
Appendix A

Notations, conventions, standard mathematical results

In this appendix, I have collected the definitions of notations and conventions that I use. In
addition, I have collected some standard numerical results and formulae that are frequently used
in practical QCD calculations. For normalization conventions and the like, I generally follow
the conventions of the Particle Data Group (PDG) (Amsler et al., 2008).

In some cases it may be quite difficult to discover some of these formulae in the literature,
and the reader wishing to check them may find it easier to rederive them than do a literature
search.

A.1 General notations

1. I use
def= to denote the definition of a symbol, as in Q2 def= −(l − l′)2.

2. I use
prelim= to indicate a preliminary early version of a definition, that is to be corrected later.

Quantity
prelim= preliminary candidate definition. (A.1)

3. I use
?= to indicate an incorrect result: FL

?= 0. Typically, this represents a result true only in
some simplified situation.

4. I use [A,B]+, with a subscript +, to denote an anticommutator: [A,B]+
def= AB + BA.

5. A hat over a symbol, e.g., k̂, generally indicates that some parton-type approximator has
been applied. It is also used to denote a hard scattering or a kinematic variable at a partonic
level.

6. Generally a tilde, as in f̃ , indicates a Mellin or a Fourier transform. It has some other rarer
uses, e.g., the wave function renormalization Z̃ for the Faddeev-Popov ghost field.

7. In Feynman graphs, the normal association of line types is:

quark or lepton

gluon

Faddeev-Popov ghost

Wilson line

scalar

photon, W, Z

A.2 Units, and conversion factors

1. Generally I use units with h̄ = c = ε0 = 1, with energy in GeV. To convert to standard units,
factors of h̄, c, etc. need to be inserted according to the demands of dimensional analysis,
after which the following conversion factors are useful.

2. h̄c = 0.197 327 0 GeV fm.
3. (h̄c)2 = 0.389 379 3 GeV2 mbarn, where 1 barn = 10−28 m2.
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4. The fine-structure constant is α = e2/(4π ) � 1/137.036, with e being the size of the charge
of the electron. In SI units, α = e2/(4πh̄cε0).

A.3 Acronyms and abbreviations

Common acronyms and abbreviations are:

1PI one-particle irreducible
2PI two-particle irreducible
ACOT Aivazis-Collins-Olness-Tung
BFKL Balitsky-Fadin-Kuraev-Lipatov
BJL Bjorken-Johnson-Low
BNL Brookhaven National Laboratory
BRST Becchi-Rouet-Stora-Tyutin
CCFM Catani-Ciafaloni-Fiorani-Marchesini
CERN European Organization for Nuclear Research
CKM Cabibbo-Kobayashi-Maskawa
CM center-of-mass
CS Collins-Soper
CSS Collins-Soper-Sterman
CWZ Collins-Wilczek-Zee
DDVCS double deeply virtual Compton scattering
DESY Deutsches Elektronen-Synchrotron
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
DIS deeply inelastic scattering
DVCS deeply virtual Compton scattering
DY Drell-Yan
ELO extended leading order
ENLO extended next-to-leading order
FNAL Fermi National Accelerator Laboratory
GPD generalized parton density
HERA Hadron-Electron Ring Accelerator (at DESY)
HQET heavy-quark effective theory
IR infra-red
KLN Kinoshita-Lee-Nauenberg
LEET low-energy effective theory
LEP Large Electron Positron collider (at CERN)
LHC Large Hadron Collider (at CERN)
l.h.s. left-hand side (of equation)
LLA leading-logarithm approximation
LO leading order
LSZ Lehmann-Symanzik-Zimmermann
MNS Maki-Nakagawa-Sakata
MS modified minimal subtraction (renormalization scheme)
NLO next-to-leading order
NNLO next-to-next-to-leading order
OPE operator product expansion
pdf parton distribution function (or parton density function)
PDG Particle Data Group
pQCD perturbative QCD
p.s.c. power-suppressed correction
PSS pinch-singular surface
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QCD quantum chromodynamics
QED quantum electrodynamics
QFT quantum field theory
RG renormalization group
RGE renormalization-group equation
RHIC Relativistic Heavy Ion Collider (at BNL)
r.h.s. right-hand side (of equation)
SCET soft-collinear effective theory
SIDIS semi-inclusive deeply inelastic scattering
SLAC Stanford Linear Accelerator Center
SM Standard Model
TMD transverse momentum dependent
Tr trace
UV ultra-violet
VEV vacuum expectation value

A.4 Vectors, metric, etc.

1. 3-vectors are written in boldface: x.
2. In ordinary coordinates, Lorentz 4-vectors are written as, e.g., xμ = (t, x, y, z) = (t, x),

with a right-handed coordinate system.
3. The metric is gμν = diag(1,−1,−1,−1).
4. The fully antisymmetric tensor εκλμν is normalized to ε0123 = 1. With raised indices it has

the opposite sign: ε0123 = −1.
5. Light-front coordinates (App. B) are defined by x± = (t ± z)/

√
2. A vector is written

xμ = (x+, x−, xT).
6. The 2-dimensional antisymmetric tensor εij obeys ε12 = ε12 = 1.

7. Rapidity for a 4-momentum is defined by y
def= 1

2 ln

∣∣∣∣p+p−

∣∣∣∣.
8. I make a clear distinction between contravariant vectors, with upper indices, and covariant

vectors, with lower indices. See App. B for further details.
9. An on-shell momentum pμ = (E, p) for a particle of mass m obeys p2 = m2, and so

E = E p
def=
√

p2 +m2.
10. Hence for an on-shell particle

p± = e±y

√
(p2

T +m2)/2, (A.2)

when the transverse momentum is pT = (p1, p2).

A.5 Renormalization group (RG)

1. I consistently write renormalization group equations (RGEs) in terms of a derivative with
respect to ln μ.

2. Then the anomalous dimension γG of a quantity G is defined as

γG = −d ln G

d ln μ
. (A.3)

Note the minus sign. This corresponds to the natural use of the term “anomalous dimension”
where there is a fixed point in the coupling.

3. However, certain quantities do not have the minus sign that might otherwise be expected,
notably γm in (3.48), β in (3.44) etc., and the DGLAP kernels in (8.30).
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4. Furthermore, the definitions of β and the DGLAP kernels are conventionally made in terms
of derivatives with respect to ln μ2, so our definitions in terms of d/d ln μ acquire factors of
half.

A.6 Lorentz, vector, color, etc. sub- and superscripts

Generally, the symbols for indices of various kinds are taken from different ranges of letters:

1. Lorentz: μ, etc.
2. 3-vector: i, j , etc.
3. Dirac: ρ, etc.
4. Color, in adjoint representation: α, etc.
5. Color, in fundamental representation: a, etc.
6. Flavor, in adjoint representation: A, etc.
7. Flavor, in fundamental representation: f , etc.
8. Symbols for momenta tend to be taken from the list k, l, p, q, etc.
9. Symbols for coordinates tend to be from the end of the roman alphabet: x, y, z.

Note that there are so many symbols needed that it is not always possible to be consistent. Also
symbols may be overloaded: e.g., a common sub- or superscript index (notably e, i, ρ, and δ)
may have a different, standardized meaning when not used as a sub- or superscript.

A.7 Polarization and spin

Note: there is no agreement in the literature on the normalization of quantities defined in this
section.

1. The Pauli-Lubański (Lubański, 1942a, b) spin vector is the operator

Wμ
def= 1

2
εμαβγ J αβP γ , (A.4)

where P γ is the momentum operator, and J αβ are the generators of the Lorentz group,
normalized to obey commutation relations

[Jμν, J αβ ] = i
(−gμαJ νβ + gναJμβ + gμβJ να − gνβJμα

)
, (A.5)

[Jμν, P α] = i
(−gμαP ν + gναP μ

)
, (A.6)

[P α, P β ] = 0. (A.7)

2. The most general state – pure or mixed – of a particle of momentum p can be written in
terms of a spin density matrix ραα′ , with α and α′ being labels for the possible helicities of
the particle.1 The expectation value of an operator in such a state is

〈p, ρ| op |p, ρ〉 def=
∑
α,α′

ρα,α′ 〈p, α′| op |p, α〉 . (A.8)

The basis states |p, α〉 have definite momentum p and helicity α. The density matrix ρ is
Hermitian, it has trace unity, and all its eigenvalues are non-negative. An unpolarized state
of a particle of spin s has ρα,α′ = δα,α′/(2s + 1).

3. Helicity is a particle’s spin angular momentum projected on its direction of motion. Thus for
a spin- 1

2 particle its possible values are ± 1
2 .

1 Another basis could be chosen for the spin states, but the helicity basis is most convenient for our purposes.
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4. The helicity basis states are simultaneous eigenvectors of the momentum operators and a
suitable projection of the Pauli-Lubański vector.

5. To specify a general spin state of a spin- 1
2 particle, it is also possible to use a Bloch vector

b, which is a real-valued 3-vector obeying |b| ≤ 1. The correspondence to a 2× 2 density
matrix is

ρ = 1

2
(1+ b · σ ). (A.9)

6. For a spin- 1
2 particle moving in the +z direction, we write the Bloch vector as

b = (bT, λ). (A.10)

Here λ is twice the average helicity of a state, and bT is twice the average transverse spin.
We call these normalized helicity and transverse spin; their maximum values are unity.

7. The spin vector Sμ of a single-particle state is twice the expectation value of the Pauli-
Lubański vector:

Sμ = 2 〈ψ(p), ρ Wμ ψ(p), ρ〉 . (A.11)

The factor of 2 is to agree with a standard normalization (Amsler et al., 2008) of Sμ. Here
|ψ(p), ρ〉 denotes a normalized state whose momentum is closely centered on p, and whose
helicity density matrix is ρ.

8. In the rest frame of a spin- 1
2 particle, the Bloch vector corresponds exactly to the Bloch

vector concept in non-relativistic spin physics, and Sμ = M(0, b). Thus Sμ is a Lorentz-
covariant generalization of the Bloch vector.

9. If the particle is moving in the z direction with 4-momentum p = (p0, 0, 0, pz), the spin
and the Bloch vectors are related by

S = (
S0, Sx, Sy, Sz

) = (
λpz sign(pz),Mbx

T,Mb
y
T, λp0 sign(pz)

)
. (A.12)

The factors of sign pz show that the (bT, λ) representation is not ideal for a non-relativistic
particle. But the factor of M with the transverse components shows that the spin vector
cannot correctly represent the general spin state of a massless spin- 1

2 particle.
10. For a massive spin- 1

2 particle of definite momentum p, the most general spin state is
determined by the spin vector Sμ. For a spin- 1

2 particle of mass M , the spin vector obeys
(a) S · p = 0.
(b) For a general state 0 ≥ S · S ≥ −M2.
(c) For a pure state S · S = −M2.
The helicity density matrix can be deduced from the spin vector S, and therefore we also
write the matrix element in (A.8) as

〈p, S| op |p, S〉 = 〈p, ρ(S)| op |p, ρ(S)〉 . (A.13)

A.8 Structure functions

Definitions of structure functions for various processes are as follows:

1. F1, F2, g1, and g2 for electromagnetic DIS, in (2.20).
2. For unpolarized weak interaction DIS, in (7.3).
3. For one-particle-inclusive e+e− annihilation, in (12.5).
4. For two-particle-inclusive e+e− annihilation, in (13.9).
5. For Drell-Yan, see Lam and Tung (1978); Mirkes (1992); Ralston and Soper (1979); Dono-

hue and Gottlieb (1981).
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A.9 States, cross sections, integrals over particle momentum

1. The normalization of single particle states is

δ p p′
def= 〈

p′ p
〉 = (2π )32E p δ(3)( p− p′)

= (2π )32p+ δ(p+ − p′+) δ(2)( pT − p′T)

= (2π )32 δ(y − y ′) δ(2)( pT − p′T). (A.14)

In the last two lines, light-front coordinates and rapidity were used, as defined in Sec. A.4.
2. The Lorentz-invariant integral over particle momentum is

∑
p

. . .
def=
∫

d3 p
(2π )32E p

. . . =
∫

dp+ d2 pT

2p+(2π )3
. . . =

∫
dy d2 pT

2(2π )3
. . . (A.15)

Notice that the formula with ordinary Cartesian coordinates is explicitly dependent on the
particle mass, in E p, but the formulae with light-front coordinates or rapidity are not.

3. The differential cross section for a 2→ n process with incoming momenta p1 and p2, and
outgoing momenta q1, . . . , qn is

dσ = (2π )4δ(4)

(
p1 + p2 −

∑
j

qj

) n∏
j=1

d3qj

(2π )32Eqj

∣∣M( p1, p2; q1, . . . , qn)
∣∣2

4
√

(p1 · p2)2 −m2
1m

2
2

. (A.16)

The matrix element M is normalized so that it corresponds to an amputated, on-shell, con-
nected Green function (supplemented by residue factors from the LSZ reduction formula
beyond tree approximation), with the overall (2π )4δ(4)(p1 + p2 −

∑
j qj ) factor for momen-

tum conservation removed. See Sterman (1993) for details.
4. The integral over “final-state phase space” is defined by∫

dfsps . . . =
n∏

j=1

∫
d3qj

(2π )32Eqj

(2π )4δ(4)

(
p1 + p2 −

∑
j

qj

)
. . . (A.17)

A.10 Dirac, or gamma, matrices

Here I summarize results on Dirac matrices. They can be gleaned from a standard QFT textbook.
When there are competing conventions, I normally follow Sterman (1993).

1. The anticommutator is [γ μ, γ ν]+ = 2gμνI , where I is a unit matrix.
2. The hermiticity relation is (γ μ)† = γμ.

3. γ5
def= iγ 0γ 1γ 2γ 3 = 1

4! iγ
κγ λγ μγ νεκλμν , where εκλμν is the totally antisymmetric tensor

obeying ε0123 = 1.

4. In the antisymmetric combination σμν def= i

2
[γ μ, γ ν] only 6 cases are independent, in 4

space-time dimensions.
5. When the normal space-time dimension is 4, the dimensionally regulated Dirac matrices (in

n = 4− 2ε space-time dimensions) are normalized to have Tr I = 4 for all n.

6. The contraction of γ μ and a vector is written /v
def= γ μvμ.

7. The Dirac conjugate of a matrix is defined by �
def= γ 0�†γ 0. The basic matrices obey γ μ = γ μ

and γ5 = −γ5.
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8. Useful identities:

Tr odd number of γ μs = 0, (A.18)

Tr γ μγ ν = 4gμν, (A.19)

Tr γ5γ
κγ λγ μγ ν = 4iεκλμν = −4iεκλμν, (A.20)

γ μγμ = (4− 2ε)I, (A.21)

γ μγ νγμ = −(2− 2ε)γ ν. (A.22)

9. In 4 space-time dimensions, Dirac matrices are 4× 4, and a 16-dimensional basis for them
is given by 1, γ μ, σμν , γ μγ5, γ5.

10. Thus a general 4× 4 matrix M can be written as

� = S + γ5P + γμV μ + γμγ5A
μ + 1

2
σμνT

μν, (A.23)

where we assume we are in 4 space-time dimensions. (Otherwise generalization is needed.)
If � obeys the normal Lorentz-transformation properties of a matrix on Dirac spinor space,
then the coefficients S, P , V μ, Aμ, and T μν have respectively the transformation rules of:
scalar, pseudo-scalar, vector, axial-vector, and second rank antisymmetric tensor. The factor
of 1

2 in the tensor term is introduced because both σμν and T μν are antisymmetric, so that
each independent term appears twice in the sum over μ and ν.

The coefficients can be obtained from � as

S = 1
4 Tr �, P = 1

4 Tr �γ5, V μ = 1
4 Tr �γ μ,

Aμ = 1
4 Tr �γ5γ

μ, T μν = 1
4 Tr �σμν.

(A.24)

11. In cross sections we encounter combinations uū and vv̄ of Dirac spinors for on-shell
particles. An average over independent spin states for a Dirac particle of mass M gives

1
2

∑
spin

uū = 1
2 (/p +M), 1

2

∑
spin

vv̄ = 1
2 (/p −M). (A.25)

For a Dirac particle with non-trivial spin, we have instead

(/p +M) 1
2

(
1+ γ5/S/M

)
, (/p −M) 1

2

(
1+ γ5/S/M

)
, (A.26)

where S is the particle’s spin vector, normalized (Amsler et al., 2008) to a maximum of
−S2 ≤ M2. In the case of a massless particle we use a helicity variable λ and a transverse
spin variable bT, normalized to have a maximum values unity, λ2 + |bT|2 ≤ 1 (Sec. A.7) to
give

1
2 /p

(
1− λγ5 −

∑
j=1,2

γ5γ
jb

j
T

)
for quark, (A.27a)

1
2 /p

(
1+ λγ5 −

∑
j=1,2

γ5γ
jb

j
T

)
for antiquark. (A.27b)

A.11 Group theory

1. For SU(3), the definition of the structure constants fαβγ and the representation matrices in
the fundamental (i.e., triplet) representation tα are the standard ones, with tα = λα/2. Here
λα are the Gell-Mann matrices, as defined in Amsler et al. (2008, p. 338).

2. The commutation relations are [tα, tβ ] = ifαβγ tγ .
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3. fαβγ are totally antisymmetric.
4. Combinations of representation matrices and structure constants:

Tr(tαtβ ) = TF δαβ, (A.28)

tαtα = CF I, (A.29)

fαγ δfβγ δ = CAδαβ, (A.30)

where repeated indices are summed, I is the unit matrix, and the tαs are in the fundamental
representation. Useful values with standard conventions:

Symbol SU(n) SU(3)

TF
1
2

1
2

CF
n2−1

2n
4
3

CA n 3

(A.31)

5. Combinations useful in calculations:

tβ tαtβ = tα (CF − 1
2CA), (A.32)

fδαεfεβφfφγ δ = − 1
2CAfαβγ . (A.33)

A.12 Dimensional regularization and MS: basics

See Collins (1984, Ch. 4) for a systematic mathematical treatment of dimensional regularization.

1. The space-time dimension is n = 4− 2ε.
2. Rotationally symmetric Euclidean integral in d dimensions:∫

dd k f (k2) = πd/2

�(d/2)

∫ ∞
0

dk2
(
k2
)d/2−1

f (k2). (A.34)

This is often used for the transverse dimensions, with d = 2− 2ε.
3. The Lorentz-invariant integral over particle momentum is

∑
p

. . .
def=
∫

d3−2ε p
(2π )3−2ε2E p

. . . (A.35)

4. Decomposition of integration over a spatial 3− 2ε-dimensional variable into integrals over
radius, a polar angle, and an azimuthal angle:∫

d3−2ε k f (k) =
∫ ∞

0
dk k2−2ε

∫ 1

−1
d cos θ (sin θ )−2ε

∫
d�T f (k), (A.36)

where d�T represents an integral over a 1− 2ε-dimensional angle in the transverse dimen-
sions, which would be dφ in a 3-dimensional space, i.e., at ε = 0. The normalization of the
angular integral is ∫

d�T = 2π1−ε

�(1− ε)
. (A.37)

These results can be proved by decomposing k into a z component k cos θ and a 2− 2ε-
dimensional transverse vector, and then using (A.34) to get the normalization of the azimuthal
integral. See Sec. A.14 for the Gamma function.

https://doi.org/10.1017/9781009401845.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.016


590 Appendix A: Notations, conventions, standard mathematical results

5. The normalization of single particle states is〈
p′ p

〉 = (2π )3−2ε2E p δ(3−2ε)( p− p′) = (2π )3−2ε2p+ δ(p+ − p′+) δ(2−2ε)( pT − p′
T).

(A.38)

6. Loop-momentum integrals are ∫
d4−2εk

(2π )4−2ε
. . . (A.39)

7. Momentum-conservation delta functions are

(2π )4−2εδ(4−2ε)(k1 + . . .). (A.40)

8. Dirac matrices are defined to obey Tr I = 4 for all n.
9. MS definition:

(a) The lowest-order bare coupling is defined to be g0 = μεg, with g dimensionless for all n.
(b) Counterterms have a factor Sε for each loop, where

Sε = (4π )ε /�(1− ε). (A.41)

See (3.16) and (3.17) for examples. This definition differs from the more conventional
one, Sε =

(
4πe−γE

)ε � (7.056)ε , but only by terms of order ε2. It can be shown that
differences of order ε2 do not affect the values of ordinary renormalized Green functions
at any order (problem 3.3). However, the definition given here is preferable for MS
renormalization of the collinear factors defined in Chs. 10 and 13.

A.13 Dimensional regularization: standard integrals

1. “Scale-invariant” integrals, i.e., integrals of a power of the integration momentum are zero:∫
dnk(k2)−α = 0. (A.42)

2. Rotationally invariant phase-space integrals for massless particles:
(a) Two bodies:∫ 2∏

i=1

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − k1 − k2)f (k1, k2)

= Q−2ε

24−4επ1/2−ε�( 3
2 − ε)

× angular average of f
(

1
2Qn,− 1

2Qn
)
, (A.43)

in the center-of-mass, with Q =
√

q2.
(b) Three bodies:∫ 3∏

i=1

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − k1 − k2 − k3) f (k1, k2, k3)

= Q2−4ε

28−6επ5/2−2ε�( 3
2 − ε)�(1− ε)

× ang. avg.
∫ 1

0

3∏
i=1

dyi δ

(
1−

∑
yi

)
(y1y2y3)−ε f (k1, k2, k3). (A.44)
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Here the spatial momenta k1, k2, k3, add up to 0 in the center-of-mass frame, and the
sizes are given by dimensionless variables yi defined by |ki | = (1− yi)Q/2.

3. Integral used in Fourier transformations on transverse momenta:∫
eikT·bT(
k2

T

)α d2−2ε kT =
(

b2
T

4π

)ε+α−1
πα�(1− ε − α)

�(α)
. (A.45)

A proof can be made by converting the kT integral to a Gaussian, by the use of (k2
T)−α =

1

�(α)

∫∞
0 xα−1e−xk2

T dx .

4. For the case that the integrand has one or more powers of ln k2
T, the result is found by

differentiating (A.45) with respect to α.

A.14 Properties of � function

1. Definition:

�(z)
def=
∫ ∞

0
dt t z−1e−t . (A.46)

2. Integer values: �(n+ 1) = n!.
3. �(z+ 1) = z�(z).
4. Expansion about z = 0:

�(z) = 1

z
e−γEz

[
1+ π2

12
z2 +O(z3)

]
, (A.47)

where γE = 0.5772 . . . is the Euler constant.
5. Expansion about z = 1

2 :

�( 1
2 + z) = π1/2e−(γE+ln 4)z

[
1+ π2

4
z2 +O(z3)

]
. (A.48)

6. We often use ∫ 1

0
dx xα−1(1− x)β−1 = �(α)�(β)

�(α + β)
, (A.49)

∫ ∞
0

dx
xα−1

(A+ x)β
= Aα−β �(α)�(β − α)

�(β)
. (A.50)

These and other useful formulae can be found in or deduced from results in Abramowitz and
Stegun (1964). Some commonly used integrals have integrands with factors of logarithms of x,
1− x or A+ x relative to (A.49) or (A.50); these can be found by differentiation with respect
to α or β.

A.15 Plus distributions, etc.

We define the general plus distribution (lnn(1− x)/(1− x))+ by its integral with an arbitrary
smooth test function f (x):∫ 1

0
dx

(
lnn(1− x)

1− x

)
+

f (x)
def=
∫ 1

0
dx

[f (x)− f (1)] lnn(1− x)

1− x
. (A.51)
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When n = 0, and there is a smooth function (e.g., a polynomial) in the numerator, we will also
write ∫ 1

0
dx

A(x)

(1− x)+
f (x)

def=
∫ 1

0
dx

A(x)f (x)− A(1)f (1)

1− x
. (A.52)

In calculations of structure functions with dimensionally regulated divergences, we find
integrals in which plus distributions appear as a limit of regulated integrals. The following
derivation shows both a result that is useful in itself, and a general method. The factor [z/(1− z)]ε

in the integrand arises in the phase-space integral for DIS: Sec. 9.9. The integral is regulated if
ε < 0.∫ 1

0
dz

zε

(1− z)1+ε
f (z) =

∫ 1

0
dz

zεf (z)− f (1)

(1− z)1+ε
+ f (1)

∫ 1

0
dz

1

(1− z)1+ε

=
∫ 1

0
dz

{
f (z)− f (1)

1− z
+ ε

f (z) ln z− [f (z)− f (1)] ln(1− z)

1− z

}

+O(ε2)− f (1)

ε
. (A.53)

The expansion in powers of ε in the second line is allowed because the subtracted integrand is
well behaved as ε → 0.

This can be treated as an expansion of zε/(1− z)1+ε in powers of ε, interpreted in the standard
sense of the limit of a generalized function/distribution:

zε

(1− z)1+ε
= −δ(z− 1)

ε
+ 1

(1− z)+
+ ε

[
ln z

1− z
−
(

ln(1− z)

1− z

)
+

]
+O(ε2). (A.54)

A.16 Feynman parameters

1

AαBβ
= �(α + β)

�(α)�(β)

∫ 1

0
dx

xα−1(1− x)β−1

[Ax + B(1− x)]α+β
. (A.55)

A.17 Orders of magnitude, estimation, etc.

We will frequently need to estimate sizes of Feynman graphs, the sizes of errors in approxima-
tions, etc. A correct use of appropriate mathematical notation keeps the arguments precise and
reliable; I use the definitions given by Knuth (1976). As Knuth points out, it is quite common
to misuse the definitions, and this results in a loss of precision of the arguments.

A.17.1 “Order at most”: big-O

The most commonly used notation is

f (Q) = O
(
g(Q)

)
when Q→∞, (A.56)

which means that there is a constant C such that∣∣∣∣f (Q)

g(Q)

∣∣∣∣ < C for all large enough Q. (A.57)
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It is often useful to replace the limit by some more precise specification of the range of Q (or
whatever other variable is used). An example would be

sin x√
x2 − 1

= O

(
1

x

)
for x ≥ 2. (A.58)

Although this notation is commonly used to indicate that the left-hand side is asymptotically
of the order of magnitude of the right-hand side, this is not actually a correct usage. For this
case Knuth’s � notation should be used: Sec. A.17.2. The big-O notation is most appropriate
when stating error estimates, for example, since the standard definition allows the left-hand side
to have zeros, as in (A.58), or to go to zero relative to the right-hand side, as in

1

x2
= O

(
1

x

)
as x →∞. (A.59)

A.17.2 “Exact order”: �

Power-counting and error estimates are often made using what we often call order-of-magnitude
estimates. We replace an exact quantity by a crude approximation that is valid up to a factor.
For this we use the symbol “�”:

f (Q) = �
(
g(Q)) when Q→∞, (A.60)

which means that there are two positive non-zero constants C1 and C2 such that

C1 <

∣∣∣∣f (Q)

g(Q)

∣∣∣∣ < C2 for all large enough Q. (A.61)

(The use of this definition requires that g(Q) is non-zero for large Q.)
An example of the use of this notation would be if we added 2 to the sin x in (A.58). The

numerator of the fraction now oscillates between 1 and 3, instead of between −1 and 1, so that
we have

2+ sin x√
x2 − 1

= �

(
1

x

)
for x ≥ 2. (A.62)

This is a typical use in estimation of integrals: the right-hand side can be integrated analytically,
the left-hand side at best with difficulty.

We will frequently apply this notation to denominators of Feynman propagators, in which
case it is important that (A.60) also applies to the reciprocal functions. That is, (A.60) implies
that

1

f (Q)
= �

(
1

g(Q)

)
when Q→∞. (A.63)

A.17.3 Little-o

Sometimes we simply wish to state that something becomes arbitrarily much smaller than
something else in a limit, without wishing to say by how much. In that case we use the little-o
notation

f (Q) = o
(
g(Q)

)
when Q→∞, (A.64)

which means simply that

f (Q)

g(Q)
→ 0 when Q→∞. (A.65)
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Unlike the previous cases, it makes no sense to specify a range of Q; only the limit matters.
However, if there is another parameter involved, it makes sense to specify that (A.65) applies
uniformly in the other parameter. See below for an example.

A.17.4 Asymptotic equality: ∼
This notation is frequently used when the � notation should be used. The standard definition is
the much stronger statement that

f (Q) ∼ g(Q) when Q→∞ (A.66)

means

lim
Q→∞

f (Q)

g(Q)
= 1. (A.67)

Both this and the � notation have essential uses, so that it is important not to confuse them.

A.17.5 Uniformity

Frequently we will obtain order-of-magnitude estimates of some function that has parameters.
(Often the function is the difference between some exact quantity and an approximation.) It is
important to know whether the estimates can be made independent of the parameters.

For example, define

f1(Q; a) = 1

a2 +Q2
. (A.68)

Then as Q→∞,

f1(Q; a) = O(1/Q2). (A.69)

We can set the quantity C in the definition of O(. . .), (A.57), to be unity (or larger), independently
of the parameter a. Moreover, the application of (A.57) works with the same minimum value of
Q for all a. In that case we say that (A.69) holds uniformly in a.

But if instead we used

f2(Q; a) = 1

1+ a2Q2
, (A.70)

then we could still say that

f2(Q; a) = O(1/Q2). (A.71)

But this would not be uniform in a. When a is made small, the quantity C in (A.57) has to
be made large. A symptom of this non-uniformity is that when a = 0, f2 = O(1) instead of
O(1/Q2).
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