s u}\left(g^{s} \Omega_{j}\right) d s$, it thus suffices to show $\mu^{u}\left(B_{1}\right) \geq \mu^{\prime \prime}\left(\Psi B_{1}\right)$ for every subset B_{1} of V of the form $B_{1}=\bigcup_{s \in s} g^{s} B$ with Borel sets $S \subset[-\tau, \tau], B \subset \Omega$.

Let $\delta>0, B_{1}$ as above and $\lambda=\mu^{s u}\left(g^{\tau} \Omega\right)<\infty$. Since the Lebesgue-measure on coincides with the 1 -dim. spherical measure with respect to the Euclidean distans there are countably many closed intervals $S_{j} \subset[-\tau, \tau](j \geq 1)$ such that $\int_{S} d t$ $\sum_{j=1}^{\infty} \int_{S_{j}} d t-\delta / \lambda$ and $S \subset \bigcup_{j=1}^{\infty} S_{j}$. Write $T_{j}=\left(S \cap S_{j}\right) \backslash \bigcup_{i=1}^{j-1} S_{i} ;$ then $S=\bigcup_{j=1}^{\infty} T_{j}$ at

$$
\int_{S} d t=\sum_{j=1}^{\infty} \int_{T_{j}} d t \geq \sum_{j=1}^{\infty} \int_{T_{j}} d t+\sum_{j=1}^{\infty} \int_{S_{j}-T_{j}} d t-\delta / \lambda .
$$

Thus the choice of λ yields

$$
\sum_{j=1}^{\infty} \int_{S i} \mu^{s u}\left(g^{t} B\right) d t \leq \int_{S} \mu^{s u}\left(g^{t} B\right) d t+\delta
$$

Since the sets $\bigcup_{s \in S,} g^{s} B(j \geq 1)$ cover B_{1}, it follows as above that we need on consider sets $B_{1}=\bigcup_{t \in T} g^{\prime} B$ where $B \subset \Omega$ is Borel and $T \subset[-\tau, \tau]$ is a closed intervi

Assume without loss of generality that $B_{1}=\bigcup_{-\nu \leq s \leq \nu} g^{s} B$ for some $\nu>0$. I eventually enlarging Ω we may also suppose that the closure \bar{B} of B is contain in the interior of Ω. Define $B_{2}=\Psi B_{1}$ and let $\varepsilon>0$. By continuity there is for eve $v \in \bar{B}$ an open neighbourhood $U(v)$ of v in Ω such that $d(P \Psi(w), P \Psi(v))<\varepsilon \mathrm{f}$ all $w \in U(v)$. The compact set \bar{B} admits a finite cover by open sets $U\left(v_{i}\right)\left(v_{i} \in\right.$ and $i=1, \ldots, k$). In particular B has a Borel-partition $B=\sum_{i=1}^{k} C^{i}$ into pairwi disjoint sets $C^{i} \subset\left(U\left(v_{i}\right) \cap B\right)$.

Define $D^{i}=\bigcup_{-\nu \leq s \leq \nu} g^{s} C^{i}$; then $B_{1}=\bigcup_{i=1}^{k} D^{i}$ and $D^{i} \cap D^{j}=\varnothing$ if $i \neq j$, i. $\mu^{u}\left(B_{1}\right)=\sum_{i=1}^{k} \mu^{u}\left(D^{i}\right)$.

For fixed $i \in\{1, \ldots, k\}$ we want to compare the measures $\mu^{u}\left(D^{i}\right)$ and $\mu^{u}(\Psi D$
This is done by estimating the measure of a set $\tilde{E}^{i} \supset \Psi\left(D^{i}\right)$ which is defined 1 $\tilde{E}^{i}=\bigcup_{-\nu-\varepsilon<s<\nu+\varepsilon} g^{s} E^{i}$ where $E^{i}=\left\{w \in W^{s u}\left(\Psi v_{i}\right) \mid \pi w \in \pi C^{i}\right\}$.

We have to show $\tilde{E}^{i} \supset \Psi\left(D^{i}\right)$: Indeed, for every $v \in C^{i}$ there is a number $s(v) \in$ such that $g^{s(v)} \Psi(v) \in E^{i}$. Then $s\left(v_{i}\right)=0$ and consequently $s(v) \leq d\left(P \Psi\left(v_{i}\right.\right.$ $P \Psi(v))<\varepsilon$ for all $v \in C^{i}$ by the choice of C^{i}. Since $\pi^{-1}(\pi v) \cap \Psi\left(D^{i}\right)$ $\bigcup_{-\nu \leq s \leq \nu} g^{s} \Psi(v)$ this implies $\Psi\left(D^{i}\right) \subset \tilde{E}^{i}$.

In order to estimate $\mu^{u}\left(\tilde{E}^{i}\right)$ we have to estimate $\mu^{s u}\left(E^{i}\right)$. For this purpose 1 $v \in C^{i}, w \in E^{i}$ and $\rho=\rho_{v, R}, \tilde{\rho}=\rho_{w, R}$. Since \bar{B} is compact and $\Psi\left(g^{s} v\right)=g^{s} \Psi(v) f_{i}$ all $s \in[-\nu, \nu]$, there is a number $t_{0} \in \mathbb{R}$ such that $g^{t} B_{1}$ and $g^{t} B_{2}$ are ε-equivalent f_{i} all $t \geq t_{0}$, i.e. $d\left(P g^{\prime} v, P g^{\prime} \Psi(v)\right)<\varepsilon$ for all $v \in B_{1}$ (compare [6]).

Let $\delta<e^{-t_{0}}$. For every $x \in \pi C^{i}$ there are unique points $w_{1}(x) \in g^{\log 1 / \delta} C^{i}, w_{2}(x)$ $g^{\log 1 / \delta} E^{i}$ such that $\pi w_{i}(x)=x(i=1,2)$. The choice of δ yields

$$
\begin{aligned}
d\left(P w_{1}(x), P w_{2}(x)\right) & \leq d\left(P w_{1}(x), P \Psi w_{1}(x)\right)+d\left(P \Psi w_{1}(x), P w_{2}(x)\right) \\
& <\varepsilon+\left|s\left(g^{-\log 1 / \delta} w_{1}(x)\right)\right|<2 \varepsilon .
\end{aligned}
$$

Thus $y \in \bar{B}_{\rho}(x, \delta) \cap \pi C^{i}$, i.e. $d\left(P w_{1}(x), P w_{1}(y)\right) \leq R$, implies $d\left(P w_{2}(x), P w_{2}(y)\right)$ $R+2 \varepsilon$. If we define

$$
\tau(\epsilon)=\left(\left(\sinh \frac{a}{2} R(1+2 \varepsilon)\right) /\left(\sinh \frac{a}{2} R\right)\right)^{1 / a}
$$

then Lemma 6 shows as before that $\bar{B}_{\rho}(x, \delta) \cap \pi C^{i} \subset \bar{B}_{\bar{\rho}}(x, \tau(\varepsilon) \delta) \cap \pi C^{i}$ for a $x \in \pi C^{i}, \delta<\varepsilon^{-t_{0}}$.

Given $\delta \in\left(0, e^{-t_{0}}\right)$ arbitrary, there is a covering of πC^{i} by balls $\bar{B}_{\rho}\left(x_{j}, \delta_{j}\right)\left(x_{j} \in\right.$ $\left.\pi C^{i}, j \geq 1, \delta_{j} \leq \delta\right)$ such that $\sum_{j=1}^{\infty} \delta_{j}^{h} \leq \mu^{s u}\left(C^{i}\right)+\delta$. By the above consideration the balls $\bar{B}_{\bar{\rho}}\left(x_{j}, \tau(\varepsilon) \delta_{j}\right)$ cover $\pi C^{i}=\pi E^{i}$ which implies $\mu^{s u}\left(E^{i}\right) \leq(\tau(\varepsilon))^{h} \mu^{s u}\left(C^{i}\right)$.

Using this inequality we obtain

$$
\begin{aligned}
\mu^{u}\left(\tilde{E}^{i}\right) & =\int_{-\nu-\varepsilon}^{\nu+\varepsilon} e^{h t} \mu^{s u}\left(E^{i}\right) d t \\
& =\frac{1}{h}\left(e^{h(\nu+\varepsilon)}-e^{-h(\nu+\varepsilon)}\right) \mu^{s u}\left(E^{i}\right) \\
& \leq \frac{1}{h} \tau(\varepsilon)^{h}\left(e^{h \nu} e^{h \varepsilon}-e^{-h \nu} e^{-h \varepsilon}\right) \mu^{s u}\left(C^{i}\right)
\end{aligned}
$$

hence

$$
\mu^{u}\left(B_{2}\right) \leq \sum_{i=1}^{k} \mu^{u}\left(\tilde{E}^{i}\right) \leq \frac{1}{h} \tau(\varepsilon)^{h}\left(e^{h \nu} e^{h e}-e^{-h \nu} e^{-h \varepsilon}\right) \mu^{s u}(B) .
$$

On the other hand $\mu^{u}\left(B_{1}\right)=h^{-1}\left(e^{h \nu}-e^{-h \nu}\right) \mu^{\text {su }}(B)$; since $\varepsilon>0$ was arbitrary and $\tau(\varepsilon) \rightarrow 1$ as $\varepsilon \rightarrow 0$, this shows $\mu^{u}\left(B_{2}\right) \leq \mu^{u}\left(B_{1}\right)$ and finishes the proof of the lemma.

For every $v \in S \tilde{M}$, the leaf $W^{s s}(v)$ of the strong stable foliation has a canonical identification with $W^{s u}(-v)$. Thus $\mu^{s u}$ induces a measure $\mu^{s s}$ on the leaves of $W^{s s}$. Clearly $\mu^{s s} \circ g^{t}=e^{-h t} \mu^{s s}$.

As in [6], Lemma 15 yields the existence of a g^{t}-invariant measure μ on $\boldsymbol{S M}$ which restricts to μ^{i} on the leaves of $W^{i}(i=s s, u, s u)$. If $A \subset S \tilde{M}$ is compact and if $W^{u}(v) \cap A$ is equivalent to $W^{u}(w) \cap A$ for all $v, w \in A$, then we have

$$
\mu(A)=\int_{W^{u}(v) \cap A} \mu^{s s}\left(W^{s s}(w) \cap A\right) d \mu^{u}
$$

where $v \in A$ is arbitrary. Now μ^{u} and $\mu^{s s}$ are clearly invariant under the action of Γ on $S \tilde{M}$, hence the same is true for μ. Thus μ induces a finite Borel measure on $S M$ which is positive on all open subsets of $S M$. The standard computation (see [2]) shows that the measure-theoretic entropy of this measure equals the topological entropy h of the geodesic flow on $S M$, so μ coincides indeed (up to a constant) with the Bowen-Margulis measure $\tilde{\mu}$. In particular the construction of μ and $\tilde{\mu}$ shows $\tilde{\mu}^{s u}=\mu^{s u}$ on the leaves of $W^{s u}$.

Now let $\bar{\sigma}=\bar{\sigma}^{\nu, R}$ be the h-dim. spherical measure associated to $\eta=\eta_{\nu, R}$. Lemma 4 yields $\nu^{h} \bar{\sigma} \leq \sigma^{v, R} \leq \bar{\sigma}$; in particular $\bar{\sigma}$ is finite on compact subsets of $\partial \tilde{M}-\varphi_{v}(-\infty)$ and determines the same measure class as σ^{v}. The proof of Lemma 15 can easily be modified to be valid for the measure $\bar{\mu}^{u}$ on the leaves of W^{u} which is induced by the measures $\tilde{\sigma}^{v, R}$ on $W^{s u}(v) \approx \partial \tilde{M}-\varphi_{v}(-\infty)$. As above we obtain a measure $\bar{\mu}$ on $S \tilde{M}$ in the measure class of μ which is invariant under g^{t} and Γ and restricts to $\bar{\sigma}^{v, R}$ on $W^{s u}(v)$. By the ergodicity of the geodesic flow on $S M$ with respect to $\mu, \bar{\mu}$ equals μ up to a constant. This finishes the proof of the theorem.

REFERENCES

[1] W. Ballmann, M. Gromov \& V. Schroeder. Manifolds of Non-positive Curvature. Birkhäuser: Berlin, 1985.
[2] R. Bowen. Periodic orbits for hyperbolic flows. Amer. J. Math. 94 (1972), 1-30.
[3] H. Federer. Geometric Measure Theory. Springer Grundlehren 153, 1969, p. 153.
[4] E. Heintze \& H. C. Im Hof. Geometry of horospheres. J. Diff. Geomtry 12 (1977), 481-491.
[5] A. Manning. Topological entropy for geodesic flows. Ann. Math. 110 (1979), 567-573.
[6] G. A. Margulis. Certain measures associated with U-flows. Funct. Anal. Appl. 4 (1970), 55-67.
[7] P. Pansu. Géometrie conforme grossière. Preprint.

