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A class number formula for higher derivatives of
abelian L-functions

A. Hayward

ABSTRACT

Gross and Rubin have made conjectures about special values of equivariant L-functions
associated to abelian extensions of global fields. We describe a common refinement, due
to Burns, and give evidence in favour of this conjecture for quadratic extensions and
cyclotomic fields. We also note that the statement provides a new interpretation of further
conjectures of Darmon and Gross.

1. Introduction

For K/k a finite abelian extension of global fields with Galois group G, and S and T finite disjoint
sets of places of k£ such that S contains all infinite places, one defines an equivariant L-function
Ok /k,sr(s) for s € C, valued in C[G]. When K = k, this is the (S-truncated, T-modified) zeta
function of the field k. Dirichlet’s analytic class number formula tells about the properties of this
zeta function at the point s = 0, specifically its order of vanishing and its leading term. This latter
is the product of a transcendental ‘regulator’ term, formed from the units of k, with hy g7 /w s 7,
a ratio of integer invariants related to the arithmetic in the field k.

Towards the end of the 1970s, Stark conjectured analogues of these properties for more general
L-functions. In particular, for abelian extensions he proposed an integrality statement for
O’ /hs,T(O). Of the work which followed this, we note the paper [Rub96] of Rubin, where he
made a conjecture which extended Stark’s to higher orders of vanishing. Rubin’s conjecture has the
property that it tends to strengthen as the order of vanishing increases; indeed for the zeroth
derivative © /1, g 7(0), where it states © i1, g 7(0) € Z[G], it follows easily from theorems of Deligne
and Ribet (cf. [Rub96, Theorem 3.3]) and Weil [Wei67]. On the other hand, Gross [Gro88] made
a conjecture of a different kind for this very element, in which he relates it to the class number
hi st and a certain group-ring valued regulator. However, for higher orders of vanishing Gross’s
conjecture becomes trivial.

In this paper we study a conjecture of Burns (Conjecture 2.6) which unites these two approaches.
It represents a strengthening of Rubin’s conjecture which is precisely in the spirit of Gross, and it
specializes to Gross’s conjecture for the zeroth derivative © /5, g 7(0). The formulation was inspired
by work in [BurOl], where it is shown that the Equivariant Tamagawa Number Conjecture, as
formulated by Burns and Flach in [BFO01], implies, for a certain class of extensions, a stronger
variant of Conjecture 2.6. The statement here proposes a generalization of this to arbitrary abelian
extensions.

In §§ 2—4, we state the conjecture and give some elementary properties and special cases,
including a proof for quadratic extensions. We then go on to use the theory of Dirichlet L-functions
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and cyclotomic fields to study the conjecture for certain extensions of number fields. In particular,
we give evidence in the case of a real abelian extension of Q.

We also discuss two conjectures bearing a family resemblance to Gross’s but concerning
‘minus-units’ relative to a quadratic extension. These are due to Darmon ([Dar95], dealing with
an explicit ‘circular unit’ related to first derivatives of L-functions) and Gross ([Gro88],
Conjecture 8.8, which has more general hypotheses and concerns the values of the L-functions).
In each context we interpret these conjectures as rather striking ‘base-change’-type statements for
Burns’s conjecture, which transport it from an extension L/k to an extension LK/K, where K is a
quadratic extension of k.

2. Notation and statement

2.1 Basic set-up
Let F be a global field, S a finite nonempty set of places of F' containing all the archimedean places.

We define Op s := {a € I : v(a) > 0 for all v ¢ S}, the ring of S-integers of F, and Urs = O g,
the S-units. The S-class group Ag g is defined to be the Picard group of Ofg, and fits into the
exact sequence

0—>UF,S—>FX—>@]3Z—>AF75’—>O. (1)
pES

Now let T" be a finite set of places of F', disjoint from S. The subgroup of Ur g consisting of those
S-units congruent to 1 modulo every prime in 7" is denoted Ur g 7. The S ray-class group modulo 7',
denoted Afr s 7, is the quotient of the group of fractional ideals of Of g prime to T" by the subgroup
of principal ideals with a generator congruent to 1 modulo each prime in 7. The class groups fit
into an exact sequence

0 — Upsr — Ups — H Fy — Apsr — Aps — 0, (2)
peT

where [, denotes the residue field of F' at p. For any finite place p of F', we let Ny, be the size of [Fy,.
Define the S- and (5, T')-class numbers hp s = #Ars, hpsr = #Apsr. Then

[per(Vp —1) ( ~>
hesr = hps - =h FY :Ups ), 3
F,S,T F,S (UFVS . UFVS7T) F,S 'JGH,I‘ p F,S ( )

where [jpvg denotes the image of Ur g in the residue fields.

For the rest of § 2, we fix an abelian extension of global fields K/k with Galois group G, and
a non-negative integer r. Let S = S and T = T}, be finite sets of places of k, and define Sk
and Tk to be the sets of places of K dividing places in S, and T}, respectively. We will abbreviate
Uk, sy, @ Uk s, and do similarly for the class groups and class numbers. Let S be a subset of S.
We assume S, S1 and T satisfy the following.

HYPOTHESIS 2.1.

i) S contains all the archimedean places of k;
S contains the places that ramify in K/k;

>r+1;
TN S () and Uk g1 is torsion-free.

ii)
iii) 51 consists of r places that split completely in K/k;
iv) #

)

v

We write #S5 = r +d + 1, so Uy g7 is a free abelian group of rank r + d. Note that our set-up
closely follows [Rub96].
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2.2 The equivariant L-function

For a finite unramified place v of k let Frob, be the (arithmetic) Frobenius of the residue extension
corresponding to w/v for a place w of K dividing v. As K/k is abelian, this is a well-defined element
of G.

For a character x of the Galois group G of the extension K/k, write

ex(K/k) = # > x(g)g™!

geG

for the corresponding idempotent in C[G]. Define the S-truncated abelian (Artin) L-function of x
by
Lisis(s,x) = [ (1= x(Frob,)N,*) 7",
v Sk
The product converges for Res > 1 and it is well known that the function can be meromorphically

extended to all of C. The L-functions combine to give the S-truncated, T-modified equivariant
L-function C — C[G], as defined, for example, in [Tat84, ch. IV, § 1]:

O nsir(s) = ( TTa- - Frobf)) S Ly (51 Dex (5/R)

teTy, xed
—1
= ( [Ta- Ntl—SFrobgl)) ( I[Ja- stFrobv1)> . (4)
teTy ’U¢Sk

Owing to the assumption that r places in Sy split completely in K/k, we see by Proposition 1.3.4
of [Tat84] that each Ly s, (s,x ") vanishes to order at least r at s = 0. Write e, = >y x» Where
the sum is over all those characters for which the order of vanishing is exactly r. The rth term in
the Taylor expansion is given by

Olesk,s,r(0) = I s™ Oy 5.7(s).
It satisfies 67}(/k,S,T(0) = @’”K/kv&T(O)eT.
2.3 Special values and units

We set Yg, = {ZvESK NyV : Ny € Z}, the free abelian group on Sk, and Xg, = {Z
Ys, : Zve S Tw = 0} its augmentation subgroup.

veSy Mol €

Define absolute values at places v of K as follows:
|al if K, =R,
lal, = < |al? if K, = C,
Nv_v(a) for v a finite place,

where the valuation v is normalized so that its image is Z.

For any Z|G]-module M and any ring R, RM := R®z M will denote the R[G]-module obtained
from M by extending scalars to R. The logarithmic regulator map is defined by

)\SK : UK75’ — RXSK

Ur— — Z In |u|yv.

vESK

It is well known that this induces an R[G]-module isomorphism RUg ¢ — RXg, . Its extension

to a map A& Uk,s — RAG Xg, will be written as )\gz
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Let us recall the analytic class number formula of Dirichlet. Uy g7 has Z-rank r + d, the

same as Xg,. Choose a basis u1,...,u,4q for Uy g7 modulo torsion. Order the elements of S,

as U1, ..., Vptd+1; then v —vrjqy1, ..., Vpgpd — Vpya41 is a basis for Xg, . The map )\( d) gives us a

real determinant with respect to these bases. The determinant may be calculated as

Ry s = det(—In |ugl; )1<i j<rtd-
The choice of the ordering of Si only affects the determinant up to sign. In this paper we will choose
to ignore systematically all questions related to signs of regulators.

Dirichlet’s analytic class number formula (see [Gro88, Equation (1.6)]) states that the mero-
morphic function (; g7 has a zero of exact order #S; — 1 at 0, and that the coefficient of the
leading term in the Taylor expansion here is

s Risr
#(Uk,S,T)tors

We now relate @K/k ST(O) to the S-units of K. Let W be an r-tuple (wy,...,w,) where w; is a
place of K chosen above v; € Sy . Define w; € Homg (Y, Z[G]) on w’ € Sk by w;(w') =3 7,
summed over the elements v of G with yw; = w’. Set W* = w} A --- Aw) € A\ Homg (Ys,, Z[G]).
Then Remark 2 of [Pop99, § 1.6] shows that

w* O)\(T < /\ UKST)eT —>(C[G]
is a C[G]-isomorphism. Hence there is a unique element'
,
N =nx/ksTrw €C /\G Uk,s,Ter

such that W* o )\gf){ (n) = ;(/k,S,T(O)' If we choose another place w € Sk — Si k and set b :=
(wg —w) A -+ A (w, —w), then we have

O s (0) A\, X = O s (O)ZIGTD,  AL) (n) = Oy .7(0)b.

We refer to [Rub96], Lemma 2.6(ii) and the proof of Proposition 2.4, for the proof of this.

We are interested in integrality properties of this ng /i 57w, which we will test using elements
® € A\ Homyq(Uk s, Z[G]). Tt will always suffice for our purposes to assume @ is a primitive
tensor ¢1 A--- A ¢y (or 1 € Z[G] if r = 0), by the linearity of our statements. Then ®(u; A --- Au,)
means det(d;(u;)); ;. The element ® induces a C-linear map C A, Uk 5,7 — C[G], and we consider
®(n) € C[G]. We propose to strengthen the following conjecture, which is Conjecture B” of [Rub96]:

CONJECTURE 2.2 (Rubin). For every ® € Ay Homgyq(Uk,s,1, Z[G]), we have ®(n) € Z[G].

2.4 Formulation of the conjecture

Let aug : Z[G] — Z be the augmentation homomorphism, and write I for its kernel, the augmen-
tation ideal of Z[G]. Assume Rubin’s conjecture holds. Burns’s conjecture puts further conditions
on the group ring element ®(n), by proposing a congruence for ®(n) modulo Ig“.

For G any abelian group and M, N any Z[G]-modules, one may make the group Homg (M, N) :=
Homgq (M, N) into a Z[G]-module with the G-action given by (ga)(m) = ga(m) for g € G,

'Rubin [Rub96] denotes this by ¢ instead of 1. Throughout, we will omit subscripts from 1 which are clear from the
context.
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a € Homg(M,N), m € M. There is a canonical isomorphism of abelian groups
Homgy (M, Z) — Homeg (M, Z[G))
¢! — (w - cbl(glfv)g)- (5)
geG

We write ¢ — ¢! for the inverse of this isomorphism.

In § 1.2 of [Rub96], Rubin observes that for any Z-module M and any n > 0, every h €
Homy(M,Z) induces a homomorphism

~ n n—1
h:/\ZM—>/\Z M
n .
m1/\---/\mnr—>Z(—l)”lh(mi)ml/\"'/\Tﬁi/\"'/\mr,
i=1

where ¢ © 7 means ‘omit’. This construction can be iterated to obtain

A" Homz (M, Z) — Homg < AN M N\ M)

hiA--Ahyt— hio-ohy.
fo=¢p1N---No € /\Q[G} Homg,(Uk 5,1, Z[G]), we define ® to be the map from /\%er Uksr
to /\dZ Uk.s.r thus obtained from ¢1,..., ¢}

DEFINITION 2.3. Let r < n be non-negative integers. Define a set of permutations

S TR KA A

Note that the cardinality of this set is the binomial coefficient (Z) Each element corresponds to
choosing a subset of r elements from {1,...,n}, and associates to it a sign, sign(o).

LEMMA 2.4. We have the formula

Dlun A A = 3 sign(o) det(6) (ugi<ijrtio(rin A Atio(rra).

e[}
Proof. The proof is routine. O
Now, following Gross, we define a group ring-valued regulator. Let the places in S} — S1 be
denoted v1, ...,V ., 1- For each v}, local class field theory gives us a local reciprocity map,
fvg (kX — Ga

coming from the reciprocity map in the local extension K, /kv; for a place w of K above v.
We compose this with the isomorphism

G — Ig/I%
g—g—1

to get a homomorphism to the additive group Ig/Ié. We now define the Gross-style regulator
homomorphism (cf. [Gro88, Equation (2.2)]):

v, d
Regg = Reghr 3"+ \) Ursr — Z[G]/ 18"

UL A - Aug — det(fv;, (Uz) - 1)1<i,j<d’
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We will vary the subscripts of Reg according to any clarification needed in context. Note that here
we have chosen to exclude v/, ;. So we need the following.

PROPOSITION 2.5. The homomorphism above does not depend on the choice of which of the v} to
exclude, or the ordering of the v}, up to sign.

Proof. By the product formula of global class field theory, we have [[,.g fo(z) =1 for all z € Uy s.
As v € Sy split completely in K/k, f,(z) =1 for these v. Hence

I f@=1
v'eS—S1
Now choose j € {1,...,d}. In the determinant Regq(u1 A- - - Aug), adding every other column to the
column corresponding to v} and using the product formula shows that the ith entry in column j is
congruent to —( f”'d+1 (u;)—1) (mod I3). So the determinant becomes —Regq(u1 A+ - Aug) calculated

with respect to the places vi,..., v _1,vy,1,],q,..., V). Reordering these can only change the sign
again. U

Let uy, ..., up4q be a Z-basis for Uy, g 7. We set Regg = RegG(i)(ul A+ Aupiq)), and note that
this is independent of the choice of basis up to sign. We have by Lemma 2.4 that

Regl = > sign(o) det(¢; (uy(;)))1<ij<r det(fu (Uo(ri) = Di<ij<ds
O_E[r+d]

T

T+d] was defined in Definition 2.3. The conjecture we will discuss is as follows.

where [ .

CONJECTURE 2.6 (Burns). Let K/k,S D Si,T,r satisfy Hypothesis 2.1. Assume that Rubin’s
conjecture holds for this data, so that for every ® € /\E[G] Homgy ) (Uk 5,1, Z[G]), we have ®(n) €
Z[G]. Then this element satisfies

®(n) = *hisr Reg® (mod Ig;rl).
Note that this conjecture implies ®(n) € Ig, an ‘order of vanishing’ statement which generalizes

[Gro88, Equation (4.2)] (via Proposition 3.9 in § 3). For more on the formulation of Conjecture 2.6,
including a method for specifying the sign in the congruence, see [Bur03].

3. Basic properties of the conjecture

3.1 Varying the data

Firstly, we wish to check that Conjecture 2.6 will remain true if we lower the top field K. We note
a useful result about the unit groups.

LeEMMA 3.1. For any K/k,S,T such that K/k is Galois and Uk s is torsion-free, the quotient
Uk s1/Ug s is also torsion-free.

Proof. Suppose v € Uk g1 is such that v" € Uy g7 for some n > 0. This means that for all
o € Gal(K/k), we have (u")°~! = 1. However, this is (u”~!)". Hence for all ¢ € Gal(K/k), u”~!is
a torsion element of Uy g7 and so is 1. Hence u € k as required. O

PROPOSITION 3.2. Let L/K/k be a tower of finite extensions, with L/k and K/k abelian with
groups I' and G = I'/H, respectively. If Conjecture 2.6 holds for L/k,S O S1,T then it holds for
K/k,S D 5,T.

Proof. Tt is clear, using Proposition IV.1.8 of [Tat84], that ng /i, = (A" N k)01 k-
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The inclusion Ug g7 — Ur, s and the Z[G]-module isomorphism
zn" = z(a)
Npjgr—1
induce a surjective map
Homr (Ur, 5,1, Z[I']) — Homeg (Uk,s.1, Z[G]),

whereby each ¢ in the second group can be lifted to a gZ; in the first in such a way that the projection of

~

d(u) to Z[G] is (Np gu) for all u € Up, s 7. This follows by applying [Rub96, Proposition 1.1], to the
exact sequence of Z-torsion-free I'-modules given by Lemma 3.1, and using [Rub96, Diagram (16)].

Take ® € Aj Homg(Uk 57, Z[G]) and lift it to ® € AjHomr (UL s7,7Z([T]) componentwise.
Now

®(ny1) = thys7 Regr(®(u))  (mod IfH),
where u = uy A -+ Aupyq, u; a Z-basis of Uy g7. Passing to the quotient in this congruence, and

noting that <i> = &, we get
(k) = +his 7 Regg(P(w))  (mod IE),

as required. O
We now look at enlarging 7.

PROPOSITION 3.3. Suppose Conjecture 2.6 holds for K/k,S 2 S1,T, and v is a place of k not in S
or T. Set T" =T U {v}. Then Conjecture 2.6 holds for K/k,S 2 S1,T’.

-1
Proof. The definition of O/ 7 shows that ny = nilp—NU Froby

We will adapt [Pop02], proof of Proposition 5.3.1. Let ¢,..., ¢} be in Homg(Ug g7, Z|G]) and
set ® = @) A --- A ¢l. Popescu proves that there exist ¢; € Homg(Ug s1,Z[G]), o € Z|G|
and ¢ € Home(Uk s.17, Z[G]) such that ¢} = ¢; + ;¢ for all i = 1,..., 7. Let 6, = 1 — N, Frob, !,
then it is clear that the map §,¢¢ : © — ¢o(dyx) is in Homg(Uk 5,1, Z[G]). Popescu shows that

' (nrv) = ¥ (nr), (6)

where U € A\, Homg(Ugk,s.1,Z[G]) is given by
Su(Pr A Ade) + > iy Avv A iy Adudo Adixt Av+ Ay (7)
i=1

Now let u = uy A --- Auqq be the wedge of a basis of Uy g7 and u’ = uy A--- A, similarly
for Uy, s 7. We have (U g7 : Ug,g77)u=1u’ in /\%er Uk,s.7- Apply ¥ to both sides of this equality.
We note that (6,¢0)! (u}) = aug(d,)é}(u}) since u} € Uy g1. Note also that aug(d,) = —(N, — 1).

By the form of (7), this shows that

N ~ ) d
(Ur,s,7 : Up,s,7)¥(u) = —(N, — 1)®'(u’) in /\Z Uk,s,1-
But (Ug,s1 : Ug,s17) divides (N, — 1). Since the group in which the equality holds is torsion-free,
we may cancel (Uy g7 : Uy g7v) from both sides. Furthermore, by (3)
(Nv - 1)
Ukst: Uks1r)

hy,s1 = ( hi,s7.

So we have hy g7¥(u) = —hk,&T/(IN)’(u’) in /\% Uk,s7- Applying Regg to this and using (6) gives
the result. O
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We next look at changing S. We will use the following lemma.

LEMMA 3.4. Let k,S,T be such that Uy g is torsion-free. Suppose ui,...,u, is a Z-basis for
U,s,7- Let v be a place of k not in S or T'. Take v’ € Uy, suqy),r such that v(u’) is minimal positive.
Then uy, ..., up,u’ is a basis for Uy, g,{v},1-

Proof. Let u € Uy sufy),r- Then there exists a € Z such that v(u) = av(u'). Then u/u'* € Uy s,
SO we see ui,...,uUp,u generates Uk,su{v},7- Linear independence follows from considering the
valuations at v. O

LEMMA 3.5. Using the notation of the previous lemma, we have

i, sugey,r - 0(W') = hi s

Proof. Write S” = S U {v} for short. The result follows from the analytic class number formula as
follows. If n = #5 — 1, we have

+1 n+2)’

Ck5'7(s) = hi s 7Ry 57 08" (mod s

Cks7(8) = hysrRi,srs™  (mod ™),

and the leading terms are related by

_ S
hi,s' 7Ry, s/ 7 = iil% %hk,S,TRk,S,T-

Hence hy g/ 7Ry s 7 = (In Ny)hy s 7Rk, s 7. On the other hand, the definition of the regulator, and
the fact that v(u;) = 0 for ¢ = 1,...,n, shows that Ry 7 = In|u/|,Rr.s7 = v(uv')(In Ny) Ry 7.
This gives the result. U

PropoOSITION 3.6. Let K/k,S,T,r be data satisfying Hypothesis 2.1, and let v be a place of
k not in S or T and which splits completely in K/k. Set S" = S U {v} and S} = S; U {v}.
Suppose Conjecture 2.6 holds for K/k,S" 2 S|,T,r + 1. Then Conjecture 2.6 holds for K/k,S 2
Sy, T, r.

Proof. Choose bases as in Lemma 3.4. Note that ‘n’ = r + d in the notation of that lemma, and
define u,44+1 = u'. We choose w above v to go into W. By [Rub96, Proposition 5.2] we have
ns = w(ng), where w € Homg(Uk s/ 1, Z[G]) is defined by

B(u) = 3 wigu)g.
geG

Take ® € A Homg (Ug,s,7, Z|G]). The hypothesis that Uk g7 and Uk g/ are torsion-free implies
that the map Homg(Uk s 1, Z[G]) — Homg(Uk s,1,Z[G]) (restriction) is surjective (cf. [Rub96,
Proposition 1.1(ii)]). So we may lift ® componentwise to ® € A Homg(Uk, s/ 1, Z[G]). Then

®(ns) = (' o w)(ns) = £hy,s,7 Rega((@(ur A+~ Aw)))  (mod IE),

and
r+d+1
’lD(ul VANEREIVA ’U,/) = Z (—1)Z+1w(ui)u1 AN A1 N N AN Upggyt-
i=1
However, uq,...,u,1q are S-units so this collapses to +w(u)uy A -+ A u,4q. Now because v splits

completely in K/k, we have w(u’) = v(u'). Hence
D(ns) = £v(u )by 507 Rega(P(ur A+ Auyiq))  (mod IET),

which by Lemma 3.5 is what we want. U
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PROPOSITION 3.7. Suppose Conjecture 2.6 holds for K/k,S 2 Sy, T,r. Let v be a place of k not in
S or T, and set S’ = S U {v}. Then Conjecture 2.6 holds for K/k,S" 2 S1,T,r.

Proof. Again we have n = r + d and define u,, 41 = u'. We note that, because S satisfies
Hypothesis 2.1, v is unramified in K/k. Therefore the Artin symbol at v can be calculated by

fo(z) = (FrObv)v(x)
for all x in k™. The definition of O, 57 shows that ne = n}g—FrOb“. Take ® = ¢1 A -+ A @, €
A& Homgq)(Uk,s',1, Z|G]), then Conjecture 2.6 for S asks for
q)(nsl) +hy ST RegG( (U1 ANREIRVAN ur+d+1)) (mod Ig;rQ).

We choose the places vy, ... ,v441 appearing in Reg, by taking the set S—S5 of places not designated
as splitting, excluding one place, then adding v = vgq,;. We have?

Regg(®(ur A+ Atpya1)) = D sign(o) det(d] (ta())) det(fo, (taris) — 1).

= [7‘+d+ 1]

Let us consider two cases of 0. If r +d + 1 € {o(1),...,0(r)} then in the corresponding term, the
column in the second determinant corresponding to v is all zeros, since uy, ..., u,4+q are S-units.
The other possibility is that r +d+1 = o(r +d+1). Then this same column is all zeros apart from
the bottom-right entry, which is

foltiryar1) — 1 = (Frob,)*"™) — 1 = v(u/)(Frob, — 1) (mod IZ).

Hence RegK/kvs/(i)(ul A AN pggrr)) = Fo(u')(Frob, — 1) Regy ., (®(uy A -+ A piq)), where
in the second expression we may consider ® as being restricted to Uk g 7. So using, Lemma 3.5,
Conjecture 2.6 for S’ now reads,

(1 — Frob,)®(ns) = £(Frob, — 1)hy, 57 Rege(®(ur A+ Aupig))  (mod IEH?).
Therefore if Conjecture 2.6 holds for S, it holds for S’ U

On the other hand, the proof shows that we have the following, possibly weaker, implication in
the other direction.

PROPOSITION 3.8. Suppose Conjecture 2.6 holds for K/k,SU{v} D Sy,T,r. Then we have, for the
data K/k,S 2 S1,T,r,

(1 — Frob,)®(n) = (1 — Froby,)(+hy 5,1 Regqé) (mod Ig“),

in the notation of Conjecture 2.6. That is, we obtain the image of the congruence in the next level
of the augmentation filtration under multiplication by (1 — Frob,).

3.2 Special cases
We study the behaviour of the conjecture for some interesting special cases of the data.

PROPOSITION 3.9. Supposer =0 and K/k,S 2 (), T,0 satisfies Hypothesis 2.1, that is we designate
no places as splitting in K /k. Then Conjecture 2.6 is equivalent to Conjecture 4.1 of [Gro88], up to
sign.

Proof. The element n € C/\% Uksrer = ClGle, is characterized by 7 = O/ s7(0).
Taking ® = 1 € Z[G], Conjecture 2.6 now reads

@K/k:,S,T(O) = +hy s Regg(ur A+ Aug)  (mod Igﬂ'l).

This is a sign-indifferent version of Gross’s conjecture for the extension K/k and sets S and 7. O

2For the definition of [T+f+1} see Definition 2.3.
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ProrosiTiON 3.10. Conjecture 2.6 holds when more than r places in S split completely.

Proof. We adapt the method of [Rub96, Proposition 3.1].

Note that all the S-truncated L-functions corresponding to non-trivial characters vanish to order
greater than 7 at s = 0 (see [Tat84, Proposition 1.3.4]). If #S > r + 1 then this is also true for the
trivial character, and so 7 is the identity. On the other hand, if #5 > r + 1 then our Gross-style
regulators in Conjecture 2.6 can be calculated with respect to a totally split place and so are all
zero. Hence Conjecture 2.6 says 0 = 0.

Now assume #S = r 4 1. Let uy,...,u, be a Z-basis for Uy gp. In his proof of [Rub96,
Proposition 3.1}, Rubin shows that by the analytic class number formula

_ lwst,

n s 1

(for which we might have to invert a unit u; to get the sign right). We apply ® = ¢1 A--- A ¢, €
NG Home(Uk 5.7, Z[G]) to n. Note that, because u; € k, ¢j(u;) = qﬁ}(ui)Ng, where Ng =3 . 9-

/\/\ur

We obtain
by, 5,1 | hy,s.1 1
B(n) = NG det(9}(u)) = £ Nerdet(0} ).
Rubin [Rub96] argues by class field theory that #G | hy g7, so this is an element of Z[G]. Since N¢g
has augmentation #G, reducing this equation mod I gives us Conjecture 2.6. U

COROLLARY 3.11. If k/k,S,T,r satisfy Hypothesis 2.1, then Conjecture 2.6 is true for this data.

Proof. This is because all places in S split completely. ]

PROPOSITION 3.12. Assume K/k,S D Sy,T,r satisfy Hypothesis 2.1 and furthermore that #S >
r + 2. Assume Conjecture 2.2 holds for this data. Then we have ®(n) € Ig.

Proof. This is [Bur01, Theorem 4.4(iii)]. We reproduce the proof. Since (; g vanishes to order r 41
at s = 0, @;Wk’S,T(O) lies in Clg. Hence Ngm = 1 and so ®(n) € Clg. Now if Conjecture 2.2
holds, we have ®(n) € CIg N Z[G] = I, as required. O

4. Quadratic extensions

In this section we take K/k,S,T,r with K/k quadratic with group G generated by 7. We will
assume, using Proposition 3.10, that exactly r places Sy split in K/k.

Perhaps the most involved arguments of Rubin [Rub96] and Gross [Gro88| are to verify their
respective conjectures in this situation. We adapt their methods to prove the following.

THEOREM 4.1. Let K/k,S 2O S1,T,r be data satisfying Hypothesis 2.1, with [K : k] = 2.
Then Conjecture 2.6 holds.

Remark 4.2. This result provides a new proof of the validity of Gross’s conjecture [Gro88, Conjec-
ture 4.1] for quadratic extensions. Its proof avoids the technicalities and special cases considered
by Gross in [Gro88, § 6], using the extra functorial properties of Conjecture 2.6 with respect to an
increase in S. For comparison, note that § 4.2 corresponds to the known case ‘n = 0’ of Gross’s
conjecture [Gro88, Equation (4.3)], and that in § 4.3 the sign of the regulator is irrelevant.
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4.1 Cohomology of Uk s T

Let w1, ..., ur4q4r be a basis of Ux g1 such that wy,...,u,1q is a basis of Uy g7, which is possible
by Lemma 3.1. The relevant structure of this basis is closely related to the Galois cohomology of
the G-module Uk g 7. Our first result in this direction is the following (cf. [Rub96, Theorem 3.5,

proof]).

LEMMA 4.3. If H(G, Uk s1) # 0 then we can assume N gty q11 = 1.

Proof. Take u € Uk g1 representing a non-trivial element of H(G, Uk s1) = U x.s1/U 1= k.57 Where
Ugsris the set of (S,T)-units of norm 1. Write u = e [[; w4,
T+d+2 € Ug,s,r. Then urerJrZ %erﬂ €; ~1 Therefore we can assume each «; is 0 or 1.

But they cannot all be 0. Hence u can go into a basis of Uk g 7. U

where € € Uy g7, and write ¢; for
the norm =
LEMMA 4.4. We have
#H°(G, Uk s1)
#HY (G, Uk s1)

= 24,

Proof. Note the left-hand side is the Herbrand quotient h(Ug g 1) of the Z[G]-module Uk g 7 in the
sense of [Ser79, ch. VIII, § 4]. The composite isomorphism of Q[G]-modules

QUk s7 = QXs, = Q[G]" @ QY
implies that there is an injection of Uk g1 into Z[G]" & Z% with finite cokernel. Then h(U K.S,T)

h(Z[G))"h(Z)¢ = 2¢ as required. O
LEMMA 4.5. If HY(G, Uk s 1) = 0, we can assume that u; = Ng jptrydari fori=1,...,r.
Proof. Write Nu,qyj = H:”Lf u; " for j = 1,...,7. We may perform the following operations on

the © x (r + d) matrix (oy;): elementary column operations, which correspond to swapping and
multiplying the units in the basis of U g7, and elementary row operations, which correspond to
swapping and multiplying the units w,+q+1,-- ., Urtdtr-

Thus we can put (o;) into diagonal form with integers a1, ..., a, on the diagonal. Now suppose
some a; is even, So Nur+d+z = €2 for some € in Uy ST Then Upygei€ ' is a unit in K — k with
norm 1. But the group Uk K, ST C Uy, STU K.ST S0 Upggri€” I represents a non-trivial element of

1
UKST/UKST - (G, Uk,s,1)-
This is a contradiction to our assumption. We conclude that each a; is odd. Now replacing u,q4+;

—lai/2]

by Up4d+iu; gives us the result. O

In our situation, noting that S contains a place not splitting in K, Lemma 3.4 of [Rub96] states
the following.

LEMMA 4.6 (Rubin).

i) hesr|hisT
i) #H (G, Uk, s1) | hie,s.1-
i) If HO(G, Uk s7) and H (G, Uk s.) are trivial then hy s = hx s7/hs7 (mod 2).
We write € = tup1g41 A+ AUpyger. In proving his conjecture for quadratic extensions [Rub96,

proof of Proposition 3.5], Rubin uses the analytic class number formula to express 7 in terms of this
element; we make extensive use of his formulae, which are quoted below.

109

https://doi.org/10.1112/50010437X03000265 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X03000265

A. HAYWARD

4.2 The case d =0

We assume d = 0, that is #5 = r + 1, and show that the congruence in Conjecture 2.6 holds.
We require

¢1(ur) - dp(u)

O(n) = thy s (mod Ig). (8)

Note that this is an equality in Z[G]/Ig = Z.
Assume first that H'(G, Uk s1) = 0. Then Rubin [Rub96, proof of Proposition 3.5] shows that
hKST(l—T) (1—|—7’)
Y i L S T RS
" (hk,S,T 2 Y 2 ¢

Lemma 4.6 shows the Q[G]-factor here lies in Z[G], and we note its augmentation is +hy g 7.

Now we can assume u}igﬂ =u; for i =1,...,r by Lemma 4.5, so

G(Uryayi) = ' (rrari) = 7O (Uryars) + 76! (i) = ¢'(u;)  (mod Ig).
Hence (8) is satisfied in this case.
Now assume H'(G, Uksr) # 0. Let @y, ..., 4, € Uk s such that N 1, is a basis for NUg s 7.
Set € =ty A -+ A ,. Rubin shows (loc. cit.) that
hy,s,T A+7) | hesr(1-7)
#ﬁO(G, UK,S,T) 2 N hk,S,T 2 o

n==+
where the Q[G]-factors are again in Z[G]. By Lemma 4.3 we can assume Ng/pt,4q+1 = 1, and then

¢j(urpar1) = 05 (urrar1) + 76 (ul1q11) = 65 (Ngjptirrari) =0 (mod Ig),
so ®(e~) = 0 (mod Ig). On the other hand, ¢;(u;) = gb}(NK/kai) (mod Ig) and the index of the

group generated by the Ny /; in Uy s 1 is #HO(G,U k,5,7). This shows that (8) also holds in this
case.

This verifies Theorem 4.1 in the case d = 0.

4.3 The case d > 0

Now we assume d > 0, i.e. #£5S > r+ 1. For d > 0, Ig/[g+1 is a group of order 2, so the congruence
statement in Conjecture 2.6 only concerns in which power of the augmentation ideal the terms lie.
We have (1 —7)" = 2"~1(1 — 7) for n > 0. Note that the map

GG — 17 15
rr— (1 —1)z

is a bijection. We have the following freedom to increase S.

LEMMA 4.7. Let K/k,S,T,r satisfy Hypothesis 2.1 with K/k being a quadratic extension.
Assume d = #S—r—1 > 0. Let v be a place of k not in S or T, and set S" = SU{v}, S| = S1U{v}.
Then either of the following conditions implies Conjecture 2.6 for K/k,S,T,r:

i) v splits in K/k, and Conjecture 2.6 holds for K/k,S" 2 S1,T,r + 1;
ii) v is inert in K/k, and Conjecture 2.6 holds for K/k,S" 2 S1,T,r.

Proof. This follows from Propositions 3.6 and 3.8, given the structure of the augmentation filtration.
O
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Rubin shows in [Rub96, proof of Proposition 3.5] that for the case K/k quadratic and d > 0 we
have
n= :I:thK’ii(1 — T)e,.
hrst 2
We note that 2¢-1(1 — 7) € Ig.
It turns out that we only need to consider the congruence statement under the following
cohomological assumption.?

LEMMA 4.8. Suppose d > 0 and H'(G,Uk s71) = 0. Then the congruence of Conjecture 2.6 is
implied by the following statement:

h
2d-1(1 — r) ST

N = i, 57 Regg(trs1 A+ Atpyg)  (mod IE). (9
kST

~—

Proof. We apply Lemma 4.5 to assume that u; = NK/kuTerﬂ. for i = 1,...7. Then ¢j(ur+d+i) _
¢j(u;) (mod Ig). Thus

ot(ur) -+ Pi(ur)

h
o) =211 - )20 0 | (mod IEY).
hi.sT

For the right-hand side of the congruence in Conjecture 2.6, we note that if any u;, 1 < i < r,
appears in the argument of Regq, then the corresponding term is 0 (because u; is a norm from K,
and therefore in the kernel of all the local reciprocity maps). So the right-hand side collapses to a
single term as follows:

¢i(u1) - dp(un)
hisr| © | Regg(urs1 A Atipga).
This gives the result. U

Next we identify a condition for the non-vanishing of the regulator. We need an auxiliary lemma.
For Tate’s theory of the group cohomology of finite cyclic groups, we refer the reader to [Ser79,

ch. VIII, § 4].
LEMMA 4.9. Suppose hy, g = 1. Then there is an isomorphism
Uk,s N NK* ~ 4G
NUgs 5%

Proof (cf. [Gro88, p. 191]). We have the exact sequence (from (1))

0— K*/Uks — P B" — Axs — 0.
PESk

Considering the decompositions of primes shows that H!(G, Dpes, PB%) = 0. Then taking
cohomology gives an exact sequence

0 — H(G,K*/Uk,s) — €D v? > AG g — HYG,K* /Uk,s) — 0.
p¢Sk
Observe that k* /Uy s injects into H°(G, K* /Uk,s), and (1) for k shows that it surjects onto
@p¢ S pZ, because the S-class group of k is trivial. This is why the map marked 0 is zero. Therefore,
we have A%S ~ HY(G,K* Uk s).

3In fact it is easy to show that both sides of the congruence vanish if this assumption is not satisfied.
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On the other hand, applying Hilbert’s Theorem 90 [Ser79, ch. X, Proposition 2] and Tate
cohomology to the short exact sequence

0 —Ukgs— K* — K*/Ugs—0
gives an exact sequence
0 — HYG,K* Uk s) — H(G,Uxs) — H°(G,K>).
Therefore
HY(G, K* Uk ;g) = ker(Uy,s/NUg,g — k™ /NK*) = U, s N NK*/NUkg s.
This completes the proof. ]
LEMMA 4.10. Suppose hi 51 = 1. Then Rege (w1 A -+ Aupyg) 20 (mod IE).

Proof. By equation (3) and Lemma 4.6 part i, we have that h; ¢ = 1, and then Corollary 2 of [Rim65]
shows that H'(G,Uk.s) = 0. Therefore, H %(G,Uk,s) is a two-torsion group with 2¢ elements by
Lemma 4.4 and hence is isomorphic to (Z/27Z)%.

Similar to [Gro88, p. 191], we define a homomorphism
fiUps — G575 = (z,/22)"!

by the local reciprocity maps f,. Then, by the product formula,
imfCV:= {(gv)vegsl : Hgv = 1} >~ (7./27)°.

Now u € Uy g is in ker f if and only if u is a local norm at all the places in .S — S, and we note it
is automatically a norm at all other places. Since K/k is cyclic, u is a local norm everywhere if and
only if it is a global norm. So ker f = Uy ¢ " NK*. Since hg g7 = 1, A%S = 0 and so Lemma 4.9
shows that ker f = NUg g. On the other hand, H(G, Uk s) = Uk,s/NUk s = (Z/27)%, so we have
fUks)=V.

We note that the form of our regulator and the choice of our unit basis show that the non-
vanishing of our regulator

RegG(urH ANREIVAN Ur+d) §é 0 (Il'lOd Ingrl)

is equivalent to saying f(Uys71) = V.

The reduction map Ux,s — H‘IJETK F% is surjective, by (2) for K and the assumption that
hi s = 1. Also, the norm in an extension of finite fields is surjective. Hence ker f = NUf g surjects
onto HpeT Fy'. The sequence (2) for k shows that this latter is isomorphic by the reduction map
to Uk,s/Uk,sr. So every element of Uy g can be written as the product of something in ker f by
something in Uy g 7, which gives our result. O

Now consider Ag g, the Sk ray class group modulo Tk . Let S}( = {w,...,w,} be a set of
primes of Ok, s coprime to Tk whose classes generate this group. Set S’ to be the set of places of
k lying below these. If S contains S’, then hx g7 = 1. On the other hand, we have the following
lemma.

LEMMA 4.11. If hg s = 1, then the congruence of Conjecture 2.6 holds.

Proof. By Lemma 4.6 part i we have that hy g7 = 1, which also shows by part ii that HYG, Uk s1)
= 0. So by Lemma 4.8 it is sufficient to show (9) holds. Lemma 4.10 shows that the right-hand side
of (9) is not zero. On the other hand hx s 7/hi,s7 =1 so the left-hand side is not zero either. [
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Now by Lemma 4.7, we may assume S’ C S, increasing r by the number of split primes in S’ —S.
Then hg g7 = 1, so Lemma 4.11 implies that the congruence of Conjecture 2.6 holds.

We have verified Theorem 4.1 in all cases.

5. Real abelian extensions of Q

In real abelian extensions of @, the infinite place splits and the Stark unit is known to be essentially
a cyclotomic element. In this section we show that Conjecture 2.6 can be verified (up to a factor of
2 on each side) using the theory of cyclotomic elements.

5.1 Determination of the special unit
Suppose F' is a totally real, non-trivial, abelian extension of @Q with group G and conductor m.
We consider Conjecture 2.6 for the extension F'/Q. By the Kronecker—Weber theorem, F' is contained
in Q(¢m)-

We set Sg = {p | m} U{oc}, S0 = {oo} and r = 1 in the notation of § 2, noting that the
infinite place does indeed split completely in the extension F/Q because F is real. Let cop be
the infinite place of F' induced by the embedding

Q(¢m) — C

Cm e27ri/m )

Set =1 — (,, and, in the notation of § 2, W = (cof).
LEMMA 5.1. W*(As, (Nge,y/r3)) = 201 10,50,0(0)-
Proof. We have

W*(Asp (Ng(c,y/p8)) = = Y In|oNge,yeBlo "
oeG
On the other hand, the value at s = 0 of the L-function of an even Dirichlet character x defined
modulo m is given by
-1
X(@0) In 1 =G, (10)
i=1
which holds whether or not m is the conductor of x (see e.g. [Tat84, § II1.5]). The result follows
easily by combining these formulae. O

3

L(07X) =0, L,(Ov)() -

N | —

Let T' = Tgy be as required by Hypothesis 2.1, i.e. T" contains a prime of odd residue characteristic.

Then the T-correction factor is
op = H(1 — N, Frob, "), ie. kg 67(0) = 0705 g 5¢(0)-
veT

We have W*(As. (67 Nc,.)/rB3)) = 26%/Q,S,T(O)’ so (in the notation of § 2) é7Ngc,.)/r8 = 2nF/g
in CUEs,-

As a result, we wish to study the properties of the cyclotomic elements (1—(,,). The next lemma
summarizes their well-known distribution properties.
LEMMA 5.2. For each positive integer n, set ¢, = 2™/ and define the norm element of the integral
group ring of T'), := Gal(Q({,)/Q) by N,, := deFn g. Take positive integers p, f,r such that p is
prime, f > 1 and p { f. By linear disjointness of Q((,r) and Q((y) as extensions of Q, there is a
natural inclusion I'pr < Ty, Let 04y denote the automorphism of Q((p) sending ¢, to ¢ for a
coprime to b. Then we have the following:
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i) (1= )™ = (1— ) ns;
i) (1= Gr)™" = p;
iii) if two distinct primes divide n, then (1 — ¢,)Nr = 1.

These well-known facts follow from the factorization of X?" — 1 € C[X].

5.2 Relations between determinants of certain matrices

The following linear algebra result will be useful in § 5.3. Fix a commutative ring with 1, and call
it R. Let B be a finite set of positive integers, and for each i, j € B with ¢ # j fix a;; € R. For each
I C B, let A! be the square matrix indexed by I with (i, j)th entry a;; for i # j and — Zkel_{j} @ik
for i = 7, so that Al is a matrix with row-sum zero. Let A! be the (i,7)th minor determinant of A’
forie 1.

ProrosiTiON 5.3. For each i € B,

S oA Y=o

{i{}CICB  jeB—I kel

Proof. The proof uses trees in an analogous way to [GK03, proof of Theorem 8]. If .J is a finite set,
then a tree T" on J consists of the set of vertices J and edges between them which form a connected
graph with no loops. A choice of a vertex r € J to be the ‘root’ v/T of T induces a direction on each
edge such that the out-degree of r is 0 and the out-degree of all other vertices is 1. For a directed
tree T on a subset of B, define A(T') := [];_, j)er @ij-

Since the row-sums of A! are zero, the Kirchhoff-Tutte theorem (see [Tut48] or [GKO02,
Theorem 4]) states that

Al = (=D " A(T).

T tree on I:
VT=i
We also note that
I D= > 1l wso
jEB—T kel f:(B—I)—I jEB—I

Hence the left-hand side in the desired equality is

> > Y pHaa) 1T anp-

{i}CICB Ty tree on I: fr:(B—I)—1I jeEB-I
T=i
For each tree T' on B with root i € B, we calculate the coefficient of A(7T") in the above sum. If V' is
a subset of the set of vertices of in-degree 0 in T', removing the vertices V' and the edges attached to
them gives a tree Tt on B —V =: I. Defining f;: (B — I) — I by the relation (5 — f7(j)) € T, the
pair (T, V') corresponds bijectively to the index (I, T}, f7) from the sum, whose term is (—1)#! A(T).
But given T', there are as many V with #1 even as #I odd. Hence the term for T is 0. U

5.3 A congruence statement for cyclotomic elements

Let m > 1 and write m = p}'p5?. pgj_*ll Write 5,, = 1 —(,, for the associated cyclotomic element.
If p | m, and p is a place of Q((yn) above p, we let f,(x) denote the Artin symbol (2, Q((m)p/Qp)

for all non-zero x € Z. It is a simple exercise in the global class field theory of cyclotomic fields to

show the following lemma.
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LEMMA 5.4. If j # 1, fp, (p;)~! is given by the automorphism 0, % of Q((n) defined by
(3 ‘7
o Pi
ijy = Cp‘;j
In the notation of § 5.2, we set B = {1,...,d + 1} and a;; = fp,(p;) — 1 € Z[I'], where I' :=

Gal(Q(¢n)/Q). Then there are defined certain elements A/ € Z[I'] for i € I C B. Set S = {p |
m} U {oo}, a finite set of places of Q. We prove the following congruence statement for f3,,.

PROPOSITION 5.5. For all ¢ : Ugc,,),s — Z[I'], we have

d+1
= Z o (pi) AP (mod I{f“).

Proof (cf. [Dar95, Theorem 4.2]). By induction on d + 1. If d + 1 = 1 we have m = p]*. Then
=Y g Bmg= D 6 (g7 Bm) (mod Ir),
g€l'm g€l'm
and this is ¢' (N, 0 Bm) = ¢*(p1) by Lemma 5.2. Hence the claim is true for d + 1 = 1.
Now assume it is true for d+1=1,2,...,n. Set d+1=n+1> 1. For I C {1,...,d+ 1}, write
U7 =1lie;(Z/p"Z)" — Ty, Ty = Tyyy and m( ) =I1;c; pi*. We have the following equality in Z[I']:

ST Y et g8~ 1) (gan — 1)

g1€ly ga+1€la41

=Y Y e gih)B) Y ) L

g1el gd+1€Fd+1 ICB el
= Z(_1)d+1—#1 Z ! (g—l Hijjﬂm>9' (11)
ICB g€l j&rI

We recall (Lemma 5.2) that, if I # (), we have [, Np;j B = Tjer(1— Uzjjl,m(l))ﬁm(f)’ and we note
that 0, () € I'r. For I =10, ], Npq]ﬂm =1 by Lemma 5.2. So Equation (11) is equal to
J

> O Bua) [T =0, L),

P£ICB J¢l
where ¢ ;) means the Z[I'7]-homomorphism UQ(n(ry).5 — Z['[] associated to the restriction of ¢!
to UQ(C (1),S*
Lemma 5.4 shows that o}, (1) = [ Lics fo: (p)~! for p{ m(I), and our induction hypothesis gives
by (Bm(r)) € I#Ifl for I # B. So if we reduce our equality modulo Ilﬂl“, we obtain

0= (=) # 0 B [T (— > (forlpy) — 1))

ICB J¢I kel
=Y o Bun) ] (Z%’k) (mod 1)
ICB ¢l N kel
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By the induction hypothesis, ¢y (B (1)) = D ier ¢ (pi) Al (mod II#I) if I # B. Therefore
d+1

{iyCICB  jeB-I “kel

Now Proposition 5.3 shows that the ith term of the sum is —¢' (pi)Af;, as required. U

5.4 The congruence statement for a real abelian extension of Q

Let F/Q be a finite, real, abelian extension. Let G be the Galois group and m = p{* ... pgfll the
conductor of this extension. Recall from § 5.1 that

21r )9 = 01 No(m)/FBm:

where (B, = (1 — (). We set Sg =5 = {oo}U{p | m}, S = {oo}, r =1, and T to be as required
by Hypothesis 2.1.

Set B ={1,...,d+ 1}, and define a;; € Z[Gal(Q((;,)/Q)] as in § 5.3. Then a;; — fp.(p;) —1 €
Z|G] under the natural projection to Z[G]. We relate the projections A! of the A! determinants
from Proposition 5.5 to our group ring-valued regulators. We must choose an ordered set of d places
for the purpose of regulator calculation, and we choose p1,...,pqg.

PROPOSITION 5.6. Let 0 € Sg41 (the symmetric group on B) such that o(1) < --- < o(d). Then
Regq(po() A+ A Po(a) = sign(0) AT, ).

Proof. If d 4+ 1 = 1 then both sides are the determinants of 0 x 0 matrices and so are 1. So we

suppose d + 1 > 1. First assume ¢ = id. The regulator is, by the product rule, the determinant of

(the projection of)

C1 a2 Qa1d
az; €2 24

. b
ad1 Qg2 -+ Cq

with ¢; = — ) a;i, where k runs over {1,...,d + 1}-{j}. This is what we need.

Now assume o # id. Let b = o(d + 1). In the matrix defining the regulator, add the other
columns to the column for the place pp. This gives by the product rule

1,2, 0—1,n41,641,....d
- Reg(G " )(pa(l) ARRRNA po’(d))u

where the upper d-tuple is the ordered set of places used in the calculation of the regulator.
This ordered set differs from the ordered set (o(1),...,0(d)) by the permutation co(n+1 b). So

(0(1),---,U(d))(

Reg(le"'vd) (po‘(l) AEERWA pa(d)) = 51gn(0') RegG pa(l) ANRE /\pa(d))

Now the result follows from the case o = id by renaming the primes p,; to p;. O

Now Proposition 5.5 and a ‘lowering the top field’ argument entirely analogous to the proof of
Proposition 3.2 together prove the following proposition.

PROPOSITION 5.7. For all ¢ : Up g — Z[G], we have

d+1
S(No(p)/rBm) = (1)) _(=1)1¢! (pi) Regg(pr A~ Api A=+~ Apapr)  (mod IET),
i=1

where the superscript ‘A’ means omit.
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Remark 5.8. If F'//Q is cyclic of prime-power degree, and all the p; are totally tamely ramified in F,
then this result can be deduced from Theorem 1 of [GKO03].

Finally, we deduce a T-modified version. Let 67 = [[,cr(1 — N, Frob1).

LEMMA 5.9. Let uq,...,uq4+1 be a Z-basis for Ug s . Then we have the following equality in
d+1 )
z Ugs:
2up A - ANuger = (Ug,s - Ug,s,r)pr A=+ A Daygr-
Proof. Write u; = :tHf;Lll p" for 1 < j < d+1 and a d + 1 square matrix C = (c;;) over Z.
The d + 2 square matrix of relations between the d + 2 generators —1,p1,...,pay1 of Ug,s/Ug.s,T

is of the form
210
7 C

where 2 is the top-left entry. Hence the index (Ug, s : Ug,s,7) = 2det C. On the other hand, we have
UL N ANUgyr = (detC)pl/\---/\pd+1+X

where X is a sum of terms of the form (—1) A x, so that 2X = 0. Multiplying this by 2 gives the

stated result. O

Now we can show the following theorem.

THEOREM 5.10. Let F'/Q be a real abelian extension with Galois group G and conductor m, r = 1,
S = {oo}, S = {oc}U{p | m}, T ¢ {2} a finite non-empty set of primes of Q disjoint from S.
Then F/Q,S O Si,T,r satisfies Hypothesis 2.1. In this case the congruence of Conjecture 2.6 is
satisfied up to a factor of 2. That is, for all ¢ € Homgyq(Ur,s T, Z[G]) we have

2¢(n) = 2(+hg s Regl) (mod IEH).

Proof. Let ¢ € Homyq(Ur,s,r,Z[G]). Applying Proposition 5.7 to the map z $(2°7) and using
Lemma 5.9 shows

aug(or) - a1
26(67 N, n) = 2-——-""_Re up A A mod T&™).
G(O1 NG )/ m) Uas Uost) ga(p(ur a+1)) G )
Finally, Equation (3) for Q shows that hg s = (—1)#1 aug(é7)/(Ug.s : Ug.s7)- O

Remark 5.11. In particular, if G is of odd order then Conjecture 2.6 holds.

6. Base change via a conjecture of Darmon

We now move on to studying what happens when we make a quadratic extension of the base field
k in Conjecture 2.6.

6.1 Quadratic extension of the base field for L-functions

Let K/k and L/k be linearly disjoint finite abelian extensions of global fields. Assume [K : k] = 2.
Write L = LK. Hence we have the following diagram of fields:

L
N
K L
N\
k
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L/k is Galois with group Gal(L/k) = Gal(L/k) x Gal(K/k). Let w be the non-trivial character
of Gal(K/k), and let G := Gal(L/K) = Gal(L/k). Let S = S and T = T}, be disjoint finite sets
of places of k£ with S non-empty and containing all infinite places. The Fuler factors defining L
functions in the extensions L/k and L/K are related as follows. Let v be a finite prime of k, then
for each place w of K lying over v we have a Frobenius element Frob,, € Gal(L/K) — Gal(L/k).
We compare these with Frob, € Gal(L/k) to obtain

II (=N Frob,') = (1 - NjFrob,')(1 - w(v)N; Frob, ). (12)

w place of K
wlv

This follows by considering each Euler factor in the three cases w(v) = 1 (v splits in K/k), w(v) = —1
(v is inert) and w(v) = 0 (v ramifies). We see that the L-functions satisfy the following base-change
factorization when passing from L/K to L/k:

Or/k,5k,1% () = O/ /15,1, (8, 0)O i s, 73, (5); (13)

where Or /i 5,7(s,w) is the twisted Stickelberger function defined as

(TL0 - O Frob ) ) 3 Lges,n e L/

teTy el

- ( [Ta-weN Frobgl)) ( ] a-w@n® Frobvl))l.

teTy U%Sk
The validity of Equation (13) follows from the lemma and definition (4) in the region of convergence
Res > 1 and then everywhere by meromorphic continuation.
We will also use the notation
& = [] @ - w(v)N, Frob, ")
veT}

for the relative T-modification factor at s = 0.

6.2 The circular unit

Here we show how the ‘circular unit’ defined in [Dar95] corresponds to the change in L-functions
which results from raising the base field from Q to a linearly disjoint real quadratic field.

For comparison with [Dar95], we assume the following hypothesis for the rest of § 6.

HypoOTHESIS 6.1 (Darmon’s set-up). Let N and S be coprime integers with N > 1 and S > 1. Let
w be a primitive, quadratic, even Dirichlet character defined modulo N. Set K = Q((y)*"“, a real
quadratic field, and call its non-trivial automorphism 7. Let L be a real subfield of Q(Cs), normal
over Q. Write L = LK.

Hence we are in the situation of § 6.1 with the further assumptions that k = Q and that L and
K are totally real and have coprime conductors. We define the set Sg from the integer S in the
obvious way: Sg = {p | S, 00}.

All the characters of these extensions come from even Dirichlet characters because the fields are
totally real. Since, by Equation (10), L-functions of even characters vanish at s = 0, differentiating
Equation (13) twice shows that we have the following equality in C[G]

07 /¢ 551 (0) = 307 /i 5,15 (0) = /L/K/Q,SQ,TQ((Lw)G%,/@7SQ7TQ(O)' (14)
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We now relate the base-change factor ©' JK/Q,50.Tq (0,w) to the circular unit defined in
[Dar95, § 4]. This is the following element of Kg := K((g):

o = I1 o(Cns = D7) € Uk
o€Gal(Q(Cns)/Q(¢s))

Write oo, for the place of L corresponding to the embedding of L into R given by (ng — e2™/N5,

and ooy, its conjugate by 7.
LEMMA 6.2. ©7 10/ 5 9(0,w)(00r — L) = 5As, (Nig/ras).

Proof. As NS is not a prime power, ((nxs — 1) is a global unit in Q(¢ys). Hence As, (Ngg/ras) is
zero outside the archimedean places. Now

As, (Nig/pas) =— > Iy 'Nygpaslyoor = =Y In|y ' N pasly(cor — 501),
vyeGal(L/Q) vEG
since the generator of Gal(K/Q) inverts ag. For x a character of L/K, it suffices to prove
207 /1/0,50,0(0@)ewn (L/Q) = = > In |y Nicgjras|wx () ewy (L/Q).
yeG

This is easy to show using (10) for values of the Dirichlet L-series at s = 0, as in Lemma 5.1. [

DEFINITION 6.3. We set 1, := 07Nk /ras.

Then O} /.51, (0: ) (0oL — L) = s, (11)-

6.3 Calculation of n

By Hypothesis 6.1, Gal(L/Q) = Gal(L/Q) x Gal(K/Q) and the restriction map Gal(L/K) = G —
Gal(L/Q) is an isomorphism. Let #Ss = #Sgpiit be the number of primes p dividing S with w(p) =1,
and #5S; = #Sinert the number of p with w(p) = —1.

We consider Conjecture 2.6 for the extensions L/K and L/Q in turn. We then show that the
results and conjecture of [Dar95] relate them.

e L/K: Since K is a real quadratic field, there are two infinite places of K, which we call cog
and 30x. As L is also real, these split completely in L/K. To avoid confusion, we write 7/
and d' for ‘v’ and ‘d’ of § 2 for the extension L/K. We take ' = 2 and S} x = {ook, 50K}
The element 7,/ € C A& Uk 5y 1y €2 is defined by

02 k51 (0)(00L — wo) A (T — wo) = NG (1)

for some finite place wg of Sp.

e L/Q: In the notation of § 2 we take r = 1 and 51 g = {oo}. Then d = #S5; + #5;. The element
i/ € CUqg,s4,1€1(L/Q) is defined by

6%/Q7SQ7TQ(O)(OC)£ - 'UO) = )‘S]: (ni/(@)a
for some finite place vy € S;.

The results of § 6.2 allow us to express 77,k in terms of 7, and nj /0" We have

26%/K,SK,TK(O)(OOL —wp) A (0L — wo)
= @i/K/Q,S@TQ(O,w)(ooL —30L) A @%/QMS,Q’TQ(O)(OOL + 30 — 2wyp). (15)
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We now calculate Ag, (17 /Q)' Let us review the various identifications and inclusions. Along with

the canonical identification of the Galois groups G = Gal(L/Q), we define the homomorphisms
U; — Uy, (inclusion) and

iL/E:YSi — Y,
v W+ W,

where w is a place of L chosen arbitrarily above the place v of f), and w = w”. With these maps,
the following diagrams commute:

- As-
Gal(L/Q) X YSZ — YSL Ui, X RXSL
! O J/iL/i ! U J/iL/i (16)
A
G xYs, — Yg,, U, 5 RXg,.
.y = @ BT — w — T ;
Hence )‘SL(UL/Q) = @L/Q’SQ’TQ(O)(OOL + & — wy — W), where w; is a place of L chosen to be

above vg. If we assume #.5; # 0, we can choose vy such that w; = wy. Then setting wyg = w; in
Equation (15) shows that

2 _
AS) (0 A N70) = 407k 5,y (0) (001 — wo) A (30T — wo)
and hence 41,/ = N, A i/

In [Dar95], Darmon makes a congruence conjecture for his circular unit. We propose to interpret
this as a base-change statement for Conjecture 2.6, under the following assumptions.

HYPOTHESIS 6.4.
i) #8 #0.
ii) For every place p in Ty, we have w(p) = 1.
For a group U on which 7 acts, we define U~ = {u € U : u™ = u™'}.
PROPOSITION 6.5. Assuming Hypothesis 6.4, 67(Uy g) € Uy . Therefore n, € Uy g .
Proof. Let v € U g and y = o %7, Let v € T split into w,w in K. Then 07 contains a fac-
tor (1 — N, Frob,') by Equation (12). Hence w(y — 1) > 0. However, we also have w(y — 1) =

w(y™t —1) = w((1 —y)/y) = w(l —y) > 0. Therefore y = 1 (mod t) for all t € Tk as required.
Setting © = N,/ as proves the second assertion. O

6.4 Indices of minus units

Let K/k be a quadratic Galois extension of global fields with Galois group generated by 7. For this
section we only need to assume that S is a finite, non-empty set of places of k containing all infinite
places, and that 7T is any finite disjoint set of places of k.

LEMMA 6.6. (Uk,s: Uk,s1) = (Uk.s : Uk,S,T)(U : UKST)
Proof. Consider the following commutative dlagram, in which the rows are exact:

1-7
0 — Uksr — Uksr — Ugdp — O

! 1 1
0 — Uys — Uks —> UkZ — 0

The vertical arrows are inclusions. Applying the snake lemma, we obtain the exact sequence

0—>UkS/UkST—>UKS/UKST—> Ks/ KST—>0‘
This shows the result. U
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T

We consider the subgroup Uy ¢ = {u € Ug g1 : u” = u_l} of ‘minus S-units’ in Uk s 7.

This contains U Ilgg o The quotient is, by Tate’s finite group cohomology [Ser79, ch. VIII],

UE,S,T/U}{ST,T = H'((r), Uk,s,1)-
LEMMA 6.7. Suppose hy g = 1. Then:
i) H'((7), Uk,sp) = 0;
i) (Uxs : Ukdr) = ks Uk s #H' (7), Uk.sir)-
Proof. Corollary 2 of [Rim65] shows that H'((r), Uk g¢) embeds into the S-class group of k, which

is trivial. This shows the first assertion, and the second follows immediately. O

Finally we adapt the method of [Tat84, § I1.2 and Theorem IV.5.4] to show the following. Let n
denote the number of places of S which split in K/k.

LEMMA 6.8.
2"#(Ug 5.0 N{£1})
#H'((1),Uk s1)

(Uk,s;0: UksUp g 7) =
Proof. The sequence

Ul*T
— 1—7 K,S.T
0 — UksrUksr — Uksr — =<3
Uk s:7)

is exact. This shows that (Ux.s7: Urs7Uxk g7) = Uk a7 (Ux g7)?). We also have

(Uksr: (U;(,S,T)2) = Ugsr: U}(TS?T)(U}(TST,T : (UE,S,T)2)-
The first factor on the right is #H'((r), Uk sr). The factor on the left can be calculated from the
standard decomposition of the finitely generated abelian group Uy ¢ . The free rank of this group
is n, and the cokernel of squaring on the torsion part has the same size as the kernel, which is
Uy ¢ 7N {£1}. The second factor on the right is what we want to calculate. Hence

2% (Ug g0 N{£LY) = #H' (1), Uk s,7) Uk 5,7+ UkstUg s 7);

as required. D

6.5 Darmon’s conjecture

We return to the situation of Hypothesis 6.1. We first state Darmon’s conjecture in our notation.
Write I' := Gal(K ({s)/K). For each prime [;|S such that w(l;) = 1, [; splits into two distinct

places A; and A; in K. Darmon claims that Uy g is a free Z-module [Dar95, § 4], but in fact this

is not the case since it contains —1, so actually Uy ¢y = Z/2Z x Z#5F1 Taking either T = () or

T such that Uk g7 is torsion-free, choose a basis ui,...,uxg,4+1 for a maximal free subgroup of

U K.ST which will have index 2 if T' = (). Following Darmon, we define a regulator

Rgr:= Z (_1)Z+1Ui ® det(fkk (u]) — 1)k,j € Uk s1® %, (17)
i=1 I

where, in the matrix, k£ runs from 1 to #5; and j runs from 1 to #S5 + 1, omitting ¢. Note that
Rg g might depend upon the choice of maximal free subgroup if the torsion element —1 is not in
the kernel of the local Artin maps.

We state Darmon’s conjecture [Dar95, Conjecture 4.3], under the ring automorphism involution
of Z[I'] given by g — g~!, which amounts to a sign change in the statement, and then ignoring all
issues of sign.
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CONJECTURE 6.9 (Darmon). We have the following equality in Ug (cg) 5 ® I#SS/I#SSH:
Y o lag®o = £2#5  hy gRg .
oel

We consider a T-modified version. This will fit with our general framework, and avoids the
problem of torsion in the unit group. We assume Hypothesis 6.4 part ii which implies that each v
in T splits into w and w in K, with N, = N,,. Then by Equation (3), we have the following:

hg,s,7 = h@,s—HUGT(NU — ) , hksr=hks Hoer(tho - 1)2,
(Ug,s : Ug,s,T) (Uks: Uk sr)
where we note hg s = 1. The quotient is
hisr _ I [Ler(WNo —1) s [ToerNo — 1) (18)
ho.sT 7 (Ufl(isf : Ullgsz) ’ (U;(,S : UE,S,T)#H1(<T>7 Uksr)’
using Lemmas 6.6 and 6.7 part ii.
LEMMA 6.10. Under Hypothesis 6.4,
MST 41 (7). U s517)
hq,s,T "
is an integer.
Proof. For T empty, this is clear. Now let T' = {v1,...,v,} and choose a place w; of K above each v;.

Let K (w;) be the residue field of K at w;. Then the natural sequence

n
0 —Uggr — Ugg— @K(wi)X
i=1
is exact. For if u € Uy g reduces to 1 modulo each w;, then w;(u—1) = w;(u—1) = w;((1 —u)/u) =

w;(1 —wu) > 0, as in Proposition 6.5. Hence u € Ux 57 NUy ¢ = Uy g -
This shows that (Uy ¢ : Ug g 1) | [[,er (Vo — 1), and by Equation (18) this gives the result. [J

We propose the following slight modification of Darmon’s conjecture.

CONJECTURE 6.11. Assume T satisfies Hypothesis 6.4 part ii. Then we have the following equality
- 4S5 | S+,
in Ug(c),s,0 @ 177 /17 :

S ol @0 = £2#5 ZKST#H1(<T>, Use )4 (U 5.7 )vors RS 17 (19)
oel Q5T
If we put 7' = () in this statement, then hg s = 1, #H* ((1), Uk s1) = 1 (by Lemma 6.7 part i),
and #(Uk s,1)tors = 2. Hence we recover Conjecture 6.9. Next we look at how Conjecture 6.11
varies when we replace T" by T'U {v}. If T is empty, then for the comparison statement we will
have to assume that the regulator in Conjecture 6.9 is calculated with respect to a maximal free
subgroup of Uk s which contains Uk g (,}. Examining how the various factors change on increase
of T shows that Conjecture 6.11 behaves well, and that it follows from Conjecture 6.9 when Uk st
can be embedded in a maximal free submodule of U k.S

The consequence of Darmon’s conjecture that we wish to use is the following.

PROPOSITION 6.12. Assume the set-up of Hypothesis 6.1 and let T satisfy Hypothesis 6.4 part ii
with Ur, g7 torsion-free. Then Conjecture 6.11 implies that for each ¢ € Homg (U s1,Z[G]), we
have

h ‘
$(n) = 225 FRS A H (1), Urcsir)d (Bsir) - (mod 157

122

https://doi.org/10.1112/50010437X03000265 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X03000265

ABELIAN L-FUNCTIONS

Proof. Denote as usual G = Gal(L/K). We apply the natural projection Ug(¢s) s ® Z[I'] —
Uk (cs),s @ Z|G], which maps the left-hand side of Equation (19) to > .4 071(5%NK(C5)/L045) ® 0o

in Uz, 5 ® Z[G]. Then Conjecture 6.11 implies the following equality in Uy, g © 175 /15 F1:

_ hKsT
Y o @ o =£2# 2w B (1), Uk s,0) R
e hosT

with 7, from Definition 6.3.
Recall the isomorphism (5). Applying the homomorphism

gives the stated result. O

6.6 Factorization of the regulator

We assume T is such that Uy g7 is torsion-free and that Hypothesis 6.4 is satisfied. We let
Ul,...,Uxs,+1 be a basis for UIZS,T and uxg,492,...,uzq be a basis for Ug s . Then these u;
form a basis for Ug, s7U K.ST The index of this group in Uk g was calculated in Lemma 6.8. We
calculate the regulator from Conjecture 2.6 for these u;. Let ® = ¢1Apo € /\2G Homgy(UL,s,1, Z|G]).
Let Rs7 be the regulator defined in § 6.5 in terms of the u;. Write ug = uxg. 42 A -+ A Usqqr.

Recall that for each prime [;|S such that w(l;) = 1, I; splits into distinct places \;, \; in K.
The other #5; primes dividing S are inert in K/Q, and will be denoted g1, ..., gxs,. For reference,
we summarize Sg and Sk:

S@:{OO,ll,...,l#ss,ql,...,Q#Si},
Sio=A{oc}, r=1 #Sg=r+d+1, sod=#S+#S;

Sk = {OOL,WL, A, .- .,/\#55,5\1, .. ,X#Ss,ql, . 7q#51}7
Sl,K = {OOL,WL}, r = 2, #Sg = ' +d+ 1, so d = 2#Ss + #5;.

PROPOSITION 6.13. We have the following equality in Z[G]/Iéurl:

2751l (R ) 2%~ 10 (Rsr)

0 e ’ = #5s g g
Regr /i (P(ur A+ Augyar)) = £2 Regi/(@(qﬁl(u(@)) Regi/@(qbg(u@)) '

Proof. We saw in Lemma 2.4 that

Dup A Augpg) = Z sign(o)

e

(20)

qb% (uU(Z)) ¢%(UU(2)) ua(3) ARERNA u0(2+d’)~

The terms uy(3)A- - -Atg (244 are made by choosing two of the u; for the integer determinant. So each
o excludes 0, 1 or 2 units of the Uy ¢ ;- basis from the wedge of units. Let my = #(0({3,4,...,2+d'})
N{l,...,#Ss + 1}) be the number of minus-units included in Ugz) A -+ A Ugaqq) in the term
corresponding to o, so mgy = #5s — 1, #5s or #5; + 1.

We calculate our matrix with respect to the following places of K, using Hypothesis 6.4 to
exclude gygs;:

)\1,. e ,)\#55,5\1,. e ,E\#Ss,ql,. <oy Q#Si—1-
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This means we have the determinant of the following d’ x d’ matrix to calculate for Reg; / K (Uo(z) A

“ A Ug(agd)):
)\1, N ,)\#SS 5\1,. .. 75\#55 q1, ... ,Q#Si,1
U (3)
: Pag(ue) =1 fi(ui) =1 | fo;(ui) — 1
Ug(my+2) (21)
Ug(me4+3)
Ug(24d")

where the units at the top are in Uy ¢ - and the units at the bottom are in Ug s 7. We will distinguish
between the cases where m, takes the different values.

First consider the case m, = #Ss + 1. We may add the column for A; to the column for )\_j for
j=1,...,#Ss without altering the value of the determinant. The (7, j)th entry in the top-centre
(#Ss + 1) x (#38s) block is then congruent mod I to fy,(#ju;) —1 = 0. Next we note that, for
each gj, the local extension K, /Q,; has degree two, and f,;(u;) only depends on the norm of u; in
this local extension. If u; € U K.ST then uil'” = 1. Hence f; (u;) —1 =0 for these u;. Therefore the
entire top-right (#Ss + 1) x (#Ss + #5; — 1) block is zero. Hence there are at most #S columns
which are non-zero in their first #5 + 1 rows. Therefore the determinant is zero.

Now in Equation (21) we subtract the column for A; from the column for A; for j = 1,...,#5S;
to show that the determinant is the same as the determinant of the following matrix:

)\1,...,)\#55 5\1,...,5\#55 ql,...,Q#Si,1
Uq(3)
: Iy (ua) = f, (ua) | fay (i) =1 | [y (us) — 1
Ug(my42) (22)
Ug(my43)
: 0 P () =1 | foylus) =1
Ug(2+d")

If my = #55 — 1, the first #5s columns have all zeros except perhaps in the first #S5 — 1 rows.
Therefore the determinant is again zero.

We are left with the case m, = #3S;. In this case matrix (22) is block-upper-triangular. Let us
consider the top-left (#55) x (#5s) block first. We note that fx; (uo(i)) = fx, (ts(i)) = 2(fx; (Uo)) —1)
(mod I2). So the top-left block has determinant 2% det( Ix; (Us(iy) = 1)i 5. Note the relationship to
the regulator Rgr of (17).

Now we calculate the determinant of the bottom-right block. We have fy (u) = fl’j (u), fo;(w) =
féj (u)? for each j and each u appearing, where the f’ denote the local symbols coming from the
extension L/Q. So the bottom-right block is 2#5%~1 Regi/Q(uU(mUJrg) A N Ug(agdr))-

Referring back to Equation (20), the only terms which appear in the sum after applying Reg;, /K
are those for o such that o(1) < #Ss+ 1 and 0(2) > #Ss + 1. We put this in correspondence with
a pair (i,7),1 <i < #Ss+1,1 < j < d+ 1 such that o(1) =4,0(2) = #Ss + 1 + j. Then one may
check that sign(o) = (—1)#%(—=1)+1(=1)7+1,

Putting all this together with Equation (20) gives the stated result, with sign (—1)#% on the
right. O
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6.7 Base change for the congruence
We are now ready to show the base change statement for Conjecture 2.6.

THEOREM 6.14. We use the set-up of Hypothesis 6.1, assume Hypothesis 6.4 and use the definition
of u; from § 6.6.

Assume Conjecture 2.6 holds for the extension L /Q, i.e. that
$(nf ) = £ho.smRegy i (Plugsya A+ Augya))  (mod IEH)

for all ¢ € Homg(U; g1, Z[G]). Assume also that the modified Darmon Conjecture 6.11 holds.
Then Conjecture 2.6 holds for the extension L/K up to a power of 2. Explicitly, for all ® €
A&, Home (U, 5.7, Z[G]), we have

4-2#5®(np ) = £4- 2% b g7 Regp i (P(er A+ Aeapr))  (mod IETY),
where the ¢; form a Z-basis for Uk s .

Proof. Write u =uj A--- Augsq, € =€1 N -+ Negyg. Set © = @1 A ¢, and recall from § 6.3 that
N/ = Mo A ni,)0- The conjectures tell us, using Proposition 6.12, that

h h
b da() PTG H O (Rsir)  2¥S ST H 9 (R )
40(np/x) = ‘ == 25T 05T

[91(nyq)  S2(ngg) : 5
/e T ho.srRegro(d1(ug))  hosrRegy g(P2(ug))

modulo IZ;FH#SSH, where #H' = #H'((r),Uk sr) and Rgr is calculated with respect to the
Z-basis u1, ..., uys,+1 of Ug . Noting that d' = d + #5S;, this is

¢1(Rs,r) ¢3(Rsr)

- #5; 1
=42 hK,S,T#H Regi/(@(ébl(w@)) Regi/(@(@(u@))

(mod Ig”).

Hence by Proposition 6.13, we have 4 - 2#55<I>(77L/K) = thygr - 24H! Reg(®(u)) (mod Igl“).
Now we know from Lemma 6.8 that (U s : Ugs7Us g 7) = 2751 /#HY sou = (2#5+L /4 H)e.
This gives the result. U

Note that if #G is odd, this last congruence is the full statement of Conjecture 2.6.

Remark 6.15. Using the method of [Dar95, Lemma 8.1], it is possible to prove that ¢(Ng (¢g)/rs) €
I Z% 5 for all ¢ € Homg (U} 4, Z[G]), without assuming the validity of Darmon’s conjecture. It then

follows that ¢'(n,) € IZ%SS for all ¢ € Homg(Uz 57, 2Z[G]). Thus if Conjecture 2.6 holds for L/Q,
then for L/K we have 4®(n k) € Igf, for all ® € /\é Homeg (Ur, 5,1, Z|G]), consistent with the
‘order of vanishing’ implied by Conjecture 2.6.

7. Base change via Gross’s conjecture on the L-functions of tori

In § 8 of [Gro88], Gross makes a conjecture motivated by considering algebraic tori. Similarly to
Darmon’s later conjecture, this involves a quadratic extension of the base field and consideration of
the ‘minus-units’ in this extension. It also involves a ‘©’ element which is twisted by the non-trivial
character of the extension. In the previous section we saw that Darmon’s conjecture, which was
related to the first derivative of the relative factor in Equation (14), gave us a base change property
for Conjecture 2.6 where the order of vanishing, r, increased by 1. Gross’s conjecture, by contrast,
concerns the value (zeroth derivative) of the relative factor and correspondingly it gives us a base
change property where r does not change.
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7.1 Set-up and calculation of n

Our set-up is as follows. Let k be a global field and L /k and K/k linearly disjoint abelian extensions,
with [K : k] = 2. Let w : Gal(K/k) — {#1} be the non-trivial character of K/k. Setting L = LK,
we are in the situation of § 6.1. Write G = Gal(L/K) = Gal(L/k). Let S = S be a set of places
of k containing all infinite places and all places ramifying in L/k. That is, both L/k and K/k are
unramified outside S. Take T' = T}, such that Uy, g 7 is torsion-free. We define n to be the number
of places in S splitting in the quadratic extension K/k, and refer to the other #S — n inert or
ramified places as non-split. We write 7 for the non-trivial automorphism of this extension. This is
the situation of § 8 of [Gro88] except we have an unfortunate clash of notation, summarized in the
following table:

Gross’s notation H L ‘ K ‘ X ‘ o

Our notation H K ‘ L ‘ w ‘ T

Assume there are r places S;j in Sy splitting completely in f// k. Then all the places above
these in K split completely in L/K, and there are at least r of them, so the two sets of data
L/K,Sk 2 Sik,Tk,r and f//k:, Sk 2 Sik, Tk, both satisfy Hypothesis 2.1. Differentiating the
base-change factorization of the L-functions (13) r times and evaluating at s = 0 gives

OL /.55 15 (0) = OLyi k.5, (0:w)OF 1 6. 7, (0)- (23)

The base-change factor Ok k. s, 7, (0,w) lies in Z[G] by the argument following [Gro88, Equation
(8.7)], where the corresponding element is denoted 6g(x). Gross’s tori conjecture concerns this
element, and we will show that its validity would imply that Conjecture 2.6 for L/K,Sk 2
Si.i, Tk, (weakened by powers of 2, similarly to the case of Darmon’s conjecture) follows from
the conjecture for f//k:, Sk 2 Stk Ty 7.

First note that we may assume that the r places in S are non-split in K /k, since otherwise
more than r places in Sk split in L/K and Conjecture 2.6 already holds for L/K, Sk, Tk,r by
Proposition 3.10. We also impose the following assumption, which is the same as Hypothesis 6.4
part i.

HypoTHESIS 7.1. There is a place in Sj — S; , which is non-split in K /k. That is, d > n.

Let vp be such a place. Write Sy, = {v1,...,v.}. Choose w; a place of L above v; for i =
0,1,...,7. Set by, = (w1 — wp) A -+ A (w, — wp). Write w; for the place of L induced by w; for
i=0,...,7, and set b; = (w; — W) A -+ A (W, — wp). Then with these choices of the W in the
definition of 7, we have that n; /K € C /\%[G} Ui, ST is defined by the equation

)‘E(ni/k) = GE/k,Sk,Tk (O)bi'

The commutative diagrams (16) hold here (with & instead of Q). Since vy, ..., v, are all non-split
in K/k, there is a unique w; over w; for i = 0,...,r. Hence

)‘L(ni/k) = @E/k’Sth(O)((le — 2’11)0) VANV (2’11),« — 2’11)0)) = 2T6ri/k,Sk,Tk(0)bL'

Or/K/k,s,1(0w)

Therefore we have, using Equation (23), )‘L(ni/k ) = 2"O7 K S T (0)br,. It follows that

1 or/r/msrOw)
ML/K = 50 : (24)
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7.2 Regulator calculations

Keeping the assumptions of § 7.1, we now go on to study the regulators involved in the various
conjectures. Break up S as follows:

S1,k, non-split in K n split in K d—n-+1 non-split in K

S = { U1y, Up,y Up41s -+« Urtn, 'Ur—l—n—l—la"'a'UTerJrl}-

Note that d—n+1 > 0 by Hypothesis 7.1. Choose v} to be place of K above v; fori =1,...,r+d+1.
Choose a Z-basis i1, ..., pn of Ug g Then we can define a minus-unit regulator R € Z[ ]/t
by the determinant of the n x n matrix with (¢, 7)th entry fv (,uz) — 1 for 1 <i4,j < n. This is

denoted detg(\;) in [Gro88|.

We choose a Z-basis u1,. .., Uryq4n for Uk g7 such that uiqp, ..., U4y is a basis for Uy g7,
which is possible by Lemma 3.1.

The analogue of Proposition 6.13 in this situation is the following.
PROPOSITION 7.2. We have the fo]lowjng in Z|G)/I&

Regr i (®(ur A+ Ntriain)) = 227 "R Regy (@ (urn A+ Atrraen)) Uy sr - Ui Sp)-
Proof. The regulator on the left is

Z sign(o )det(¢]( ))1<z,g<r RegL/K( o(r+1) N A ua(rerJrn))v (25)

O_E[r+d+n]

where, after manipulations as in the proof of Proposition 6.13, Regy /x (Ug(ry1) A -+ AUo(ridin)) i
seen to be the determinant in Z[G]/I&T" ! of the matrix

v;+1,...,v;+n 17;,+1,..., A v;+n+1,...,v7’q+n+d
Ug(r41)
: Furw;7T) = 1| fyr(uf) — 1 fur (i) =1
Ug(r4+mg)
Ug(r+mey+1)
Ug (r+d+n)

in which m, = #o({r+ 1,...,7 +d+n})N{l,...,n}. Now if m, < n then this determinant
is clearly 0. So for non-zero terms in the sum (25) we must have m, = n, ie. o(r +1) =
1,...,0(r +n) = n. Then u¢17(7r7+1) ,u}y(;ln) is a Z-basis for U}{;T and so the determinant of
the top-left n x n block is (U KST: : U & 7)Rg. The determinant of the bottom-right d x d block is
RegL/k( o(r+n+1) ARERRA ua(r+d+n))-
Note that for such o, the map oco(1 2 ... r+mn)"isa permutation of {n+1,...,r+d+n}
of the form n + k — n + o'(k) for o’ € [r+d] We have

RegL/K( (U1 A-+ AUpidin))
= Uksr: UII(TE}-,T)R(E D (=) Y sign (o) det(¢] (tn o () 1<irj<r

X Regi/k(unJra/(rJrl) ARERRA uTL+O”(T+d)))7

which gives the result. O
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7.3 Gross’s conjecture on the L-functions of tori

We will now state Conjecture 8.8 of [Gro88]. The analytic class number formula makes it possible
to calculate the coefficient of the leading term of the Taylor expansion of Ly 57(s,w) at s = 0,
as in [Tat84, ch. II, § 2]. It is m,R~, where R~ is a logarithmic regulator calculated with respect
to bases of the minus-parts of Ux g7 and Xg, , and

hi,sT

_ sl o#S—n—1 — Crrl—T

My = :t—h 2 (UKS’T : UK,&T).
k,S,T

The reader is warned that the factor 2#°~"~! is missing in Equation (8.5) of [Gro8§].
LEMMA 7.3. Assuming Hypothesis 7.1, m,, is an integer.

Proof. The hypothesis shows that #S —n — 1 > 0. Also K/k is a quadratic extension unramified
outside S such that at least one place in S is inert. Therefore Lemma 4.6 part i shows that hy g7
divides hx g 7. This gives the result. O

We can now state Gross’s tori conjecture, which in our set-up, assuming Hypothesis 7.1 in order
to have the conclusion of Lemma 7.3, states the following.

CONJECTURE 7.4 (Gross). We have

Ok /k,57(0,w) =myRg  (mod IEH).

7.4 Base change
THEOREM 7.5. Let f//lf, K/k be finite linearly disjoint abelian extensions of a global field k, with
[K : k] =2. Set L = LK. Assume S = Sy, T = T}, are such that L/k is unramified outside Sy
and Up g1 is torsion-free. Let S; C S be a set of r places which split in L/k but not in K/k.
Assume Hypothesis 7.1 for these data.

Assume that Conjecture 2.6 holds for f)/k, S,T,r and that Conjecture 7.4 holds. Then for all
P e A%[G} HomZ[G](UL,S,T;Z[G]) we have

20 (ny ) = £2hic s Regly  (mod I ).
That is, the conclusion of Conjecture 2.6 for L/ K, Sk, Tk, r holds with a factor of 2" on each side.

Proof. By Equation (24) we have 2"®(n k) = @L/K/k,S,T(OaW)‘I)(ni/k)' Multiplying the con-
gruences of Conjecture 7.4 and Conjecture 2.6 gives

K ST ortden 77— - -
2"®(np/K) = imTJr "Ugsr: Ukgr)Rahesr

X Regi/k(@(u1+n ARERNAN ur+d+n)) (mOd

= +2"hg g1 RegL/K(i)(ul A  ANpggrn)) (mod Ié‘”‘“),

Ig+n+2)

by the regulator calculation in Proposition 7.2. O
Note that if » = 0 then this shows that, under Hypothesis 7.1, Gross’s conjecture on tori actually

gives a base-change property with no weakening factor for Conjecture 4.1 in [Gro88§].
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