ON PSEUDO-DISTRIBUTIVE NEAR-RINGS

by GORDON MASON

(Received 17th February 1984)

1. Introduction

If G is a group and N a ring, the elements of the group ring NG can be thought of either as formal sums $\sum n_g g$ or as functions $\phi: G \to N$ with finite support. If N is a nearring, problems arise in trying to construct a group near-ring either way. In the first case, Meldrum [7] was able to exploit properties of distributively generated near-rings (N, S)to build free (N, S)-products and hence a near-ring analogue of a group ring. For the latter case, Heatherly and Ligh [3] observed that the set of functions could be made into a near-ring under multiplication given by $(\phi^*\alpha)(g) = \sum_{x \in G} \phi(x)\alpha(x^{-1}g)$, provided N satisfies

$$(P1) \quad a_1b_1 + a_2b_2 = a_2b_2 + a_1b_1$$

and

(P2)
$$n\sum_{i=1}^{k}a_{i}b_{i} = \sum_{i=1}^{k}na_{i}b_{i}$$

for all $a_i, b_i, n \in N$ and $k \in Z^+$. Such near-rings are called pseudo-distributive. In fact these are precisely the conditions under which the set N_k of $k \times k$ matrices over N is also a near-ring and then both NG and N_k are pseudo-distributive.

Examples are found in [3], where some restrictions are given for a near-ring to be pseudo-distributive and yet not a ring (a so-called non-ring). In particular, N should not contain an identity. On the other hand, any non-unital ring is a pseudo-distributive near-ring so the results of this paper will apply to non-unital rings (group rings and matrix rings). Moreover, we shall see that our near-rings have close connections to appropriate rings.

In the next section we develop some general facts about pseudo-distributive nearrings. In the third section we examine the structure of matrix near-rings and group nearrings. The basic reference for near-rings is [9], and in this paper all near-rings will be zero-symmetric right near-rings. For future reference we repeat the definition of an ideal: A subgroup (I, +) of (N, +) is an ideal of N if it satisfies

(I1) I is a normal subgroup (I2) $n(x+a)-nx \in I$ for all $n, x \in N, a \in I$ (I3) $IN \subseteq I$.

We note that because of the zero symmetry $NI \subseteq I$ also, by (12).

2. Pseudo-distributive near-rings

As might be expected, a near-ring which is "almost abelian" (P1) and "almost distributive" (P2) has lots of rings associated with it. The proof of the following is straight-forward:

Proposition 2.1. If N is pseudo-distributive, the following are rings:

- (a) $Na = \{na | n \in N\}$ for all $a \in N$.
- (b) $N^2 = \{\sum_{i=1}^k a_i b_i | a_i, b_i \in N\}.$
- (c) B(N), the set of central idempotents (with addition given by $e \oplus f = e + f 2ef$).
- (d) N/I for any modular ideal I.
- (e) N/A where $A = \text{Ann}^{l} N = \{n | nN = 0\}$.

Note that A is a non-zero ideal ([3]) and Na and N^2 are also N-subgroups of N. Also N^2 satisfies (I2) and (I3) so would be an ideal iff it were a normal subgroup of N. In fact, this is true of any subgroup J with $N^2 \subseteq J \subseteq N$, i.e. any such normal subgroup J is an ideal.

Following [5] let [N, N] be the N-commutator ideal, namely the ideal generated by $S = \{n(a+b) - na - nb\}$. Now in [5, Proposition 2.2] it was shown that the subgroup generated by S satisfies (I2), and clearly (I3) holds (in fact SN = 0) so again this subgroup lacks only normality to be an ideal. Maxson [6] has defined D(N), the distributor ideal, to be the ideal generated by $T = \{n(a+b) - nb - na\}$. By P2, S = T in our case so D(N) = [N, N]. Letting N' be the commutator subgroup of (N, +), we have from [2] that when N is distributive, N' is an ideal and $N' \cdot N = N \cdot N' = 0$. For N pseudo-distributive, $N' \cdot N = 0$ still holds.

Proposition 2.2. If N is pseudo-distributive, C(N) = N' + D(N) is an ideal and N/I is a ring iff $I \supseteq C(N)$.

Proof. Since N/D(N) is distributive, its commutator subgroup is an ideal which has the form C(N)/D(N) for some ideal C(N) of N. In fact (N/D(N))' = N' + D(N)/D(N). Then N/C(N) is isomorphic to the distributive near-ring N/D(N) modulo its commutator and so is a ring. If I is an ideal of N for which N/I is a ring, then the abelian addition and distributivity of N/I shows that $N' \subseteq I$ and $D(N) \subseteq I$ respectively, and conversely.

We shall call any ideal $I \supseteq C$ a ring ideal of N. For example, if N is abelian then C = D(N), and if N is distributive then C = N'. In fact in [2], Heatherly shows how nilpotent groups of class 2 can be made into distributive near-rings by defining $a \cdot b = a + b - a - b$. Then $C = N' = N^2$. In the same paper it is pointed out that S_3 has the structure of a distributive near-ring (see #29, p. 342 of [9]). In this case $C = A_3$ and, in fact, N/A_3 is a unital ring. See also Theorem 2.6.

Setting K(N) = set of distributive elements of N, Maxson showed ([6]) that K(N) is a subnear-ring of N precisely when P1 holds for all $a_i \in K(N), b_i \in N$, and in [3, Theorem 2] K(N) was shown to be a normal subgroup. In fact we have

Proposition 2.3. K(N) is a subnear-ring and a left ideal when N is pseudo-distributive.

Proof. If $x \in K(N)$, then for all $n_i, a_i \in N$

$$[n_1(n_2+x)-n_1n_2](a_1+a_2) = n_1(n_2+x)(a_1+a_2) - n_1n_2(a_1+a_2)$$
$$= n_1[n_2(a_1+a_2)+xa_1+xa_2] - n_1n_2(a_1+a_2)$$
$$= n_1n_2(a_1+a_2) + n_1xa_1 + n_1xa_2 - n_1n_2(a_1+a_2) \text{ by P2}$$
$$= n_1xa_1 + n_1xa_2 \qquad \text{by P1}$$

On the other hand $[n_1(n_2+x)-n_1n_2]a_1+[n_1(n_2+x)-n_1n_2]a_2$ also equals $n_1xa_1+n_1xa_2$ by a straight forward calculation. Thus (I2) holds.

Note that $A \subseteq K(N)$.

In [3] it was shown that if N is a simple pseudo-distributive near-ring then either A=N and $N^2=0$, or A=N is the finite field of order p, or A=(0) and N is a ring. In fact in the first case we also have N=N' (i.e. (N, +) is a perfect group) since A=N implies K(N)=N so D(N)=0 and C(N)=N'=N.

Recall [9, pp. 136-7] that in near-rings there are four "radicals" $J_i(N)$, i=0, 1/2, 1, 2 which generalize the Jacobson radical J(R) of a ring. J_i is an ideal for i=0, 1, 2.

Theorem 2.4. (a) $J_i(N/I) = J_i(N)/I$ for any ideal $I \subset J_i$, i = 0, 1, 2. (b) In a pseudo-distributive near-ring N all the radicals coincide.

Proof. (a) Let J represent any one of J_0 , J_1 or J_2 and suppose I is an ideal, $I \subseteq J$. Then the canonical surjection $f:N/I \rightarrow N/J$ yields, by [9, 5.13(b) and 5.16], $f(J(N/I)) \subseteq J(f(N/I)) = J(N/J) = 0$. Therefore $J(N/I) \subset \ker f = J/I$. On the other hand, by [9, 5.15c)], $J(N/I) \supseteq J/I$ so equality holds as required.

(b) Since $J_0 \subseteq J_1 \subseteq J_2$, applying (a) we have $J_i(N/J_0) = J_i(N)/J_0$ for i=0, 1, 2. Since $C(N) \subseteq A \subseteq (L:N)$ for every left ideal L, therefore $C \subseteq J_0$ and hence N/J_0 is a ring. Thus all its radicals coincide and since $J_0(N/J_0) = 0$ therefore $J_i(N) = J_0$ for i=1, 2. Since $J_{\frac{1}{2}}$, (which, in general, is only a left ideal), lies between J_0 and J_1 therefore $J_{\frac{1}{2}} = J_0$ also.

We can then characterize J(N) by a kind of "quasi-regularity". Recall that in a ring R, x is right quasi-regular if x+b+xb=0 for some b, and $J(R) = \{x | xr \text{ is right quasi-regular for all } r\}$.

Corollary 2.5. If N is pseudo-distributive, $J(N) = \{x \mid for all \ r there exists an s such that for all n, <math>xrn + sn + xrsn = 0\}$.

Proof. Applying Theorem 2.4(a) to $I = A \subset J$ and using Proposition 2.1(e) we see J(N)/A is the set $\{x+A \mid (x+A)(r+A) \text{ is right quasi-regular for all } r \in N\}$. Therefore $J(N) = \{x \mid \text{ for all } r \text{ there exists } s \text{ such that } xr+s+xrs \in A\}$.

Now if N is pseudo-distributive, N/J is a ring with zero Jacobson radical. Suppose N has DCCL (descending chain condition on left ideals). Then ([9, 5.48]) since all radicals

coincide, J is nilpotent. Since N/J also has DCCL, it is a unital ring. Thus we have the following analogue to the Artin–Wedderbun Theorem for rings:

Theorem 2.6. If N is a pseudo-distributive near-ring with DCCL, then N/J is a unital ring which is a finite direct sum of matrix rings over skew fields.

3. Matrix and group near-rings

Let N be pseudo-distributive and for any $S \subset N$ let S_k denote the set of matrices in N_k all of whose entries belong to S. Let $\mathcal{J}(N)$ be the set of ideals of N.

Proposition 3.1. There is a mapping $T: \mathcal{J}(N) \to \mathcal{J}(N_k)$ and a mapping $S: \mathcal{J}(N_k) \to \mathcal{J}(N)$ such that ST = id (so T is 1-1 and S is onto).

Proof. Clearly if J is an ideal in N, J_k is an ideal in N_k so $T(J) = J_k$. Conversely, if \mathscr{J} is an ideal in N_k , set $S(\mathscr{J}) = \{n | n = a_{11} \text{ for some } (a_{ij}) = A \in \mathscr{J}\}$. Clearly $S(\mathscr{J})$ is a normal subgroup of N. Moreover if $n \in S(\mathscr{J})$ let $X = (\delta_{ij}x)$ and $Y = (y_{ij})$ where $y_{11} = y, y_{ij} = 0$ for $(i, j) \neq (1, 1)$. Then x(y+n) - xy is the 1-1 entry of $X(Y+A) - XY \in \mathscr{J}$. Since $S(\mathscr{J})$ is clearly right N-closed, it is an ideal.

Next we have $J \subseteq ST(J)$ trivially and if n is the 1-1 entry of some matrix in J_k , clearly $n \in J$.

We note that in the case of unital rings TS = id also, since by using matrix units one can show that if $A = (a_{ij}) \in \mathscr{I}$ then a_{ij} is the 1-1 entry of some matrix in \mathscr{I} . In the present case, let X_{ij} be the matrix with entry x in position i-j and zeros elsewhere. If $A \in \mathscr{I}$, then $B = \sum_k X_{ki} A Y_{jk} \in \mathscr{I}$ and B is the matrix with $xa_{ij}y$ all along the diagonal. Thus for all *i*, *j*, and all x, y, we have $xa_{ij}y \in S(\mathscr{I})$. This also shows that every ideal in N_k intersects N non-trivially (where N embeds canonically in N_k).

Lemma 3.2. If I is an ideal in N, $(N/I)_k$ is isomorphic to N_k/I_k .

Proof. The map $N_k \rightarrow (N/I)_k$ sending (a_{ij}) to $(a_{ij}+I)$ is a surjection with kernel I_k . As a result $D_k \supseteq D(N_k)$ and $C_k \supseteq C(N_k)$. We note in passing that $A_k = A(N_k)$ and $K(N_k) = K(N)_k$.

Let J(N) be the Jacobson radical. For rings it is well known that $J(N_k) = J(N)_k$. Using this we can show

Theorem 3.3. If N is pseudo-distributive, $J(N_k) = J(N)_k$.

Proof. By the lemma, $N_k/J_k \simeq (N/J)_k$ and since N/J is a ring $J((N/J)_k) = (J(N/J))_k = 0$. Then $0 = J(N_k/J_k) \supseteq J(N_k) + J_k/J_k$ by [9, 5.15c)] so $J(N_k) \subseteq J_k$. Now consider the ring N/C. Using Theorem 2.4 and the lemma we have $J(N_k)/C_k \simeq J(N_k/C_k) \simeq J((N/C))_k \simeq (J(N/C))_k \simeq (J(N/C))_k \simeq J_k/C_k$. Combined with the fact $J(N_k) \subseteq J_k$, we have equality.

Turning now to group near-rings, we recall the comments made in the introduction that NG is taken to be the set of functions $\phi: G \to N$ with finite support, and multiplication defined by $(\phi^*\alpha)g = \sum_x \phi(x)\alpha(x^{-1}g)$. NG is then an N-group, and N is a subnear-ring of NG via the functions \hat{n} where $\hat{n}(e) = \hat{n}$ and $\hat{n}(g) = 0$ for $g \neq e$ (we note in

passing that this embedding depends on the zero-symmetry of N). N is also a normal subgroup of (NG, +).

The standard theory of unital group rings RG (see eg. [1] or [8]) makes extensive use of the fact that G can also be embedded in RG using the identity of R. In particular, this allows one to say that $\phi \cdot g$ and $g \cdot \phi \in RG$ for all $\phi \in RG$, $g \in G$. In the pseudo-distributive near-ring case we can define left and right G-actions on NG as follows: $(\phi \circ g)(h) = \phi(hg^{-1})$ and $(g \circ \phi)(h) = \phi(g^{-1}h)$. Then for all α , $\beta \in NG$ and g, $g_1 \in G$ we have

$$(\alpha^*\beta) \circ g = \alpha^*(\beta \circ g) \qquad g \circ (\alpha^*\beta) = (g \circ \alpha)^*\beta$$
$$(\alpha + \beta) \circ g = \alpha \circ g + \beta \circ g \qquad g \circ (\alpha + \beta) = g \circ \alpha + g \circ \beta$$
$$\alpha \circ gg_1 = (\alpha \circ g) \circ g_1 \qquad gg_1 \circ \alpha = g \circ (g_1 \circ \alpha)$$
$$(\alpha \circ g)^*\beta = \alpha^*(g \circ \beta) \qquad g \circ (\alpha \circ g_1) = (g \circ \alpha) \circ g_1$$

Also $\hat{n} \circ g = g \circ \hat{n}$ for all $n \in N$, $g \in G$.

It follows that each $\alpha \in NG$ can be written as $\alpha = \sum_g \hat{n}_g \circ g$ where $n_g = \alpha(g)$. In what follows we shall generally indicate both * and \circ by simple juxtaposition.

A left ideal I of NG will be called left (right) G-closed if $gI \subseteq I(Ig \subseteq I)$ for all $g \in G$. For example Ann NG is left and right G-closed (see Theorem 3.4) and since $J(NG) = \cap (L:NG)$ where L is an *i*-modular left ideal [9, p. 136] it follows that J(NG) is right Gclosed. Note that I is left and right G-closed if $\alpha \in I$ implies $\beta \in I$ for all β with range $\alpha =$ range β . Writing Supp $\phi = \{g | \phi(g) \neq 0\}$ for the support of ϕ we have

- 1. $\operatorname{Supp}(g\phi) = g \operatorname{Supp} \phi$
- 2. If Supp $\alpha \cap$ Supp $\beta = \emptyset$ then $\phi(\alpha + \beta) = \phi\alpha + \phi\beta$ for all $\phi \in NG$
- 3. If $x \in \text{Supp}(\alpha\beta)$, there exist $h \in \text{Supp} \alpha$ and $g \in \text{Supp} \beta$ such that x = hg.

Theorem 3.4. (a) If I is a (left) ideal of N then $IG = \{\phi \in NG | \phi(x) \in I \text{ for all } x \in G\}$ is a G-closed (left) ideal of NG. (b) If I is two-sided $NG/IG \simeq (N/I)G$ as near-rings. (c) K(NG) = K(N)G, Ann(NG) = (Ann N)G, C(NG) = C(N)G and D(NG) = D(N)G. (d) The map $T: \mathcal{J}(N) \rightarrow \mathcal{J}(NG)$ given by T(I) = IG and the map $S: \mathcal{J}(NG) \rightarrow \mathcal{J}(N)$ given by $S(\mathcal{J}) =$ $\mathcal{J} \cap N$ satisfy ST(I) = I (cf. Proposition 3.1).

Proof. (a) Clearly (IG, +) is a normal subgroup of NG. Moreover

$$[\alpha(\beta + \phi) - \alpha\beta](g) = \sum_{x} \alpha(x)(\beta + \phi)(x^{-1}g) - \sum_{x} \alpha(x)\beta(x^{-1}g) = \sum_{x} \alpha(x)(\beta(x^{-1}g) + \phi(x^{-1}g))$$
$$-\alpha(x)\beta(x^{-1}g) \qquad (by P1)$$

which is in I for all α , $\beta \in NG$, $\phi \in IG$. Also $\phi \in IG$ implies $\alpha \in IG$ for all α with range $\alpha =$ range ϕ so IG is left and right G-closed.

(b) If I is a two sided ideal and $\pi: N \to N/I$ the canonical map, define $f_1: NG \to N/I$ G by $f_1(\phi) = \pi \circ \phi$. Then f_1 is a near-ring surjection with kernel IG.

(c) If $\phi \in K(NG)$ then $\phi(\alpha + \beta) = \phi\alpha + \phi\beta$ for all α, β . Therefore $\sum_x \phi(x)(\alpha + \beta)(x^{-1}g) = \sum_x \phi(x)\alpha(x^{-1}g) + \phi(x)\beta(x^{-1}g)$ for all $g \in G$. In particular α and β can be chosen to have singleton support $x^{-1}g$ and arbitrary values n, $n' \in N$ so that for all $x \in G$, all $n, n' \in N, \phi(x)(n+n') = \phi(x)n + \phi(x)n'$ whence $\phi \in K(N)G$. The reverse inclusion $K(N)G \subset K(NG)$ is clear, and the proofs for D(NG), C(NG) and A(NG) are straightforward.

(d) Is easily shown.

We next investigate the connection between subgroups of G and G-closed left ideals in NG. If H is any subgroup of G, the set of cosets G/H can be used to define an N-group NG/H which will be a near-ring if H is normal. We first consider the case when N is a ring so NG/H is an N-module.

Theorem 3.5. Let N be a ring. The mapping $f_2: NG \to NG/H$ given by $(f_2\phi)(gH) = \sum_{h \in H} \phi(gh)$ is an N-module homomorphism whose kernel ωH is a left ideal which is left G-closed. Moreover ωH is additively generated by $S = \{\phi \circ h - \phi | \phi \in NG, h \in H\}$.

Proof. The first part is a normal ring theoretic proof. ωH is left G-closed because $\sum_{h} (x \circ \phi)(gh) = \sum_{h} \phi(x^{-1}gh) = 0$. Note that if H is normal, ωH is also right G-closed. Clearly $S \subset \ker f_2$ since

$$\sum_{h_i \in H} (\phi \circ h - \phi)(gh_i) = \sum_{h_i \in H} \phi(gh_ih^{-1}) - \phi(gh_i) = 0.$$

Conversely consider the case H = G. Then if $\phi \in \omega G$, $\sum_{g} \phi(g) = 0$ and without loss of generality $e \in \text{Supp } \phi$ so define

$$\alpha_i(e) = \phi(g_i)$$
 for $i = 1, \dots, k$
= 0 otherwise

Then

$$(\alpha_i \circ g_i - \alpha_i)(e) = -\phi(g_i)$$
$$(\alpha_i \circ g_i - \alpha_i)(g_i) = \phi(g_i)$$

and

$$(\alpha_i \circ g_i - \alpha_i)(g_j) = 0$$
 for $g_i \neq g_i, e$

Thus

$$\sum_{i} (\alpha_{i} \circ g_{i} - \alpha_{i})(x) = \phi(g_{i}) \quad \text{if} \quad x = g_{i}$$
$$= -\sum_{i} \phi(g_{i}) = \phi(e) \quad \text{if} \quad x = e$$

so $\phi = \sum_{i} (\alpha_i \circ g_i - \alpha_i)$ as required.

The proof for a proper subgroup H follows similarly.

The proof also shows that ωG is additively generated by $T = \{g \circ \phi - \phi | g \in G, \phi \in NG\}$ and therefore ωG is a right G-closed right ideal, *i.e.* an ideal. The same holds for ωH where H is any normal subgroup of G. Continuing with the assumption that N is a ring, to each left G-closed left ideal J of NG we can associate a subset $\Omega J = \{g | \phi \circ g - \phi \in J\}$ of G. In fact ΩJ is a subgroup since $\phi \circ gg_1 - \phi = \phi \circ g \circ g_1 - \phi \circ g + \phi \circ g - \phi$ and $\phi \circ g^{-1} - \phi = -(\alpha \circ g - \alpha)$ where α is defined by $\alpha = \phi \circ g^{-1}$. Thus

Proposition 3.6. When N is a ring, there is a mapping ω :{Subgroups of G} \rightarrow {G-closed left ideals of NG} and a mapping Ω in the reverse direction such that $\Omega \omega H = H$. Thus ω is 1–1 and Ω is onto.

Now we consider NG for any pseudo-distributive near-ring N. If H is normal in G with canonical map $\sigma: G \to G/H$, then there is a natural map $\bar{\sigma}(\phi): N G/H \to NG$ given by $\bar{\sigma}(\phi) = \phi \circ \sigma$. In fact $\bar{\sigma}$ is a near-ring monomorphism by which we can identify N G/H with a subnear-ring of NG, namely $\{\phi \in NG | \phi(gh) = \phi(g) \text{ for all } h \in H\}$. Also there are natural maps $\theta_H: NG \to NH$ (given by restriction) and $\rho_H: NH \to NG$ (where $\rho_H(\phi) = \phi$ on H and $\rho_H(\phi) = 0$ on G - H) such that $\theta_{H\rho H} = \text{id}$. In fact, ρ_H is a normal map so NH is a direct summand of NG (as N-groups).

If I is any ring ideal in N, and H is normal we have from Theorems 3.4 and 3.5 the composite maps $f_2 f_1: NG \rightarrow N/IG \rightarrow N/IG/H$ whose kernels $\omega_I H$ are ideals in NG. Taking H = G we get the

Corollary. NG contains ideals $\omega_I G$ for which $NG/\omega_I G \simeq N/I$ as rings. Note that $\omega_I G = \{\phi \in NG | \sum_{g \in G} \phi(g) \in I \}.$

This is a key result, corresponding to the fact for unital group rings that the augmentation ideal Δ of RG satisfies $RG/\Delta \simeq R$. (See also [7], Theorem 4.9). This leads to several results transferring properties from R to RG with appropriate conditions on G. If N is pseudo-distributive and abelian (eg. examples (1) and (2) in [4]) then $\delta:NG \rightarrow N$ given by $\delta(\alpha) = \sum_{g} \alpha(g)$ is still well defined and gives $NG/\ker \delta \simeq N$. In the more general case the above result allows some transfer of properties between NG and N/I for ring ideals I as we shall see below. Moreover, Theorem 3.4 shows how certain factors of NG are group rings (N/I)G, and indeed they may even be unital as the example following Proposition 2.2 shows. We repeat that certain conditions imposed on the pseudo-distributive near-ring NG (eg. Von Neumann regularity, the absence of non-zero nilpotent ideals) would force NG to be a ring; on the other hand some information about non-unital group rings can be obtained in this way. For example, using a proof like that for unital rings one can show that if NG is regular, then N is regular and G is locally finite. We give a sample result for general pseudo-distributive group rings:

Proposition 3.7. If NG has DCCL, then N/I is a left artinian ring for all ring ideals I, and G is finite. Moreover, N/J(N) is a unital artinian semi-simple ring. If N is abelian, N is also left artinian.

Proof. $NG/\omega_I G \simeq N/I$ is left artinian for all ring ideals *I*. $NG/JG \simeq N/JG$ is an artinian ring and, as noted earlier, N/J has no nilpotent ideals. Since $N/J \simeq (N/J)G/\Delta$ is also left artinian, therefore N/J has an identity. Then the fact that N/JG is artinian implies *G* is finite [1, Theorem 1].

Now suppose G is finite. Let S be the set of constant maps $\bar{n}: G \to N$ where $\bar{n}(g) = n$ for all $g \in G$. In unital group rings, S is an ideal equal to Ann^l ωG and Ann^r ωG ([1]).

Proposition 3.8. (a) If N has a left cancellable element than $S = \operatorname{Ann}^{r} \omega_{I} G$ for all ring ideals $I \subseteq A$. (b) If N is distributive $\operatorname{Ann}^{l} \omega_{c} G \supseteq S$. (c) If N is a ring, S is an ideal contained in both $\operatorname{Ann}^{l} \omega_{c} G$ and $\operatorname{Ann}^{r} \omega_{c} G$, which are also ideals.

Proof. (a) Note that if N has a right cancellable element, it is a ring [3]. Certainly $S \subseteq \operatorname{Ann}^r \omega_I G$ since $\phi \cdot \overline{n} = \sum_x \phi(x) n = [\sum_x \phi(x)] n = 0$ when $\sum_x \phi(x) \in I \subseteq A$. Conversely, if $\phi \alpha = 0$ for all $\phi \in \omega_I G$ then $\sum \phi(x) \alpha(x^{-1}g) = 0$ for all g so in particular $\sum \phi(x) \alpha(x^{-1}) = 0$. If α is not constant there exist y_1, y_2 such that $\alpha(y_1) \neq \alpha(y_2)$. Define ϕ by $\phi(y_1^{-1}) = n, \phi(y_2^{-1}) = -n, \phi(g) = 0$ for all other g. Then $\phi \in \omega_I G$ since in fact $\sum_x \phi(x) = 0$ and $n\alpha(y_1) - n\alpha(y_2) = 0$. Thus if n is left cancellable, $\alpha(y_1) = \alpha(y_2)$ which is contradiction.

(b) Since $\omega_c G = \{\sum_g \phi g - \phi + CG\}$ and since N distributive implies C = N' therefore if $(\bar{n} \in S, \ \bar{n} \cdot (\phi g - \phi + \alpha)(y) = \sum_{x \in G} n[\phi \cdot g(x) - \phi(x) + \alpha(x)] = \sum_x n\phi(xg^{-1}) - n\phi(x) + \sum_x n\alpha(x)$ for all $\alpha \in CG$. The first sum is zero since as x runs through Supp ϕ so does xg^{-1} and the second sum is zero since $N \cdot N' = 0$ in the distributive case.

(c) This is straight forward.

We conclude with the following observations: When (N, S) is a distributively generated near-ring the N-groups of interest are the (N, S)-groups, i.e. those N-groups on which S acts distributively (see eg. [9, p. 182] and [7]). By analogy, when N is pseudo-distributive define an N-group A to be a p.d. N-group if

(PD1)
$$n_1a_1 + n_2a_2 = n_2a_2 + n_1a_1$$

(PD2) $n_1(n_2a_2 + n_3a_3) = n_1n_2a_2 + n_1n_3a_3$ for

all $n_i \in N$, $a_i \in A$. That is, NA is an abelian N-subgroup of A on which N acts distributively. Examples are N itself, any left ideal of N, N/I for I any left ideal containing C(N), N_k , and NG.

Now classical group algebras were used to study the representation of a group as a group of matrices. For (N, S)-groups, Meldrum [7] was able to establish a 1-1 correspondence between representations of G as a group of (N, S)-automorphisms and representations of the d.g. group near-ring. In the pseudo-distributive case there is clearly no hope of restricting representations of NG to G since G is not identified with a subgroup of NG. However, if $\mu: G \to N_k$ is a semi-group homomorphism to the multiplicative structure of N_k , then μ induces a "representation" $\hat{\mu}: NG \to N_k$ defined by $\hat{\mu}\phi = \sum_a \phi(g)\mu(g)$. Since N_k is a p.d. N-group, $\hat{\mu}$ is a near-ring homomorphism.

Acknowledgement. The author gratefully acknowledges the support of the NSERC of Canada.

REFERENCES

1. I. G. CONNELL, On the group ring, Canad. J. Math. 15 (1963), 650-685.

2. H. HEATHERLY, Distributive near-rings, Quart, J. Math. Ser. (2) 24 (1973), 63-70.

3. H. HEATHERLY and S. LIGH, Pseudo-distributive near-rings, Bull. Aust. Math. Soc. 12 (1975), 449-456.

4. S. LIGH, A note on matrix near-rings, J. London Math. Soc. (2) 11 (1975), 383-384.

5. G. MASON, Solvable and nilpotent near-ring modules, Proc. Amer. Math. Soc. 40 (1973), 351-357.

6. C. Maxson, On near-rings and near-ring modules (Doctoral dissertation, SUNY at Buffalo, 1967).

7. J. MELDRUM, The group distributively generated near-ring, Proc. London Math. Soc. (3) 32 (1976), 323-346.

8. D. PASSMAN, Infinite group rings (Marcel Dekker, New York, 1971).

9. G. Pilz, Near-rings (North Holland, Amsterdam, 1977).

DEPARTMENT OF MATHEMATICS & STATISTICS University of New Brunswick Fredericton, N. B., Canada