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1. Introduction

If G is a group and N a ring, the elements of the group ring NG can be thought of
either as formal sums X/yr or as functions (/>:G-yN with finite support. If N is a near-
ring, problems arise in trying to construct a group near-ring either way. In the first case,
Meldrum [7] was able to exploit properties of distributively generated near-rings (AT, S)
to build free (N, S)-products and hence a near-ring analogue of a group ring. For the
latter case, Heatherly and Ligh [3] observed that the set of functions could be made
into a near-ring under multiplication given by (<l>*a)(g)=YixeG<f>(x)a(x~1g)> provided N
satisfies

(PI) a1bl + a2b2

and

(P2) ntaM
I I

for all ai,bhneN and feeZ+. Such near-rings are called pseudo-distributive. In fact
these are precisely the conditions under which the set Nk of k x k matrices over N is also
a near-ring and then both NG and Nk are pseudo-distributive.

Examples are found in [3], where some restrictions are given for a near-ring to be
pseudo-distributive and yet not a ring (a so-called non-ring). In particular, N should not
contain an identity. On the other hand, any non-unital ring is a pseudo-distributive
near-ring so the results of this paper will apply to non-unital rings (group rings and
matrix rings). Moreover, we shall see that our near-rings have close connections to
appropriate rings.

In the next section we develop some general facts about pseudo-distributive near-
rings. In the third section we examine the structure of matrix near-rings and group near-
rings. The basic reference for near-rings is [9], and in this paper all near-rings will be
zero-symmetric right near-rings. For future reference we repeat the definition of an ideal:
A subgroup (/, +) of (N, +) is an ideal of JV if it satisfies

(11) / is a normal subgroup
(12) n(x + a) — nxel for all n,xeN, ael
(13) INc I.

We note that because of the zero symmetry NI^I also, by (12).
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2. Pseudo-distributive near-rings

As might be expected, a near-ring which is "almost abelian" (PI) and "almost
distributive" (P2) has lots of rings associated with it. The proof of the following is
straight-forward:

Proposition 2.1. If N is pseudo-distributive, the following are rings:

(a) Na = {na\neN} for all aeN.

(c) B(N), the set of central idempotents (with addition given by e @f=e + f — 2ef).
(d) N/I for any modular ideal I.
(e) N/A where A = \

Note that A is a non-zero ideal ([3]) and Na and N2 are also iV-subgroups of N.
Also N2 satisfies (12) and (13) so would be an ideal iff it were a normal subgroup of N.
In fact, this is true of any subgroup J with AT2s J s N , i.e. any such normal subgroup J
is an ideal.

Following [5] let [iV, iV] be the JV-commutator ideal, namely the ideal generated by
S = {n(a + b) — na — nb}. Now in [5, Proposition 2.2] it was shown that the subgroup
generated by S satisfies (12), and clearly (13) holds (in fact SN = 0) so again this
subgroup lacks only normality to be an ideal. Maxson [6] has defined D(N), the
distributor ideal, to be the ideal generated by T={n(a + b)-nb-na}. By P2, S = T in
our case so D{N) = \_N,N]. Letting N' be the commutator subgroup of (N, +), we have
from [2] that when N is distributive, N' is an ideal and N' • N = N • N' = 0. For N
pseudo-distributive, N' • N = 0 still holds.

Proposition 2.2. / / N is pseudo-distributive, C(N) =N' + D(N) is an ideal and N/I is a
ringiffI=>C(N).

Proof. Since N/D(N) is distributive, its commutator subgroup is an ideal which has
the form C(N)/D(N) for some ideal C(N) of N. In fact (N/D(N))' = N' + D(N)/D{N). Then
N/C(N) is isomorphic to the distributive near-ring N/D(N) modulo its commutator and
so is a ring. If / is an ideal of N for which N/I is a ring, then the abelian addition and
distributivity of N/I shows that N' £ / and D(N) £ / respectively, and conversely.

We shall call any ideal / 2 C a ring ideal of N. For example, if N is abelian then
C = D(N), and if N is distributive then C = N'. In fact in [2], Heatherly shows how
nilpotent groups of class 2 can be made into distributive near-rings by defining a • b =
a + b — a — b. Then C = N' = N2. In the same paper it is pointed out that S3 has the
structure of a distributive near-ring (see #29, p. 342 of [9]). In this case C = A3 and,
in fact, N/A3 is a unital ring. See also Theorem 2.6.

Setting K(N) = set of distributive elements of N, Maxson showed ([6]) that K(N) is a
subnear-ring of N precisely when PI holds for all at e K(N), bt e N, and in [3, Theorem
2] K(N) was shown to be a normal subgroup. In fact we have
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Proposition 23. K(N) is a subnear-ring and a left ideal when N is pseudo-distributive.

Proof. If x e K(N), then for all nh a, e N

x a i

+ a2) by P2

= nixa1+n1xa2 by PI

On the other hand [ni(n2+x) — nln22al+[n1(n2 + x) — nln2]a2 also equals n1xa1+n1xa2

by a straight forward calculation. Thus (12) holds.
Note that A^K(N).
In [3] it was shown that if JV is a simple pseudo-distributive near-ring then either

A = N and N2=0, or A = N is the finite field of order p, or A = (0) and N is a ring. In
fact in the first case we also have N = N' (i.e. (N, +) is a perfect group) since A = N
implies K(N) = N so D(N) = 0 and C(N) = N' = N.

Recall [9, pp. 136-7] that in near-rings there are four "radicals" J;(iV), i = 0,1/2,1,2
which generalize the Jacobson radical J(R) of a ring. Jt is an ideal for i = 0, 1,2.

Theorem 2.4. (a) Jt(N/I) = Jt{Nyi for any ideal I c Jt, i = 0,1,2.
(b) /n a pseudo-distributive near-ring N all the radicals coincide.

Proof, (a) Let J represent any one of Jo, J t or J2 and suppose / is an ideal, ZsJ.
Then the canonical surjection f:N/I->N/J yields, by [9, 5.13(b) and 5.16],
f{J(N/I))^J(f(N/I)) = J(N/J) = 0. Therefore J(N/I)cker/ = J/I. On the other hand, by
[9, 5.15c)], J(N/I)^J/I so equality holds as required.

(b) Since JO£J1£J2> applying (a) we have Ji(N/J0) = Ji(N)/J0 for i=0,1,2. Since
C(N)S:A^(L:N) for every left ideal L, therefore C=J 0 and hence N/Jo is a ring. Thus
all its radicals coincide and since Jo(N/Jo) = 0 therefore Ji(N)=Jo for /= 1,2. Since J^,
(which, in general, is only a left ideal), lies between Jo and Jt therefore Ji = J0 also.

We can then characterize J(N) by a kind of "quasi-regularity". Recall that in a ring R,
x is right quasi-regular if x + b + xb=0 for some b, and J(R) = {x\xr is right quasi-
regular for all r}.

Corollary 2.5. / / N is pseudo-distributive, J(N) = {x \ for all r there exists an s such
that for all n, xrn + sn + xrsn = 0}.

Proof. Applying Theorem 2.4(a) to I = A<=J and using Proposition 2.1(e) we see
J(N)/A is the set {x + A\{x + A)(r + A) is right quasi-regular for all reN}. Therefore
J(N) = {x\ for all r there exists s such that xr + s + xrseA}.

Now if N is pseudo-distributive, N/J is a ring with zero Jacobson radical. Suppose N
has DCCL (descending chain condition on left ideals). Then ([9, 5.48]) since all radicals
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coincide, J is nilpotent. Since N/J also has DCCL, it is a unital ring. Thus we have the
following analogue to the Artin-Wedderbun Theorem for rings:

Theorem 2.6. / / JV is a pseudo-distributive near-ring with DCCL, then N/J is a unital
ring which is a finite direct sum of matrix rings over skew fields.

3. Matrix and group near-rings

Let JV be pseudo-distributive and for any ScN let Sk denote the set of matrices in Nk

all of whose entries belong to S. Let J(N) be the set of ideals of JV.

Proposition 3.1. There is a mapping T:f{N)^/(Nk) and a mapping S:/{Nk)^f{N)
such that ST=id (so T is 1-1 and S is onto).

Proof. Clearly if J is an ideal in JV, Jk is an ideal in Nk so T(J) = Jk. Conversely, if f
is an ideal in Nk, set S(f) = {n\n = all for some (ay) = y4e,/}. Clearly S(f) is a normal
subgroup of JV. Moreover if neS{#) let X = (8lJx) and Y=(yij) where yu=y,ytj = 0 for
(i,j)£ (1,1). Then x(y + ri)-xy is the 1-1 entry of X(Y+A)-XYef. Since S(/) is
clearly right JV-closed, it is an ideal.

Next we have J^ST(J) trivially and if n is the 1-1 entry of some matrix in Jk, clearly
neJ.

We note that in the case of unital rings TS = id also, since by using matrix units one
can show that if A=(ai})e# then atJ is the 1-1 entry of some matrix in J'. In the
present case, let Xti be the matrix with entry x in position i-j and zeros elsewhere. If
Aef, then B = Y,kXkiAYjkeJ and B is the matrix with xatjy all along the diagonal.
Thus for all i, j , and all x, y, we have xatjy e S(f). This also shows that every ideal in JVk

intersects JV non-trivially (where JV embeds canonically in Nk).

Lemma 3.2. / / / is an ideal in JV, (JV//)t is isomorphic to Nk/Ik.

Proof. The map Nk-+(N/I)k sending (afj) to (ay + /) is a surjection with kernel Ik.
As a result Dk^D(Nk) and Ck^C(Nk). We note in passing that Ak = A(Nk) and K(Nk) =

K(N)k.
Let J(N) be the Jacobson radical. For rings it is well known that J(Nk) = J(N)k. Using

this we can show

Theorem 3.3. 7/JV is pseudo-distributive, J(Nk) = J(N)k.

Proof. By the lemma, N,JJk~(N/J)k and since N/J is a ring J({N/J)k) = (J(N/J))k=0.
Then O = J(NJJk)^J(Nk) + Jk/Jk by [9, 5.15c)] so J{Nk)^Jk. Now consider the ring
N/C. Using Theorem 2.4 and the lemma we have J(Nk)/Ck^J(Nk/Ck)^J((N/C)k)^
(J{N/Q)k^(J(N)/C)k^J'JCk. Combined with the fact J{Nk)^Jk, we have equality.

Turning now to group near-rings, we recall the comments made in the introduction
that NG is taken to be the set of functions <j):G-+N with finite support, and
multiplication defined by (</>*a)g=^Jc^(x)a(x~1g). NG is then an JV-group, and JV is a
subnear-ring of NG via the functions h where n(e) = h and h(g) = 0 for g =/= e (we note in
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passing that this embedding depends on the zero-symmetry of N). N is also a normal
subgroup of (NG, +).

The standard theory of unital group rings RG (see eg. [1] or [8]) makes extensive use
of the fact that G can also be embedded in RG using the identity of R. In particular, this
allows one to say that (f>-g and g(peRG for all (peRG, gsG. In the pseudo-distributive
near-ring case we can define left and right G-actions on NG as follows: (<p ° g)(h) = <p(hg~l)
and (g°(p)(h) = <p(g~1h). Then for all a, fieNG and g, gt eG we have

Also nog=gofi for all neN, geG.
It follows that each a e NG can be written as <x = £9n9 ° g where ng = a(g). In what follows
we shall generally indicate both * and o by simple juxtaposition.

A left ideal / of NG will be called left (right) G-closed if g / s / ( / g£ / ) for all geG. For
example Ann NG is left and right G-closed (see Theorem 3.4) and since J(NG) =
n(L:NG) where L is an i-modular left ideal [9, p. 136] it follows that J(NG) is right G-
closed. Note that / is left and right G-closed if a e / implies j? e I for all /? with range a =
range p. Writing Supp$ = {g|$(g)^0} for the support of <p we have

1. Supp (g0)=
2. If Suppan Supp/? = 0 then

4>(a + fl) = <i>* + <t>P for all 4>eNG
3. If x e Supp (<x/?), there exist h e Supp a and g e Supp /? such that x = hg.

Theorem 3.4. (a) / / / is a (left) ideal of N then IG = {$ eNG\4>(x) eI for all xsG) is
a G-closed (left) ideal of NG. (b) If I is two-sided NG/IG^(N/I)G as near-rings, (c)
K(NG) = K(N)G, Ann (NG)=(Ann N)G, C(NG) = C(N)G and D(NG) = D(N)G. (d) The
map T:f(N)^f(NG) given by T(I) = IG and the map S:f(NG)->f(N) given by S(/) =
fnN satisfy ST(I) = I (cf. Proposition 3.1).

Proof, (a) Clearly (/G, +) is a normal subgroup of NG. Moreover

[a(0 + 4>)- *P](g) = X <x(x)(p + 4>)(x - V) - Z <x)p(x - V) = Z «(x)(p(x - >g) + 4(x - lg))
X X X

-<x(x)P(x-1g) (by PI)

which is in / for all a, PeNG, (frelG. Also (peIG implies ae/G for all a with range a =
range <p so IG is left and right G-closed.
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(b) If / is a two sided ideal and n:N-+N/I the canonical map, define f^.NG-^N/I G by
f1(<f)) = no(f>. Then fy is a near-ring surjection with kernel IG.

(c) If 4>eK(NG) then </>(a + 0) = </>« + <f>p for all a,/?. Therefore
^x</)(x)a(x~1g) + (/i(x))9(x"1^) f ° r all g e G . In particular a and /? can be chosen to have
singleton support x^ig and arbitrary values n, n'eN so that for all xeG, all
n,rieN,<j)(x){n + ri) = <f)(x)n + <f){x)ri whence <f>eK(N)G. The reverse inclusion
K(N)GczK(NG) is clear, and the proofs for D(NG), C(NG) and A(NG) are straight-
forward.

(d) Is easily shown.

We next investigate the connection between subgroups of G and G-closed left ideals in
NG. If H is any subgroup of G, the set of cosets G/H can be used to define an N-group
N G/H which will be a near-ring if H is normal. We first consider the case when AT is a
ring so N G/H is an JV-module.

Theorem 3.5. Let N be a ring. The mapping f2:NG^NG/H given by (f2<t>){gH) =
YsheH <t>(gh) is an N-module homomorphism whose kernel coH is a left ideal which is left
G-closed. Moreover coH is additively generated by S = {(/>°/i —</>|0eiVG,

Proof. The first part is a normal ring theoretic proof. coH is left G-closed because
°(l>){gh)=YJh4>(.x~1gh) = Q- Note that if H is normal, coH is also right G-closed.

Clearly S c k e r / 2 since

h.eH
)=o.

Conversely consider the case H = G. Then if <^>ecwG,£9(/>(g) = 0 and without loss of
generality e e Supp cf> so define

a,(e) = 0 (^ ) for i = l,...,/c

= 0 otherwise

Then

and

= 0 for
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Thus

if x=gi

so 4>=Y1i(
Oii°gi~'xi) a s required.

The proof for a proper subgroup H follows similarly.
The proof also shows that coG is additively generated by T={go<f> — <j)\geG,(peNG}

and therefore a>G is a right G-closed right ideal, i.e. an ideal. The same holds for aH
where H is any normal subgroup of G. Continuing with the assumption that N is a ring,
to each left G-closed left ideal J of NG we can associate a subset QJ = {g\(p°g—<peJ}
of G. In fact £IJ is a subgroup since (p°ggl~<j> = (f>ogogv — (f)og-\-(pog—(p and ^ o g " 1 -
0 = _ ( a og— a ) where a is defined by cc = (p°g~1. Thus

Proposition 3.6. When N is a ring, there is a mapping co: {Subgroups of G}—>• {G-closed
left ideals of NG} and a mapping Q in the reverse direction such that ilcoH = H. Thus a is
1-1 and Q is onto.

Now we consider NG for any pseudo-distributive near-ring N. If H is normal in G
with canonical map a:G->G/H, then there is a natural map a(4>):N G/H^NG given by
a{(p) = <p°o. In fact a is a near-ring monomorphism by which we can identify N G/H
with a subnear-ring of NG, namely {4>BNG\4>{gh) = <f)(g) for all heH}. Also there are
natural maps 0H:NG-*NH (given by restriction) and pH:NH->NG (where pH(<j)) = <p on
H and pH(<f>) = 0 on G — H) such that QHpH = id. In fact, pH is a normal map so NH is a
direct summand of NG (as N-groups).

If / is any ring ideal in N, and H is normal we have from Theorems 3.4 and 3.5 the
composite maps faf^NG-tN/I G-*N/I G/H whose kernels co,H are ideals in NG.
Taking H — G we get the

Corollary. NG contains ideals cojGfor which NG/cofi^N/l as rings.
Note that (oIG = {<peNG\Yjg£G4>{g)sl}.
This is a key result, corresponding to the fact for unital group rings that the

augmentation ideal A of RG satisfies RG/A~R. (See also [7], Theorem 4.9). This leads
to several results transferring properties from R to RG with appropriate conditions on
G. If N is pseudo-distributive and abelian (eg. examples (1) and (2) in [4]) then
5:NG->N given by 5(a) = ^ a ( g ) is still well defined and gives NG/kerd^N. In the more
general case the above result allows some transfer of properties between NG and N/I
for ring ideals / as we shall see below. Moreover, Theorem 3.4 shows how certain
factors of NG are group rings (N/I)G, and indeed they may even be unital as the
example following Proposition 2.2 shows. We repeat that certain conditions imposed on
the pseudo-distributive near-ring NG (eg. Von Neumann regularity, the absence of non-
zero nilpotent ideals) would force NG to be a ring; on the other hand some information
about non-unital group rings can be obtained in this way. For example, using a proof
like that for unital rings one can show that if NG is regular, then N is regular and G is
locally finite. We give a sample result for general pseudo-distributive group rings:
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Proposition 3.7. If NG has DCCL, then N/I is a left artinian ring for all ring ideals I,
and G is finite. Moreover, N/J(N) is a unital artinian semi-simple ring. If N is abelian, N
is also left artinian.

Proof. NG/cojG^N/I is left artinian for all ring ideals /. NG/JG^N/JG is an
artinian ring and, as noted earlier, N/J has no nilpotent ideals. Since N/Jcz(N/J)G/A is
also left artinian, therefore N/J has an identity. Then the fact that N/JG is artinian
implies G is finite [1, Theorem 1].

Now suppose G is finite. Let S be the set of constant maps n:G->N where n(g) = n for
all geG. In unital group rings, S is an ideal equal to Ann' coG and AnnrcoG ([1]).

Proposition 3.8. (a) If N has a left cancellable element than S = Annra>IG for all ring
ideals I^A. (b) If N is distributive Ann' a>cG 2 S. (c) If N is a ring, S is an ideal contained
in both Ann' <ocG and Annr a>cG, which are also ideals.

Proof, (a) Note that if N has a right cancellable element, it is a ring [3]. Certainly
SsAnn'cojG since 0-n=^x(/)(x)n = [^(^(x)]n=O when ^ ( x ) e / £ A Conversely, if
</><x = 0 for all <f>€(OjG then ^^>(x)a(x~1g) = 0 f°r au< S so in particular £<£(x)a(x~ *)=(). If
a is not constant there exist yl3y2 such that afj^J^a^)- Define <f> by <t>{yll) = n,(j){y2l) =
— n,(j)(g) = 0 for all other g. Then (frecojG since in fact £x</>(x) = 0 and n<x(yl) — n<x(y2) = 0.
Thus if n is left cancellable, cc{yi) = 0L{y2) which is contradiction.

(b) Since a>cG = {Y,g<t>g—<t> + CG) and since N distributive implies C — N' therefore if
(n e S, n • {<t>g- <f> + a)(y) = £xeGn[</> • g(x) -4>{x) + a(x)] = J > f l x * - ' ) ~ n<t>{x) + L ^ x ) for
all a e CG. The first sum is zero since as x runs through Supp </> so does xg 1 and the
second sum is zero since N • N' = 0 in the distributive case.
(c) This is straight forward.

We conclude with the following observations: When (N, S) is a distributively
generated near-ring the iV-groups of interest are the (N, S)-groups, i.e. those iV-groups
on which S acts distributively (see eg. [9, p. 182] and [7]). By analogy, when JV is
pseudo-distributive define an Af-group A to be a p.d. iV-group if

(PD1) n1a1+n2a2=n2a2 + n1a1

(PD2) n1(n2a2 + n3a3) = n1n2a2 + n1n3a3 for

all n(eN, ateA. That is, NA is an abelian N-subgroup of A on which N acts
distributively. Examples are N itself, any left ideal of N, N/I for / any left ideal
containing C(N), Nk, and NG.

Now classical group algebras were used to study the representation of a group as a
group of matrices. For (N, S)-groups, Meldrum [7] was able to establish a 1-1
correspondence between representations of G as a group of (N, S)-automorphisms and
representations of the d.g. group near-ring. In the pseudo-distributive case there is
clearly no hope of restricting representations of NG to G since G is not identified with a
subgroup of NG. However, if fi:G->Nk is a semi-group homomorphism to the
multiplicative structure of Nk, then fi induces a "representation" p.:NG->Nk defined by

)- Since Nk is a p.d. JV-group, p. is a near-ring homomorphism.
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