Torsion on theta divisors of hyperelliptic Fermat Jacobians

David Grant

ABSTRACT

We generalize a result of Anderson by showing that torsion points of certain orders cannot lie on a theta divisor in the Jacobians of hyperelliptic images of Fermat curves. The proofs utilize the explicit geometry of hyperelliptic Jacobians and their formal groups at the origin.

Introduction

Let ℓ be an odd prime, ζ a primitive ℓ th-root of unity, $K = \mathbb{Q}(\zeta)$, and $\lambda = 1 - \zeta$, a generator for the lone prime of the ring of integers $\mathbb{Z}[\zeta]$ of K that lies over ℓ . For any $1 \leq a \leq \ell - 2$, let C_a be the non-singular projective curve defined over \mathbb{Q} by the affine model $x^{\ell} = y(1-y)^a$. We let ∞ denote the lone point on C_a which is at infinity on this model. Note that C_a is an image of the ℓ th Fermat curve, and has genus $g = (\ell - 1)/2$. Let J_a denote the Jacobian of C_a , and $\phi : C_a \to J_a$ be the embedding sending a point $P \in C_a$ to the point of J_a corresponding to the divisor class of $P - \infty$. For any $m \geq 1$ we extend ϕ to a map on the mth-symmetric product $C_a^{(m)}$ of C_a , and let $\Theta = \phi(C_a^{(g-1)})$.

The automorphism $(x,y) \to (\zeta x,y)$ of C_a extends to an automorphism ξ of J_a , so we can endow J_a with complex multiplication (CM) by $\mathbb{Z}[\zeta]$ by defining an embedding $\iota : \mathbb{Z}[\zeta] \to \operatorname{End}(J_a)$ such that $\iota(\zeta) = \xi$. We write $[\alpha]$ for $\iota(\alpha)$. Let \overline{K} be an algebraic closure of K. For any $\alpha \in \mathbb{Z}[\zeta]$, we let $J_a[\alpha]$ denote the kernel of $[\alpha]$ in $J_a(\overline{K})$, and for any ideal $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, we let $J_a[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} J_a[\alpha]$. The following was proved in $[\operatorname{And} 94]$.

THEOREM (Anderson). Let \mathfrak{p} be a first degree prime of $\mathbb{Z}[\zeta]$. Then $J_a[\lambda \mathfrak{p}] \cap \Theta = J_a[\lambda] \cap \Theta$.

For any $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, let $J_a[\mathfrak{a}]'$ denote the non-trivial elements of $J_a[\mathfrak{a}]$, and for any point $Q \in J_a(\overline{K})$, let T_Q denote the translation-by-Q map on J_a . Let Z be the point (0,0) on C and $P = \phi(Z)$. Since $J_a[\lambda]$ is generated by P, Anderson's theorem is equivalent to the statement that $J_a[\mathfrak{p}]' \cap T_{vP}^*\Theta$ is empty for all $0 \le v \le \ell - 1$. The goal of this paper is to extend Anderson's result as best as we can to powers of primes of $\mathbb{Z}[\zeta]$ of arbitrary degree, at least in the case that C_a is hyperelliptic, when the geometry of J_a is more tractable. We note that for $1 \le a \le \ell - 2$, the only C_a which are hyperelliptic are C_1 , $C_{(\ell-1)/2}$, and $C_{\ell-2}$. Since there are isomorphisms from $C_{(\ell-1)/2}$ and $C_{\ell-2}$ to C_1 which induce isomorphisms from $C_{(\ell-1)/2}$ and $C_{(\ell-1)/2}$ and

Let $C = C_1$ and $J = J_1$. For any $i \in (\mathbb{Z}/\ell\mathbb{Z})^*$, let $\sigma_i \in G = \operatorname{Gal}(K/\mathbb{Q})$ be such that $\sigma_i(\zeta) = \zeta^i$. It is well known (and we will see in § 2) that the CM-type of J is $\Phi = \{\sigma_1, \ldots, \sigma_g\}$.

We prove two theorems.

Received 27 November 2002, accepted in final form 31 July 2003, published online 15 October 2004. 2000 Mathematics Subject Classification 11G10, 14K12.

Keywords: Fermat curves, torsion.

This journal is © Foundation Compositio Mathematica 2004.

THEOREM 1. Let \mathfrak{p} be a first or second degree prime of $\mathbb{Z}[\zeta]$. Then for any $n \geqslant 1$, $J[\lambda \mathfrak{p}^n] \cap \Theta = J[\lambda] \cap \Theta$.

The theorem is proved in § 2 by showing that certain functions h_v on J, $1 \le v \le g$, which vanish on $T^*_{(g-v)P}\Theta$, have non-zero \mathfrak{p} -adic absolute value when evaluated at $J[\mathfrak{p}^n]'$. Since $J[\mathfrak{p}^n]$ lies in the kernel of reduction of J mod \mathfrak{p} , this is achieved by using the formal group \mathcal{F} on the kernel of reduction mod \mathfrak{p} to compute the \mathfrak{p} -adic absolute values of certain parameters s_i at the origin of J evaluated at $J[\mathfrak{p}^n]$, $1 \le i \le g$, and then by expanding h_v in the local ring at the origin in terms of the s_i .

The formal group calculation crucially depends on the assumption that \mathfrak{p} is a first or second degree prime. Indeed, if $\pi \in \mathbb{Z}[\zeta]$ is a uniformizer at \mathfrak{p} and prime to all of its other conjugates, then the \mathfrak{p}^n -torsion in \mathcal{F} coincides with π^n -torsion, and we compute the \mathfrak{p} -adic absolute value of s_i evaluated at π^n -torsion by applying the formal implicit function theorem to $[\pi^n]$, thought of as an endomorphism of \mathcal{F} . This requires that the rank of the Jacobian of $[\pi]$ mod \mathfrak{p} is g-1, which only happens when the intersection of Φ and the decomposition group G_0 of \mathfrak{p} in G is the identity.

The assumption that C is hyperelliptic is used only to explicitly produce the s_i and the h_v , and in § 1 to compute the expansions of the h_v in terms of the s_i . It may well be that a more clever geometric argument will produce analogous results in the case that C_a is not hyperelliptic. Indeed, since this paper was written, using Galois-theoretic techniques, Simon has shown that Theorem 1 holds for any J_a as long as \mathfrak{p} has norm greater than some explicit function of ℓ and the CM-type of J_a is non-degenerate. Simon also has some remarkable results constraining the orders of torsion points on the theta divisor of J_a when the orders are not necessarily the power of a single prime [Sim03].

There are, however, some cases when we can use formal groups to generalize Theorem 1 to primes of arbitrary degree. Let $\mathfrak{p} \neq (\lambda)$ be any prime of $\mathbb{Z}[\zeta]$, p the rational prime it lies over, and $f = \#(G_0)$. Let s be the number of cosets of G_0 in G which have non-trivial intersection with Φ , let W_r , $1 \leq r \leq s$, denote these intersections, and $d_r = \#(W_r)$. We arbitrarily choose an element $\sigma_{m_r} \in W_r$ for each $1 \leq r \leq s$. Given these choices we form a double indexed permutation $\omega(r,j)$, $1 \leq r \leq s$, $j \in \mathbb{Z}/d_r\mathbb{Z}$, of $(1,\ldots,g)$, by picking $\omega(r,j)$ such that $\sigma_{\omega(r,j)} \in W_r$, and if $\omega(r,j) \equiv m_r p^{e_{r,j}} \mod \ell$, with $0 \leq e_{r,j} < f$, then $0 = e_{r,1} < \cdots < e_{r,d_r}$.

For any integer i, let $\langle i \rangle$ denote the least non-negative residue of i modulo f. For each $1 \leqslant r \leqslant s$ and $j \in \mathbb{Z}/d_r\mathbb{Z}$, we set $E_{r,j} = \sum_{i \in \mathbb{Z}/d_r\mathbb{Z}} p^{\langle e_{r,j} - e_{r,i} \rangle}$. If r is such that there is a unique $j' \in \mathbb{Z}/d_r\mathbb{Z}$ such that $E_{r,j'}$ is minimal, we say that $\omega(r,j')$ is admissible for p. Let $[\cdot]$ denote the greatest integer function. If $0 \leqslant q \leqslant g-1$ is such that $[(g+q+1)/2] = \omega(r,j')$ for some $\omega(r,j')$ admissible for p, then we call q good for p. Let A_p denote the set of all q which are good for p, which depends only on the residue class of p mod ℓ .

THEOREM 2. $J[\mathfrak{p}]' \cap T_{vP}^*\Theta$ is empty for all $v \in \pm (A_p \cup \{g\})$.

Note that when $\mathfrak p$ is a first or second degree prime, then Theorem 2 reduces to Theorem 1 in the case n=1. The first improvement comes when $\ell=5$, but in this case $J[\mathfrak p]\cap\Theta$ has been explicitly determined (see [BG00] or [Col86]). When $\ell=7$, we get that $J[\mathfrak p]'\cap T^*_{vP}\Theta$ is empty for: all v when $p\equiv 2 \mod 7$; $v=0,\pm 1,\pm 3$ when $p\equiv 3 \mod 7$; $v=\pm 2,\pm 3$ when $p\equiv 4 \mod 7$; and $v=\pm 3$ when $p\equiv 5 \mod 7$.

The reason for the rather arcane hypotheses for Theorem 2 is that the \mathfrak{p} -adic absolute values of the s_i evaluated at $[\pi]$ -torsion can no longer be calculated via the implicit function theorem, and are instead calculated (in [Gra]) for parameters S_i of a p-typical formal group isomorphic to \mathcal{F} (see [Haz78]). The hypotheses are necessary to ensure that we can glean information on the \mathfrak{p} -adic absolute values of the s_i evaluated at $[\pi]$ -torsion from the absolute values of the S_i .

To the author's taste, the proofs given here have some of the same flavor as Anderson's proof, without sharing many of the ingredients.

1. Expansions of functions on J

Let k be any field of characteristic other than ℓ , so that C defines a hyperelliptic curve of genus $g=(\ell-1)/2$ over k, with hyperelliptic involution $\gamma(x,y)=(x,\bar{y})$, where $\bar{y}=1-y$. We will identify points of J with the corresponding divisor classes in $\operatorname{Pic}^0(C)$. We write $\mathcal{D}_1 \sim \mathcal{D}_2$ to denote that two divisors on a variety are linearly equivalent, and let $cl(\mathcal{D})$ be the class of a divisor \mathcal{D} modulo linear equivalence. It is well known that for any $Q \in C$, $Q + \gamma(Q) \sim 2\infty$, and that every divisor class $\mathcal{D} \in \operatorname{Pic}^0(C)$ can be uniquely represented by a divisor of the form $P_1 + \cdots + P_r - r\infty$ for some $r \leq g$, where $P_i \neq \infty$, and for $i \neq j$, $P_i \neq \gamma(P_j)$. In particular, $[-1](P_1 + \cdots + P_r - r\infty) = \gamma(P_1) + \cdots + \gamma(P_r) - r\infty$. Hence, Θ consists of divisor classes of the form $cl(P_1 + \cdots + P_r - r\infty)$ for $r \leq g-1$, so is symmetric, and $J - \Theta$ consists of divisor classes of the form $cl(P_1 + \cdots + P_g - g\infty)$, where $P_i \neq \infty$ and $P_i \neq \gamma(P_j)$ for $i \neq j$.

Via the surjective birational map $\phi: C^{(g)} \to J$, we identify symmetric functions on C^g with functions on J. Since $Z=(0,0)\in C$ is not fixed by $\gamma,\,gZ$ is not a special divisor on C, and if $P=\phi(Z),\,gP\notin\Theta$. So if $E\in C^{(g)}$ is the image of the g-tuple (Z,\ldots,Z) under the natural projection from C^g to $C^{(g)}$, then ϕ is an isomorphism in a neighborhood of E, and induces an isomorphism between completed local rings $\hat{\mathcal{O}}_{J,gP}$ and $\hat{\mathcal{O}}_{C^{(g)},E}$. As in [Mil86], the latter is generated as a power series ring over k by the elementary symmetric functions e_1,\ldots,e_g in any local parameter τ of C at Z. We always take $\tau=x$, and if $P_i=(x_i,y_i),\,1\leqslant i\leqslant g$, are independent generic points of C, we set $t_i=e_i(x_1,\ldots,x_g)$, so that t_1,\ldots,t_g form a set of local parameters of J at gP. Our goal in this section is to write down functions B_v on J, $1\leqslant v\leqslant g$ (determined up to constant multiples), with divisors $vT_P^*\Theta+T_{-vP}^*\Theta-(v+1)\Theta$, and to calculate the lead term of the expansion of B_v in $\hat{\mathcal{O}}_{J,gP}$ in terms of t_1,\ldots,t_g . We employ the techniques and some of the results of [AG01].

Let $H \subset J$ be the irreducible divisor on J representing divisor classes in $\operatorname{Pic}^0(C)$ of the form $\{cl(2Q_1 + Q_2 + \cdots + Q_{g-1} - g\infty) \mid Q_i \in C\}$. If g = 1, we take H to be the zero divisor.

For any functions $F_i \in k(C)$, and points $Q_i \in C$, $1 \leq i \leq g$, let

$$D(F_1,\ldots,F_g)(Q_1,\ldots,Q_g)$$

denote the determinant $\det(F_i(Q_i))_{1 \leq i,j \leq q}$.

As before, let $P_i = (x_i, y_i)$, $1 \le i \le g$, denote independent generic points on C, so $U = P_1 + \cdots + P_g - g\infty$ is a generic point on J. For any $1 \le v \le g$, let

$$M_{v} = D(x^{v}, \dots, x^{a}, y, \dots, yx^{b})(P_{1}, \dots, P_{g}),$$

$$N_{v} = D(x^{v}, \dots, x^{a}, y, \dots, yx^{b})(\gamma(P_{1}), \dots, \gamma(P_{g}))$$

$$= D(x^{v}, \dots, x^{a}, \bar{y}, \dots, \bar{y}x^{b})(P_{1}, \dots, P_{g}),$$

where a = [g + (v - 1)/2], b = [(v - 2)/2]. If b = -1, then v = 1, and by convention the function y is omitted from the definitions of M_1 and N_1 .

PROPOSITION 1. For any $1 \le v \le g$, we can take $B_v = N_v / \prod_{1 \le i < j \le g} (x_i - x_j)$.

In the case v = 1, we have $N_1/\prod_{1 \leq i < j \leq g} (x_i - x_j) = \pm t_g$, in which case the result follows from [AG01, Proposition 5]. So we assume now that $b \geq 0$. We need a few lemmas. We first investigate where M_v and N_v vanish when we specialize P_1, \ldots, P_q .

LEMMA 1. If $U \in J - \Theta - H - T_P^*\Theta - T_{-P}^*\Theta$, then $M_v(P_1, \dots, P_g) = 0$ if and only if $U \in T_{vP}^*\Theta$, and $N_v(P_1, \dots, P_g) = 0$ if and only if $U \in T_{-vP}^*\Theta$.

Proof. If $U \in T^*_{vP}\Theta$, then $U + vP \in \Theta$, so there exist $Q_1, \ldots, Q_{g-1} \in C$ such that $P_1 + \cdots + P_g + Q_1 + \cdots + Q_{g-1} \sim (2g+v-1)\infty - vZ$, hence a function $f \in \mathcal{L}((2g+v-1)\infty - vZ)$ which vanishes at P_1, \ldots, P_g . Since $x^v, \ldots, x^a, y, \ldots, yx^b$ form a basis for $\mathcal{L}((2g+v-1)\infty - vZ)$, there is a non-trivial linear combination of $x^v, \ldots, x^a, y, \ldots, yx^b$ which vanishes at P_1, \ldots, P_g , so $M_v(P_1, \ldots, P_g) = 0$. The converse and the corresponding results for $N_v(P_1, \ldots, P_g)$ are similar.

Since the function M_vN_v is symmetric in P_1, \ldots, P_g , we can consider it as a function F(U) on J. Since it is regular on $C^{(g)}$ except where some P_i is specialized to ∞ , on J it is regular on $J - \Theta$. The precise order of its pole at Θ can be read off by the recipe of [AG01, Lemma 1], and is computed to be 4g + 2v - 2. Since Θ , H, and F are invariant under $[-1]^*$, we get that the divisor (F) of F is of the form

$$(F) = m(T_{vP}^*\Theta + T_{-vP}^*\Theta) + j(T_P^*\Theta + T_{-P}^*\Theta) + nH - (4g + 2v - 2)\Theta, \tag{1}$$

for some $m \ge 1$, $j \ge 0$, and $n \ge 0$. It is clear that $M_v N_v$ vanishes on H, so $n \ge 1$, and if the characteristic of k is 2, then each of M_v and N_v are functions on J that vanish at H, so $n \ge 2$.

Lemma 2. We have $j \geqslant v$.

Proof. Again, it follows from [AG01, Proposition 5] that the divisor of $t_g = x_1 \cdots x_g$ is $T_P^*\Theta + T_{-P}^*\Theta - 2\Theta$, so is a uniformizer for $T_P^*\Theta$ and $T_{-P}^*\Theta$. Expanding M_vN_v in $\hat{\mathcal{O}}_{J,gP}$ using $y_i = x_i^l + \cdots$, $1 \leq i \leq g$, in $\hat{\mathcal{O}}_{C,Z}$, we get that F/t_g^v is a power series in t_1, \ldots, t_g , and hence is regular at gP, which gives the lemma.

Let $\Delta(U) = \prod_{1 \leq i < j \leq g} (x_i - x_j)^2$. It is shown in [AG01, Proposition 7] that the divisor of Δ is $n'H - 4(g-1)\Theta$, where n' = 2 if the characteristic of k is 2 and n' = 1 otherwise.

LEMMA 3. We have $(F/\Delta) = T_{vP}^*\Theta + T_{-vP}^*\Theta + v(T_P^*\Theta + T_{-P}^*\Theta) - (2v+2)\Theta$.

Proof. It follows from (1) and Lemma 2 that

$$(F/\Delta) = m(T_{vP}^*\Theta + T_{-vP}^*\Theta) + j(T_P^*\Theta + T_{-P}^*\Theta) + I - (2v+2)\Theta,$$

for some $m\geqslant 1$ and $j\geqslant v$, where I is some effective divisor. However, by the theorem of the square, $T^*_{vP}\Theta+T^*_{-vP}\Theta\sim T^*_{P}\Theta+T^*_{-P}\Theta\sim 2\Theta$, so $I=0,\ j=v,$ and m=1.

Proof of Proposition 1. Lemma 3 states that

$$F_M(U) = M_v / \prod_{1 \le i < j \le g} (x_i - x_j), F_N(U) = N_v / \prod_{1 \le i < j \le g} (x_i - x_j),$$

are functions on J, such that the sum of the divisors $(F_M) + (F_N)$ is

$$T_{vP}^*\Theta+T_{-vP}^*\Theta+v(T_P^*\Theta+T_{-P}^*\Theta)-2(v+1)\Theta.$$

Note that $F_N = [-1]^* F_M$. We get immediately that the polar divisors of F_M and F_N are each $(v+1)\Theta$, and by Lemma 1, using the irreducibility of Θ and the theorem of the square, that

$$(F_N) = vT_P^* + T_{-vP}^* - (v+1)\Theta, \tag{2}$$

П

so we can take $B_v = F_N$.

PROPOSITION 2. Take $1 \le v \le g$. Let c = a - v + 1 = [g + (1 - v)/2] and d = v - b - 1 = [(v + 1)/2]. The lead term in the expansion of B_v in $\hat{\mathcal{O}}_{J,qP}$ in terms of t_1, \ldots, t_q is

$$\pm \det(t_{c-i+j})_{1 \leqslant i,j \leqslant d},$$

so is of degree d, and includes the monomial $\pm t_c^d$.

Proof. Note that the statement of the theorem makes sense, since for $1 \le i, j \le d$, we have $1 \le c - i + j \le g$. Note also that the case v = 1 follows from the choice $B_1 = \pm t_g$, so we can assume $b \ge 0$.

Recall that if $\nu=(\nu_1,\ldots,\nu_g)$ is a g-tuple of exponents, then the generalized Vandermonde determinant a_{ν} in variables z_1,\ldots,z_g is $\det(z_i^{\nu_j})_{1\leqslant i,j\leqslant g}$, and permuting the entries of ν changes a_{ν} by at most a sign. In particular, if δ is the g-tuple $(g-1,g-2,\ldots,1,0)$, then a_{δ} is the standard Vandermonde determinant. An L-tuple of positive integers $\eta=(\eta_1,\ldots,\eta_L),\ \eta_1\geqslant\cdots\geqslant\eta_L$, is called a partition of length L. If $L\leqslant g$, we can append zeros to η to make it a g-tuple, and define $s_{\eta}=a_{\eta+\delta}/a_{\delta}$, which is called the Schur function corresponding to η (see [Mac79]). Recall that the conjugate partition of η is defined to be the partition $\mu=(\mu_1,\ldots,\mu_m)$, where $m=\eta_1$, and $\mu_i=\#\{1\leqslant j\leqslant L|\eta_j\geqslant i\}$. It is shown in [Mac79, p. 41], that

$$s_{\eta} = \det(e_{\mu_i - i + j})_{1 \leqslant i, j \leqslant m},\tag{3}$$

where e_{ϵ} denotes the ϵ th-elementary symmetric function in z_1, \ldots, z_g , with the convention that $e_0 = 1$, and $e_{\epsilon} = 0$ for $\epsilon < 0$ or $\epsilon > g$.

Using that $y = \sum_{i \geq 1} \kappa_i x^{\ell i}$ in $\hat{\mathcal{O}}_{C,Z}$, with $\kappa_i = (2(i-1))!/i!(i-1)!$, we get that N_v can be expanded as an infinite sum of generalized Vandermonde determinants in x_1, \ldots, x_g , with exponent vectors

$$(v, v + 1, \dots, a, i_0 \ell, i_1 \ell + 1, \dots, i_b \ell + b),$$
 (4)

 $i_j \geq 0, \ 0 \leq j \leq b$, and coefficients $\pm \prod_{j=0}^b \kappa_{i_j}$ (where we set $\kappa_0 = 1$). Hence, B_v can be expanded as an infinite sum of Schur functions s_η in x_1, \ldots, x_g , with coefficients $\pm \prod_{j=0}^b \kappa_{i_j}$, where η depends on the choice of i_0, \ldots, i_b . Let us first calculate s_η when $i_0 = \cdots = i_b = 0$. Ordering (4) from largest to smallest gives $(a, \ldots, v, b, \ldots, 0)$ for $\eta + \delta$, so η is the partition (d, \ldots, d) of length c. Hence, the conjugate μ of η is the partition (c, \ldots, c) of length d. So by (3), $\pm s_\eta$ is the determinant in the statement of the proposition. It remains to be shown that the total degree of every monomial in s_η for the η corresponding to any other choice of i_0, \ldots, i_b is greater than d.

Suppose now that for some $0 < r \le b+1$, r of the i_j are positive, and we have reordered (4) from largest to smallest, so for some permutation j_1, \ldots, j_{b+1} of $0, \ldots, b$, we get that $\eta + \delta$ is

$$(i_{j_1}\ell + j_1, \dots, i_{j_r}\ell + j_r, a, \dots, v, j_{r+1}, \dots, j_{b+1}).$$

Subtracting δ to find η shows that $\eta_i \geqslant d+r$ for all $1 \leqslant i \leqslant c+r$. Hence, the conjugate partition μ to η has $\mu_i \geqslant c+r$ for all $1 \leqslant i \leqslant d+r$. In particular, if $m=\eta_1$, since $c \geqslant d$, e_0 does not appear in the first d+r columns of the matrix $[e_{\mu_i+i-j}]_{1\leqslant i,j\leqslant m}$. Hence, by (3), every monomial in s_η has total degree at least d+r>d, so we are done.

2. Proofs of the theorems

From the results of § 1, we see that $s_i = T_{gP}^*t_i$, $1 \leqslant i \leqslant g$, form a system of parameters for J at the origin O, for J defined over K, or for J defined over any residue field $\mathbb{Z}[\zeta]/\mathfrak{p}$, for any prime $\mathfrak{p} \subseteq \mathbb{Z}[\zeta]$ other than (λ) . As a result, s_i , $1 \leqslant i \leqslant g$, are a set of parameters for the formal group \mathcal{F} of J at the origin defined over $\mathbb{Z}[1/\ell][\zeta]$. Furthermore, for any $\alpha \in \mathbb{Z}[\zeta]$, we have power series $\rho(\alpha)_i$, $1 \leqslant i \leqslant g$, with coefficients in $\mathbb{Z}[1/\ell][\zeta]$, such that $[\alpha]^*s_i = \rho(\alpha)_i(s_1, \ldots, s_g)$ in $\hat{O}_{J,O}$. The map $\alpha \to \rho(\alpha) = (\rho(\alpha)_1, \ldots, \rho(\alpha)_g)$ gives an embedding of $\mathbb{Z}[\zeta]$ into the endomorphism ring of \mathcal{F} . Since gP is fixed by $[\zeta]$, we see that $[\zeta]^*s_i = \zeta^i s_i$, confirming that Φ is the CM-type of J. Therefore,

$$\rho(\alpha)_i(s_1,\ldots,s_q) = \sigma_i(\alpha)s_i + (d^o \geqslant 2),\tag{5}$$

where $(d^o \ge n)$ denotes a power series, all of whose terms have total degree at least n.

Let $\mathfrak{p} \neq (\lambda)$ be a prime of K, and for all $i \in (\mathbb{Z}/\ell\mathbb{Z})^*$, let $\mathfrak{p}_i = \sigma_i(\mathfrak{p})$, and let $K_{\mathfrak{p}_i}$ be the completion of K at \mathfrak{p}_i . Let \mathfrak{m}_i be the maximal ideal in the valuation ring \mathcal{O}_i of an algebraic closure of $K_{\mathfrak{p}_i}$. For any $i \in (\mathbb{Z}/\ell\mathbb{Z})^*$, we can consider \mathcal{F} to be defined over $R_i = \mathbb{Z}[\zeta]_{\mathfrak{p}_i}$, in which case we can identify $\mathcal{F}(\mathfrak{m}_i)$ with the kernel of reduction of $J(\mathcal{O}_i)$ mod \mathfrak{m}_i .

By (5), for any $1 \leq i \leq g$ and any $\alpha \in \mathfrak{p}$, the isogeny $[\alpha]$ is not separable mod \mathfrak{p}_i , so $J[\mathfrak{p}^n]$ is in the kernel of reduction mod \mathfrak{m}_i for any $n \geq 1$. Now fix any $i, 1 \leq i \leq g$. For any $\alpha \in \mathbb{Z}[\zeta]$, let $\mathcal{F}[\alpha]$ denote the kernel of $\rho(\alpha)$ in $\mathcal{F}(\mathfrak{m}_i)$, and for any ideal $\mathfrak{a} \subseteq \mathbb{Z}[\zeta]$, let $\mathcal{F}[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \mathcal{F}[\alpha]$. Hence, for any $n \geq 1$ we can identify $J[\mathfrak{p}^n] = \mathcal{F}[\mathfrak{p}^n]$. Let $\pi \in \mathbb{Z}[\zeta]$ be a uniformizer at \mathfrak{p} which is prime to all other conjugates of \mathfrak{p} . It is easy to see that

$$\mathcal{F}[\mathfrak{p}^n] = \mathcal{F}[\pi^n]. \tag{6}$$

Indeed, the containment of the left-hand side of (6) in the right-hand side follows by definition, and since for any $a \leq b$, $(\mathfrak{p}^b, \pi^a) = \mathfrak{p}^a$, it suffices to show the reverse inclusion for those n which are a multiple of the class number h of K. However, if $(\alpha) = \mathfrak{p}^h$, then $\pi^h = \beta \alpha$, for some $\beta \in \mathbb{Z}[\zeta]$ prime to \mathfrak{p} , so $\rho(\beta)$ is an automorphism of \mathcal{F} over R_i .

Proof of Theorem 1. We now assume that \mathfrak{p} is a first or second degree prime and that $n \geq 1$. As above, fix an $i, 1 \leq i \leq g$. Note that $\mathcal{F}[\pi^n]$ is precisely the set of solutions in \mathcal{O}_i to the simultaneous equations

$$0 = \rho(\pi^n)_j(s_1, \dots, s_q) = \sigma_j(\pi^n)s_j + (d^o \geqslant 2), \tag{7}$$

for $1 \leq j \leq g$. Since for any $1 \leq j \leq g$, $j \neq i$, $\sigma_j(\pi^n)$ is a unit in R_i , by the formal implicit function theorem (see, e.g., [Gra]), there are power series χ_j , $j \neq i$, over R_i , without constant or linear term, such that the solutions to (7) are precisely the same as those of the system

$$s_{i} = \chi_{i}(s_{i}), j \neq i; V(s_{i}) = 0,$$

where V is obtained by substituting $s_j = \chi_j(s_i)$ for all $j \neq i$ into the equation $0 = \rho(\alpha)_i(s_1, \ldots, s_g)$. Hence, s_i takes on different values at every point of $J[\mathfrak{p}^n]$, and since it vanishes at the origin, for every $Q \in J[\mathfrak{p}^n]'$, we have $s_i(Q) \neq 0$. Since χ_j is without constant or linear term, $|s_i(Q)| > |s_j(Q)|$ for any $j \neq i$, where $|\cdot|$ denotes an absolute value on \mathcal{O}_i . Now pick any $1 \leq v \leq g$. Let $h_v = T_{gP}^* B_v$, and let c = [g + (1 - v)/2]. Then by Proposition 2, the lead term in the expansion of h_v at O in terms s_1, \ldots, s_g , is of degree d = [(v + 1)/2] and contains the monomial $\pm s_c^d$. Hence, $h_v(Q) \neq 0$, since taking i = c, there is a unique term in the expansion of $h_v(Q)$ in terms of $s_j(Q)$, $1 \leq j \leq g$, of maximal absolute value over \mathcal{O}_i .

Note that the divisor of h_v is

$$vT^*_{(g+1)P}\Theta + T^*_{(g-v)P}\Theta - (v+1)T^*_{gP}\Theta.$$

Since $h_v(Q) \neq 0$,

$$Q \notin T_{(g-v)P}^* \Theta \tag{8}$$

for all $1 \le v \le g$. Since Θ is symmetric, replacing Q by [-1]Q also gives (8) for $g+1 \le v \le 2g-1$. Finally, note that $Q \notin T_{\pm gP}^*\Theta$, since the origin does not lie on $T_{\pm gP}^*\Theta$ mod \mathfrak{m}_i , and Q is in the kernel of reduction mod \mathfrak{m}_i . This shows that (8) also holds for v=0,2g, and gives us the theorem. \square

Proof of Theorem 2. Assume now that \mathfrak{p} is a prime of K of arbitrary residue degree f that lies over the rational prime $p \neq \ell$. As above, fix an $i, 1 \leq i \leq g$, and set $\mathfrak{p}_i = \sigma_i(\mathfrak{p})$.

It is now a seemingly hard problem in general to compute $|s_j(Q)|$ for some $1 \leq j \leq g$, $Q \in \mathcal{F}[\mathfrak{p}]'$, and $|\cdot|$ an absolute value on \mathcal{O}_i . However, in [Gra] such a problem is solved under the assumptions that \mathcal{F} has 'complex multiplication' by $\mathbb{Z}[\zeta]$ with CM-type Φ (i.e. (5) holds), that there is an $\alpha \in \mathbb{Z}[\zeta]$ such that $[\alpha]$ reduces to the Frobenius endomorphism of \mathcal{F} mod \mathfrak{p}_i , with the factorization $(\alpha) = \prod_{\phi \in \Phi} \phi^{-1}(\mathfrak{p}_i)$ (which is just the congruence relation from the theory of complex multiplication of

abelian varieties), that $\mathcal{F}[\phi^{-1}(\mathfrak{p}_i)^m] \cong \mathbb{Z}[\zeta]/\phi^{-1}(\mathfrak{p}_i)^m$ for every $m \geqslant 1$ and every $\phi \in \Phi$ (which follows since J has full complex multiplication by $\mathbb{Z}[\zeta]$), and also that \mathcal{F} is a p-typical group (see [Haz78]), which \mathcal{F} is not.

However, as described in [Gra, § 2], there is a p-typical formal group \mathcal{G} over R_i (called the 'p-typification' of \mathcal{F}), and a strict isomorphism $\psi = (\psi_m)_{1 \leq m \leq g}$ over R_i from \mathcal{F} to \mathcal{G} , so that if S_m , $1 \leq m \leq g$, are the parameters of \mathcal{G} , then

$$S_m = \psi_m(s_1, \dots, s_q) = s_m + (d^o \ge 2).$$
 (9)

It follows from [Gra, Lemma 4] that \mathcal{G} is now a formal group over R_i with complex multiplication by $\mathbb{Z}[\zeta]$ with CM-type Φ , and it follows from the existence of ψ that for the same α as for \mathcal{F} , the endomorphism $[\alpha]$ on \mathcal{G} reduces to the Frobenius endomorphism of \mathcal{G} mod \mathfrak{p}_i , and that $\mathcal{G}[\phi^{-1}(\mathfrak{p}_i)^m] \cong \mathbb{Z}[\zeta]/\phi^{-1}(\mathfrak{p}_i)^m$ for every $m \geqslant 1$ and every $\phi \in \Phi$. Hence, \mathcal{G} satisfies the hypotheses of [Gra, Proposition 1], whose conclusion gives us the following proposition.

PROPOSITION 3. Let $\omega(r,j)$ and $E_{r,j}$ be as in the Introduction, and let S_1, \ldots, S_g be the parameters for \mathcal{G} . Let w be the normalized \mathfrak{p}_i -adic valuation extended to \mathcal{O}_i . Then for any $Q \in J[\mathfrak{p}]'$, $w(S_{\omega(r,j)}(Q)) = (1/(p^f - 1))E_{r,j}$.

Hence, if $\omega(r,j')$ is admissible for p and $Q \in J[\mathfrak{p}]'$, $w(S_{\omega(r,j')}(Q))$ is the unique minimal valuation among all $w(S_{\omega(r,j)}(Q))$, $j \in \mathbb{Z}/d_r Z$. Furthermore, by [Gra, Remark 2], $w(S_{\omega(r,j')}(Q))$ is the unique minimal valuation among $w(S_m(Q))$ for all $1 \leq m \leq g$. So by (9), the same must be true for $w(s_{\omega(r,j')}(Q))$. Therefore, as in the proof of Theorem 1, if $[g+(1-v)/2]=\omega(r,j')$, that is, if q=g-v is good for p, then $h_v(Q)\neq 0$. We conclude as in (8) that $Q\notin T_{qP}^*\Theta$. Again replacing Q by [-1]Q shows that $Q\notin T_{-qP}^*\Theta$. Finally, by the same reason as in the proof of Theorem 1, $Q\notin T_{+qP}^*\Theta$.

Remark. See [GS] for a complete determination of the torsion of J that lies on $\phi(C)$.

References

- And G. Anderson, Torsion points on Jacobians of quotients of Fermat curves and p-adic soliton theory, Invent. Math. 118 (1994), 475–492.
- AG01 J. Arledge and D. Grant, An explicit theorem of the square for hyperelliptic Jacobians, Michigan Math. J. 49 (2001), 485–492.
- BG00 J. Boxall and D. Grant, Examples of torsion points on genus 2 curves, Trans. Amer. Math. Soc. **352** (2000), 4533–4555.
- Col86 R. F. Coleman, Torsion points on Fermat curves, Compositio Math. 58 (1986), 191–208.
- Gra D. Grant, Geometric proofs of reciprocity laws, J. reine angew. Math., to appear.
- GS D. Grant and D. Shaulis, *The cuspidal torsion packet on hyperelliptic Fermat quotients*, J. Théor. Nombres Bordeaux, to appear.
- Haz78 M. Hazewinkel, Formal groups and applications (Academic Press, New York, 1978).
- Mac79 I. G. Macdonald, Symmetric functions and Hall polynomials (Oxford University Press, Oxford, 1979).
- Mil86 J. Milne, *Jacobian varieties*, in *Arithmetic Geometry*, eds G. Cornell and J. Silverman (Springer, New York, 1986).
- Sim03 B. Simon, Torsion points on a theta divisor in the Jacobian of a Fermat quotient, Thesis, University of Colorado at Boulder (2003).

David Grant grant@boulder.colorado.edu

Department of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA