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Abstract Among the values of a binary quadratic form, there are many twins of fixed distance. This
is shown in quantitative form. For quadratic forms of discriminant −4 or 8 a corresponding result is
obtained for triplets.

Keywords: gaps; binary quadratic forms; Hasse principle

2010 Mathematics subject classification: Primary 11E16
Secondary 11E25

1. Introduction

The work of Goldston et al . [6] has revived interest in the study of the gaps in certain
sequences, such as the primes, the sums of two squares or the values of norm forms (see,
for example, [5,7,10]). Here we consider the values taken by binary quadratic forms and
show that there are infinitely many proper twins of any prescribed distance unless this is
prevented by a congruence obstruction. More precisely, let q(x, y) = ax2 + bxy + cy2 be
a binary quadratic form with integer coefficients and discriminant d = b2 − 4ac. Suppose
that d �= 0, and for d < 0 suppose further that q is positive definite. Let (sn) denote the
sequence of natural numbers representable by q, arranged in increasing order. A proper
twin of distance k is a pair sn, sn−1 with sn − sn−1 = k. If such a twin exists, then the
diophantine equation

q(x, y) − q(z, w) = k (1.1)

is soluble. We show that the converse is true and, since (1.1) satisfies an integral Hasse
principle, we obtain a local-to-global principle for gaps: either there are infinitely many
proper twins of distance k or (1.1) has no solution in p-adic integers, for at least one
prime p.
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Theorem 1.1. Let q be a binary quadratic form of discriminant d �= 0, as above. Let
k be a natural number and suppose that Equation (1.1) has a solution in p-adic integers
for all primes p|2d. Then, for any ε > 0, one has

#{sn � X : sn − sn−1 = k} � X1−ε.

The implicit constant may depend here on q, k and ε, of course. For comparison,
we note that when d is not a square, there are, by an old result of Bernays [1], about
X(log X)−1/2 values sn � X, so, on average, the gap sn − sn−1 should be nearly as large
as (log n)1/2.

As we shall see in § 2, Theorem 1.1 is a simple consequence of weak approximation
for quaternary quadratic forms. We require the latter in quantitative form. A suitable
version is contained in [3].

In some cases, the ideas underlying the proof of Theorem 1.1 can be coupled with an
observation of Hooley [8] to establish the existence of proper triplets in the sequence
(sn). A proper triplet of distance k, l is a triple sn, sn−1, sn−2 with

sn − sn−1 = k, sn−1 − sn−2 = l.

We discuss this only in two cases: for the intensely investigated sequence of sums of two
squares and for the indefinite form x2 − 2y2. We conclude as follows.

Theorem 1.2. Let (sn) denote the sequence of natural numbers that are representable
as the sum of two integral squares, arranged in increasing order. Then, for any pair
(k, l) ∈ N2, there are infinitely many proper triplets of distance k, l in this sequence. The
same is true if (sn) is the sequence of values of the quadratic form x2 − 2y2.

A proof of Theorem 1.2 is sketched out in §§ 3 and 4. Note that for the indefinite form
x2 −2y2, we enumerate the integral values, not only the positive ones. The method might
also be able to be applicable to some other binary forms. However, a thorough treatment
of triplets among the values of binary quadratic forms q(x, y) will have to wait for the
development of a more complete theory for the diophantine system

q(x, y) − q(z, w) = k, q(z, w) − q(u, v) = l. (1.2)

For the forms covered by Theorem 1.2, solutions of (1.2) are found by a differencing
argument and the theory of ternary quadratic forms. In the two cases covered by Theo-
rem 1.2, only the ternary forms X2 + Y 2 − 2Z2 and 2X2 + 2Y 2 − Z2 arise, and the class
number is 1 for determinants −2 and 4. This is crucial for our method.

2. Twins

In this section, we prove Theorem 1.1. Fix a quadratic form q and k ∈ N as in that
theorem. Let P(q) denote the set of all primes p for which the congruence p|q(x, y)
always implies p|x, p|y. Note that if n is an integer representable by q and p ∈ P(q) with
p|n, then p2|n. By the theory of binary quadratic forms, there are infinitely many primes
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in P(q), and we now choose k − 1 distinct such primes p1, . . . , pk−1, with pj > 2dk for
all 1 � j � k − 1. Then pj � 2d and q(x, y) is therefore non-singular mod pj . Since a
non-singular binary form mod pj represents all non-zero residue classes mod pj , there are
integers ξj , ηj with q(ξj , ηj) ≡ −j mod pj , and by Hensel’s Lemma these can be chosen
to satisfy q(ξj , ηj) ≡ pj − j mod p2

j . By the Chinese Remainder Theorem, we now find a
pair (ξ, η) ∈ Z2 with

q(ξ, η) ≡ pj − j mod p2
j (2.1)

for all 1 � j � k − 1. Let r = (p1p2 · · · pk−1)2. If z ≡ ξ mod r, w ≡ η mod r, then (2.1)
implies that q(z, w)+ j ≡ pj mod p2

j holds for all 1 � j � k−1. In particular, none of the
integers q(z, w) + 1, q(z, w) + 2, . . . , q(z, w) + k − 1 is representable by q. Consequently,
any solution x, y, z, w ∈ Z of

q(x, y) − q(z, w) = k, z ≡ ξ mod r, w ≡ η mod r, (2.2)

corresponds to a twin sn = q(x, y), sn−1 = q(z, w) of distance k, provided only that
q(z, w) > 0.

It remains to show that (2.2) has many solutions in integers. As a prerequisite we
construct solutions in p-adic integers for all primes p. First consider primes p � 2rd. Then
q(x, y) − q(z, w) is a quaternary quadratic form with discriminant not divisible by p,
and therefore represents all p-adic integers as x, y, z, w vary over p-adic integers. In
particular, (1.1) has a solution in p-adic integers. This last conclusion remains true for
p|2d, by assumption in Theorem 1.1. Recall that (2d; r) = 1, by choice of pj , so that it
remains to consider primes p|r. Then p = pj for some 1 � j � k − 1, and the p-adic
analogue of (2.2) reads

q(x, y) − q(z, w) = k, z ≡ ξ mod p2, w ≡ η mod p2. (2.3)

Let K = k + q(ξ, η). For p = pj > 2dk, we have K ≡ k − j �≡ 0 mod pj . Since p = pj � 2d,
there is a solution x′, y′ ∈ Z of q(x′, y′) ≡ K mod p that then lifts to a solution of
q(x, y) = K in p-adic integers; a solution of (2.3) in p-adic integers is now given by
x, y, z = ξ, w = η.

We are ready to establish Theorem 1.1. By weak approximation for quaternary
quadratic forms and the deliberations in the preceding paragraph, it follows that (2.2)
has a solution in integers. By Theorem 2 of [3], we conclude that

#{x, y, z, w ∈ Z : |x|, |y|, |z|, |w| � P, (2.2) holds} � P 2. (2.4)

By Lemma 2 of [9], the estimate

#{z, w ∈ Z : q(z, w) = m, |z| � P, |w| � P} � P ε (2.5)

holds uniformly in m ∈ N. If q is positive definite, then q(z, w) > 0 trivially holds unless
z = w = 0, and the conclusion of Theorem 1.1 is immediate from (2.4), (2.5) and the
discussion relating to (2.2) in the antepenultimate paragraph.

When q is indefinite, the above argument still applies but only yields twins of distance
k among the integers represented by q. However, for indefinite q with d �= 0, the equation
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q(u, v) = 0 in R2 defines two distinct lines through the origin; these mark the sign changes
of q. In particular, one always finds two real numbers A < B such that within the sector
Au < v < Bu, v > 0, one has q(u, v) > 0. We choose real numbers C1 < C2, C3 < C4

such that the box C1 � u � C2, C3 � v � C4 is part of this sector, and instead of the
quantity considered in (2.4) we count solutions of (2.2) with

C1P < x, z < C2P, C3P < y, w < C4P. (2.6)

Any solution of (2.2) satisfying these constraints has q(z, w) > 0, and the method under-
lying Theorem 2 of [3] still yields a lower bound � P 2 for the number of solutions of
(2.2) with (2.6). We may now argue as before to obtain Theorem 1.1 for indefinite forms.

3. Triplets

We prove Theorem 1.2 in full detail for sums of two squares. For given values of k, l ∈ N

write h = k + l. Certain fine details in our treatment of triplets of distance k, l among
the sums of two squares depend on the distribution of k, l, h modulo 4, and we begin
with the case where h ≡ 2 mod 4. A proper triplet of distance k, l yields a solution of the
pair of equations

x2 + y2 − z2 − w2 = k, x2 + y2 − z2
0 − w2

0 = h. (3.1)

This pair possesses an infinitude of integer solutions, as was shown by Hooley [8]. We
shall define suitable congruence conditions, very similar to those in (2.2) and (2.3), that
will be stipulated on z and w in (3.1) to ensure that the remaining solutions correspond to
proper triplets. Hooley’s method will then be used to solve (3.1) with the extra congruence
conditions attached to z and w.

It will be convenient to write H = 1
2h + 1. For any fixed value of j with −l < j < k,

j �= 0, there are infinitely many primes p ≡ 3 mod 4 with(
2(k − j) − H2

p

)
= 1; (3.2)

this follows by quadratic reciprocity and Dirichlet’s theorem for primes in arithmetic
progressions. For any j as above, we can therefore pick a prime pj ≡ 3, mod 4 that
satisfies (3.2) and pj � j, and that is as large as we like. By the argument leading to (2.1),
one finds integers ξ, η such that

ξ2 + η2 ≡ pj − j mod p2
j (3.3)

holds simultaneously for −l < j < k, j �= 0. Let

r =
∏

−l<j<k
j �=0

p2
j . (3.4)

We shall now show that the pair (3.1) has a solution in integers satisfying

z ≡ ξ mod r, w ≡ η mod r. (3.5)
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For this solution, (3.3) implies that z2 +w2 + j is divisible by pj but not by p2
j , and so is

not a sum of two squares for −l < j < k, j �= 0. By (3.1), z2 +w2 +k, z2 +w2, z2 +w2 − l

is a proper triplet. By (3.5) and (3.3), we see that z2 + w2 ≡ p1 − 1 mod p2
1, whence

z2 + w2 > 1
2p1. However, as remarked earlier, we can take p1 as large as we like, and

hence, on varying p1, we obtain infinitely many triplets of distance k, l when h ≡ 2 mod 4.
To solve the simultaneous conditions (3.1) and (3.5), we consider solutions with z0 =

x − 1, w0 = y + 1. The second equation in (3.1) then reduces to 2x − 2y = h + 2 = 2H.
Since H is even, we solve this linear equation by x = v + 1

2H, y = v − 1
2H, v ∈ Z. Then

x2 + y2 = 2v2 + 1
2H2 and the first equation in (3.1) reduces to

2v2 − z2 − w2 = k − 1
2H2, (3.6)

which we now need to solve with z, w in accordance with (3.5).
We discuss this problem in the p-adic integers Zp first. The ternary quadratic form

X2 + Y 2 − 2Z2 is universal : that is, it represents all integers. Hence, for all primes p,
(3.6) has a solution in Zp. For primes p|r we have p = pj for some j and we wish to
solve (3.6) in Zp, with z ≡ ξ mod p2, w ≡ η mod p2. We take z = ξ, w = η to satisfy the
congruence conditions. By (3.3) and (3.6), it remains to solve the congruence

2v2 ≡ k − 1
2H2 + pj − j mod p2

j .

Since pj is odd, we may multiply by 2 and then apply (3.2) to see that this congruence
has a solution mod pj , with pj � v. By Hensel’s Lemma, this solution lifts to a solution
mod p2

j , and then to a solution in Zp.
This information is enough to solve the system (3.5) and (3.6). Up to equivalence,

the form X2 + Y 2 − 2Z2 is the only integral ternary quadratic form of determinant −2.
Hence, by weak approximation for the individual form (and not only for its genus), there
is an integral solution to (3.5) and (3.6). This completes the argument in the case where
h ≡ 2 mod 4.

A simple variant applies when h ≡ 0 mod 4 but k �≡ 2 mod 4. The beginning is identical
to the previous argument: we choose pj , r, ξ, η exactly as before and we still intend to solve
the equations in (3.1) with z, w subject to (3.5). Again, we solve the second equation in
(3.1) by z0 = x−1, w0 = y+1 and x−y = H. Since H is now odd, we choose 2x = v+H,
2y = v − H, where v runs through odd integers. The first equation in (3.1) becomes

v2 − 2z2 − 2w2 = 2k − H2, (3.7)

which we now have to solve simultaneously with (3.5). Note that H ≡ 1 mod 2 implies
that v is necessarily odd, whence it suffices to solve (3.7) in integers.

We note that in the current context, H is odd and k is either also odd or divisible
by 4. Hence, 2k − H2 is in one of the three residue classes ±1 mod 8, 5 mod 8. In all
these cases, (3.7) has a solution in integers [2, Theorem 56] and therefore in Zp. In the
more important case p|r we again have p = pj , and we then need to solve (3.7) with
z ≡ ξ mod p2, w ≡ η mod p2. We take z = ξ, w = η and apply (3.3). We then solve

v2 ≡ 2(k + pj − j) − H2 mod p2
j
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30 J. Brüdern and R. Dietmann

by (3.2) and Hensel’s Lemma; there is then also a solution in Zp of (3.7) with z ≡
ξ mod p2, w ≡ η mod p2. The form 2X2 + 2Y 2 − Z2 is the adjoint of X2 + Y 2 − 2Z2, in
the sense of Gauss [4], and is therefore the only form of its determinant, up to equivalence.
Thus, again by weak approximation, (3.7) and (3.5) have a simultaneous integer solution.
This establishes Theorem 1.2 in the case h ≡ 0 mod 4, k �≡ 2 mod 4 as well.

Next, we discuss the case when k ≡ 2 mod 4, or when k ≡ 0 mod 4 but h �≡ 2 mod 4. In
these cases, we can exchange the roles of h and k, and consequently of z, w and z0, w0,
and proceed exactly as before, but we need to observe that a congruence condition will
now be activated on z0, w0 and that z2

0 + w2
0 is the smallest member of the triplet to be

found. Hence, rather than working with (3.2) in its original form, we put K = 1
2k + 1

and then choose primes pj ≡ 3 mod 4 with
(

2(h − j) − K2

pj

)
= 1

for 1 � j � h − 1, j �= l. With r now the product of all these p2
j as a substitute for (3.4),

one chooses ξ, η ∈ Z in accordance with (3.3), for the new range of j. We then need to
solve (3.1) with z0 ≡ ξ mod r, w0 ≡ η mod r, and this can be done mutatis mutandis.

The only remaining case is when h and k are both odd. Then l = h − k is even and, in
place of (3.1), we study the pair of equations

z2 + w2 − x2 − y2 = h, z2
0 + w2

0 − x2 − y2 = l (3.8)

with a congruence condition attached to z and w that ensures that z2 + w2 − j is not a
sum of two squares for 1 � j � h − 1, j �= k. For l ≡ 2 mod 4, this again leads to the
arithmetic of X2 + Y 2 − 2Z2, as in the case h ≡ 2 mod 4, and for l ≡ 0 mod 4, h odd, we
are led to the adjoint form, again as in the treatment for h ≡ 0(4), k �≡ 2(4). Details are
left to the reader.

4. Triplets, yet again

The treatment of the sums of two squares now being complete, we turn to the values of
the indefinite form x2 − 2y2. The chase for triplets of distance k, l this time depends on
the distribution of the exact powers of 2 that divide the numbers k, l and h = k + l.
Write k = 2κk′, l = 2λl′ and h = 2µh′ with odd natural numbers k′, l′, h′. Two of the
three numbers κ, λ, µ must then be equal and the remaining one is necessarily larger
than the equal ones.

A simple observation reduces the number of cases that we need to consider. The forms
x2 − 2y2 and 2x2 − y2 are equivalent; hence a number n ∈ Z is represented by x2 − 2y2 if
and only if −n is represented. Consequently, if sn − sn−1 = k, sn − sn−2 = h is a triplet
of distance k, l, then −sn−2,−sn−1,−sn is a triplet of distance l, k. Therefore, it suffices
to establish the existence of triplets only in the case where κ � λ.

We first discuss the case where κ < λ. In this case, as we have just observed, κ = µ.
Our strategy is to solve the pair of equations

x2 − 2y2 − z2 + 2w2 = k′, x2 − 2y2 − z2
0 + 2w2

0 = h′ (4.1)
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with an additional congruence condition that we now define. For any j ∈ Z with −l <

j < k, j �= 0, there are infinitely many primes p with p ≡ 3 mod 8 and
(

k′ + H2 − 2̄κj

p

)
= −1, (4.2)

where H = 1
2 (h′ − 1) and 2̄ is defined by 2̄2 ≡ 1 mod pj . Again, this is easily seen by

quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progressions and
we pick one such prime: pj , say. These are all odd, and the form ξ2 − 2η2 is non-singular
mod pj . We may therefore solve the congruence

2κ(ξ2 − 2η2) ≡ pj − j mod p2
j (4.3)

in integers ξ, η ∈ Z simultaneously for all −l < j < k, j �= 0. Define r by (3.4) and let
us suppose that a solution of (4.1) can be found that also satisfies (3.5). The numbers
s = x2 − 2y2, s′ = z2 − 2w2 and s′′ = z0 − 2w2

0 are all then values of the binary form
X2 − 2Y 2. By the elementary theory of Q(

√
2), the numbers S = 2κs, S′ = 2κs′ and

S′′ = 2κs′′ are again values of this form. By (4.1), we have S − S′ = k, S − S′′ = h and,
by (4.3), we have S′ ≡ pj − j mod p2

j . In particular, S′ + j is not a value of X2 − 2Y 2 for
−l < j < k, j �= 0. Hence, S, S′, S′′ is a triplet of distance k, l. Moreover, |S′| � p1 − 1
by (4.3), and by varying p1 we obtain infinitely many such triplets.

Thus, we are reduced to solving (4.1) with (3.5). Take z0 = x + 1, w0 = y + 1. The
second equation in (4.1) then reduces to 4y − 2x = h′ − 1. Write H = 1

2 (h′ − 1) and
solve by x = 2v + H, y = v + H. Then x2 − 2y2 = 2v2 − H2 so that the simultaneous
conditions (4.1), (3.5) reduce to

2v2 + 2w2 − z2 = k′ + H2, z ≡ ξ mod r, w ≡ η mod r. (4.4)

As remarked earlier, the form 2v2 +2w2 −z2 represents all odd integers not congruent to
5 mod 8. It also represents all even integers, because 2v2 +2w2 − z2 = 2t implies z = 2z′,
and the equation v2 + w2 − 2z′2 = t is soluble in integers, by the universality of this
form. In particular, we see that whenever k′ + H2 �≡ 5 mod 8, the equation in (4.4) has
an integer solution. Now, for p|r, we have p = pj for some j. By (4.3),

k′ + H2 + ξ2 − 2η2 ≡ k′ + H2 − 2̄κj mod pj ,

and the right-hand side is a quadratic non-residue by (4.2). Since (2/pj) = −1, it follows
that 2v2 ≡ k′ + H2 + ξ2 − 2η2 mod pj has a solution with pj � v. By Hensel’s Lemma, it
follows that the equation in (4.4) has a solution in Zpj , with z ≡ ξ mod p2

j , w ≡ η mod p2
j .

As in our discussion of sums of two squares, weak approximation now yields an integer
solution of (4.4). This completes the argument unless we are in the situation where
k′ + H2 ≡ 5 mod 8, and this happens if and only if h′ ≡ 1 mod 8 and k′ ≡ 5 mod 8 or
vice versa. In this exceptional case, we write l = 2κl′′ so that l′′ = h′ − k′ and we study
the system

x2 − 2y2 − z2 + 2w2 = l′′, x2 − 2y2 − z2
0 + 2w2

0 = h′. (4.5)
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As in the case of sums of two squares, the congruence conditions (3.5) now have to be
activated through suitable analogues of (4.2), with a different range for j. As this should
now be familiar, we spare the reader the details. The differencing process z0 = x + 1,
w0 = y + 1 leads to the equation 2v2 + 2w2 − z2 = l′′ + H2 as the analogue of (4.4).
Here l′′ + H2 is even, so this equation has integer solutions. The rest of the argument
can be performed as before and one finds that the appropriate version of (3.5) can be
accommodated. This completes the discussion of the case κ < λ. If κ = λ, then we begin
with (4.5) where l′′ = l′ is now odd. One may proceed as before unless one is in the
exceptional situation where l′ ≡ 1 mod 8, h′ ≡ 5 mod 8 or vice versa. In the latter case,
we have to use a pair of the type (4.1) with k′ replaced by h′ − l′. We leave it to the
reader to work out the relevant congruence conditions to complete the proof of this part
of Theorem 1.2.
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