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TORSION ELEMENTS AND THE CLASSIFICATION OF 
VECTOR BUNDLES 

ROBERT D. LITTLE 

1. I n t r o d u c t i o n . There are many situations in algebraic topology when a 
geometric construction is possible if, and only if, a certain integral cohomology 
class, an obstruction is zero. When a t t empts are made to compute the obstruc­
tion, it often happens tha t it is relatively easy to show tha t m times the obstruc­
tion is zero, where m is an integer, and consequently the geometric construction 
is possible if the cohomology group in question has no elements of order m. 
The purpose of this paper is to give an example of this situation and to develop 
techniques for computing the obstruction when elements of order m are present. 

We consider the problem of classifying vector bundles over an n-dimensional 
CW complex X. If J is a real vector bundle over X, the Stiefel-Whitney class of 
£ in Hi(X; Z2) is denoted by w^) and the Pontrjagin class in H4i(X; Z) by 
P'*(£). If £ is an ?z-plane bundle, the Euler class of £ in Hn(X; Z) is denoted by 
x(£). If co is a complex bundle, the Chern class in H2i(X; Z) is denoted by 
Ci (ça). Universal characteristic classes are denoted by wu P(i), and c(i). If £ 
and T] a re two vector bundles over X and 6 is a pr imary cohomology operation, 
0£)T? denotes the functional cohomology operation associated with the action of 
d on the cohomology sequence of the pair (X X / \J B F, B F), where B F is the 
mapping cylinder of the map F : X X / —> B given by the classifying maps of 
£ and 7]. Throughout this paper, we will take dSq2 and bPl for 0, where 8 is the 
Bockstein, Sq2 the Steenrod square, and P1 the Steenrod power mod 3. In the 
two theorems below, we assume tha t n ^ 8 and tha t Hn(X\ Z) has no elements 
of order 2 if n is even in Theorem 1 and if n = 8 in Theorem 2. In Theorem 1, 
we assume tha t w ^ 5 . Theorem 1 is t rue in the case n = 5, if the word iso­
morphic is replaced by the words stably isomorphic. In Theorem 2, we assume 
tha t n is even. 

T H E O R E M 1. If J and y\ are two orientable n-plane bundles over X, then J is 
isomorphic to rj if, and only if, w2(£) = W2O7); Pi(£) = Pi(v), i = 1, 2; 0 6 
5Sqlv(w2); 0 G M>L,(P(1)) ; and x (£) = x ( ^ ) . 

T H E O R E M 2. / / œ and f are two complex n/2-bundles over X, then œ is iso­
morphic to f if, and only if, ct(o:) = c^), 1 ^ i ^ 4; 0 G ôSqutç(c(2)) ; and 
0 e ôPl>t(c(2)). 

Theorem 1 contains the Dold-Whitney classification theorem for 7-com­
plexes [13] which assumes tha t HA(X\ Z) has no elements of order 2 and a 
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classification theorem of Thomas for 8-complexes [12] which assumes that 
H4(X) Z) has no elements of order 2 and that H8(X; Z) has no elements of 
order 6. Theorems 1 and 2 give a classification of vector bundles over closed, 
orientable manifolds of appropriate dimensions because the top dimensional 
cohomology of such manifolds is torsion free. 

2. The proofs of Theorems 1 and 2. We prove Theorem 1 and the comment 
on Theorem 2. The conditions in the theorem are clearly necessary. In view of 
Theorem 1.7 in [3] and Lemma 2 in [13], it is enough to show that the condi­
tions in the theorem imply that £ and 77 are stably isomorphic. It will then follow 
that they are isomorphic when n is odd, n ^ 5 [3], and the condition x(£) = 
x(v) will be enough to imply isomorphism in the case n even [13]. 

We begin with a proposition which relates obstructions to a stable isomor­
phism and characteristic classes. In the proposition below, ôSqçiV and ôPçt1l 

denote the functional operations described in the introduction. If w2(£) = 
w2(r)), the operation dSq^r, is defined on w2 and the resulting subset of H4(X; Z) 
is denoted by ôSq^>ri(w2) and is a coset modulo (Pi(£) — Pi (77)), the subgroup 
generated by the difference Pi(£) — Pi (77). If Pi(£) = P1O7), the operation 
5Pf f ,(P(l)) is defined and is a subset of HS(X; Z) which is a coset of (P2(£) — 
P2O7)) + image 5P1. (See [4] or [7].) Let at be 1 for i even and 2 for i odd and 
if x is an integral class, x denotes its reduction mod 2. 

PROPOSITION 2.1. / / J awd 77 ar£ two orientable stable bundles such that the 
integral obstruction to a stable isomorphism 04*(£, 77) is no?ivoid, i = 1 or 2, /Aew: 

(2.2) (2* - l)!a«0*<(E, „) = P,({) - Pt{r,), 

(2.3) 04(S, ,) + (iMf) - PxO,)) = «5fff,,(w2), 

(2.4) 04(£,r?) = w4«) - w4(n), 

(2.5) 208«, r?) + (P2( |) - P2(„)) + image ÔP1 = «Pj , , (P(l)) . 

Proof. Formula (2.2) is just formula (b) in Theorem 6.15 of [8]. To prove 
(2.3), let K(Z2, 2; Z, 4, 8Sq2) be the total space of the fibration induced by 
ôSq2. If f : BSO -> K(Z2, 2; Z, 4, <5Sg2) is a lifting of w2> and [g] in m(BSO) is 
a generator, it follows from the Peterson-Stein definition of functional co­
homology operation ([6, p. 159]) that the set {f#'[g] : f'*i = w2) can be identi­
fied with the functional cohomology operation bSqg(w2). (See [4].) Direct 
computation shows that bSqg(w2) is the non-zero coset mod 2, and so the in­
duced homomorphism /„/ : H4(X; Ti(BSO)) —>H*(X; Z) may be taken to be 
the identity. If/ and g are the classifying maps of £ and 77, respectively, na-
turality of obstructions implies that 04(£, 77) is contained in 0 4 ( / ' / , f'g) which is 
contained in the operation ôSqf>fif>g(i), where 1 is the fundamental class, by 
10.8 in [7]. Formula (2.3) now follows from naturality of functional operations 
([7, 14.6]) and the fact that the indeterminacy of ôSq^v(w2) is (Pi(£) — Pi(77)). 
Formula (2.4) follows from (2.3), the defining diagram of ôSq^>ri and the fact 
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t h a t Sqz is zero on 2-dimensional classes. Formula (2.5) follows from Theorem 
3 in [4] and may be regarded as arising from natural i ty in the same way as 
(2.3). 

We turn now to the proof of Theorem 1. If w2(£) = w2(ri), P i (£) = P i G?), 
and 0 G ôSqljrj(w2), it follows immediately from (2.2), (2.3), and the fact t ha t 
iTi(BSO) = 0, 5 ^ i ^ 7, t ha t the restrictions of £ and r\ to the 7-skeleton of X 
are s tably isomorphic. If P2(£) = P2O7), formula (2.5) reduces to the con­
ta inments 208(£, v) =s 0 8 ( / 7 , f'g) = bP)>fj>ç{i) = Ô P L ( P ( 1 ) ) , where / and 
g classify £ and rj and / ' : BSO -> i£(Z, 4; Z, 8, ÔP1) is a lifting of P ( l ) . Let 
i£ = K(Z, 4 ; Z, 8, «5P1). The last of the three containments are equalities 
because it is easy to see tha t / ' can be chosen in such a way t ha t 
image {f* : H*(K; Z)-*H8(BSO; Z)} is contained in the kernel of the 
difference homomorphism / * — g* and so the obstruction Os(f'f, f'g) is pre­
cisely àPf'f,f'g(i) by 10.8 in [7] and this functional operation has the same 
indeterminacy as 8P^V(P(1)). The indeterminacy of ôP^ ; 7 ?(P(l)) is image 
bPl and the proof of Theorem 1 will be complete when we show tha t 208(£, 77) 
is not a proper subset of oP% r ? (P ( l ) ) . T h a t is, we must show tha t /* '0 8(£, rj) = 
0s(/'/, f'g). 

We view the problem of constructing a homotopy between / and g as the 
problem of extending the map o n l x / defined by / and g over X X I. 
Let h : (X X I)s —* K be an extension of a homotopy of }'} and f'g over the 
8-skeleton of X X I. Regard the obstruction cohomology class {cs(h)\ as an 
element in HS(X; TS(K)) and suppose tha t {cs(h)} is in 0s(f, g). We assert 
t ha t by altering h and h in such a way tha t {cs(h)} is unchanged, we may 
assume tha t {c8Qi)\ is in image/* ' . We begin proving this assertion by showing 
tha t we may assume tha t 0s (f'h, h) in H3(X; TA(K)) is zero. The map /#' : 7r4-
(BSO) -^TTA(K) is multiplication by 2 [8], and HZ(X; Z) /kerne l dP1 is a 
3-torsion group, so the composite H*(X; TA(BSO)) -> H*(X; Z) -> # 3 ( X ; Z ) / 
kernel 8P1 is an epimorphism. Therefore, there is a class {AI} in Hd(X; ^ ( P S O ) ) 
such that/*'{/x} — Od(f'h, h) = {v}, where {̂ } is in kernel 5P1 . Alter A by the 
cocycle v to get a new homotopy of / ' / a n d / ' g , A„, defined on the 8-skeleton of 
X X / s u c h t h a t 0 3 ( ^ , A,) = M and hence {cs(h)\ = {c8(/*„)| since {c8(M} -
{c8(A,)} = àPWih, hv) [9]. But -0*(f'h,h) = 0*(h,hv) +0*(hv, f'h) and so 

/ * ' { M } = Os(f'h, hv). Altering h by /x, we obtain a homotopy o f / and g, /zM, 
defined over the 8-skeleton of X X I because iri(BSO) = 0, 5 ^ i ^ 7, such 
tha t 0*(£, £M) = {/x}. Since 0'(f'h„ hv) = 03(f'h„ f'h) +0*(f'h, hv) = 0, 
fhp ~ hv over the 7-skeleton of X X I and the s tandard cocycle formula im­
plies that/*'{c8(ÂM)} = \c8(hv)) = {c8(A)|. The proof Theorem 1 is complete. 

The proof of Theorem 2 is essentially the same as the proof of Theorem 1 
and uses Theorem 2 in [4]. We need the fact tha t stable isomorphism and iso­
morphism are the same in the context of Theorem 2, tha t is, the map 
[X; BU(n/2)] —» \X; BU] is a bijection when dimension X ^ n. In this case, 
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the m a p / / : Ti(BU) —» in(K) is the ident i ty [8], and so there is a cocycle /x 
such that/*'{/*} = Od(f'h, h). Since TQ(BU) = Z, it is not clear t h a t altering Â 
by /x will produce a homotopy of / and g extendable over the 8-skeleton of 
XXL One alters h by v where {̂ } = -303(f'h, h). We then have {cs(h)\ = 
{c8(Â„)} and 03(f;h, hv) = — 20z(f'h, h) which is in kernel ôSq2 and so altering 
h by {fx\ = — 203(f'h, h) produces a homotopy o f / and g defined over the 
8-skeleton of X X L 

T h e functional operations are non-trivial invariants of the classification 
problem. I t is possible to give an example of a 7-manifold M and a 7-bundle 
over M, £, such tha t w2(£) = 0, P i (£) = 0 bu t J is not s tably trivial. If 2-tor 
H*(M\ Z ) denotes the subgroup of H4(M; Z ) of elements of order 2, it follows 
from Theorem 3.1 in [10] and Theorem 4.2 in [11] and Theorem 1, t ha t 
^2 (J) = 0 and P i (£) = 0 imply £ = 0 for every stable orientable bundle if, 
and only if, the quotient group 2-tor HA{M\ Z ) / i m a g e ôSq2 is zero. Take M = 
L7(m), a lens space of dimension 7 with fundamental group Zm , where m is 
even. Since Sq2 is zero on 1-dimensional classes, the above quot ient group is 
jus t 2-tor H4(L7(m); Z) which is not zero since m is even, and so there is an 
orientable 7-bundle over U(m) such t ha t w2(£) = 0 and P i ( f ) = 0 bu t J is 
not s tably trivial. If m = 0 (mod 4) , there are elements of order 4 in H*(L7(rn) ; 
Z ) . In this case, (2.4) can be used to show tha t there is an orientable 7-bundle 
over U(m) such tha t wt(£) = 0, i = 2 and 4, P i (J) = 0, bu t J is not s tably 
trivial. 

3. A p p l i c a t i o n s . Let M be a connected, smooth w-manifold. A theorem of 
Whi tney [1] says t ha t if n ^ 1, M immerses in R2 n _ 1 . Recall t ha t M is called 
a spin manifold if M is closed, orientable and w2(M) = 0. We will use Hirsch's 
theorem on immersions [1] together with Theorem 1 above to prove the two 
theorems below which represent improvements of Whi tney ' s theorem in 
special cases. 

T H E O R E M 3.1. Every closed, orientable 5-manifold immerses in R8. 

T H E O R E M 3.2. If n = 6 or 7 and M is a spin manifold, then M immerses 
in Rw+3. 

Hirsch originally proved Theorem 3.1 by showing t ha t the normal bundle of 
the Whi tney immersion of M in R 9 has a normal vector field and then applying 
his immersion theory. We prove this theorem in a different way, using a lemma 
about stable bundles and the Hirsch theory. Thomas has shown tha t if n = 
3 (mod 4) , then any spin w-manifold immerses in R27ï_3, [14]. Theorem 3.2 
sharpens Thomas ' result by one dimension in the case n = 7. 

If £ is a bundle, let (£) denote its stable equivalence class. The stable bundle 
(J) is said to have geometric dimension ^ k (for some positive integer k) if (J) 
contains a &-plane bundle. For a smooth manifold M, let TM denote the 
tangent bundle and vM the stable normal bundle ; i.e. vM = — (TM). Hirsch's 
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theorem says t ha t M immerses in Euclidean space with codimension k if, and 
only if, geometric dimension vM S k[l]. Theorems 3.1 and 3.2 will followr from 
Hirsch's theorem and the lemma below. In the proof of the lemma, we wrill 
use the following fact: if £ is an orientable bundle over X such t ha t w±(£) = 0 
and 7 is an orientable 3-bundle over X such tha t w2{^) — w2(y), then there is 
a class e in HA(X; Z) such tha t P i (£) - P i (7) = \e and 2e G 04(£, 7 ) . This 
fact follows immediately from (2.2) and (2.4). 

LEMMA 3.3. Let £ be a stable, orientable bundle over a closed, orientable n-
manifold, 5 ^ n ^ 7. / / n 9^ 5, assume that w2(£) = w2(M) = 0. Then geo­
metric dimension j*^3if, and only if, w^) = 0. 

Proof. The condition is clearly necessary. We prove sufficiency first in the 
case n = 5. T h e argument begins by observing t ha t if M is a closed, orientable 
5-manifold and x is a class in H2(M; Z 2 ) , there exists an orientable 3-bundle 7 
over M such t ha t w2{y) = x. This is proved by viewing the construction of 7 as 
the extension of a map into BSO(3) over M. I t is clearly possible to construct 
a map g from the 3-skeleton of M into BSO{3) such t ha t g*w2 = x. Arguments 
similar to those used in the proof of (2.3) and the homotopy properties of 
PSO(3) [2], show tha t g extends over M if ôSq2(g*w2) = 0, bu t this is t rue 
since Hh(M; Z) has no torsion. If w±(£) = 0, let 7 be an orientable 3-bundle 
such t h a t w2(£) = w2(y), and let e be a class in HA(M; Z) such t ha t P i (J) — 
Pi(rj) = 4e and 2e G 04(£, 7 ) . I t follows from the homotopy sequence of the 
rlbration F 2 (R 5 ) = SO (o)/SO (3) and the fact t ha t T T 3 ( F 2 ( R 5 ) ) = Z 2 [2], t ha t 
the homomorphism WA(BSO(3)) —-> TA(BSO) is multiplication by 2. This means 

t h a t it is possible to alter 7 by a cocycle representing — e and obtain a 3-bundle 
over M, yf, such tha t 0 4 ( 7 , yf) = -2e. Since 04(£, 7') = 04(£, 7) + 0A{y, yf), 
we have 0 G 04(£, 7') and hence geometric dimension £ ^ 3 since ir-a{BSO) = 0. 

If n = 6 or 7 and w4(£) = 0, let e be a class in PT4(M ; Z) such tha t P i (£) = 
4e and 2e G 04(£, *) , where * is the trivial stable bundle. There is a 3-bundle 
o v e r S 4 , <?, such tha t P i (7) = 4i and so by (2.2), 04(i>, *) = 2c, since i f 4 (S 4 ; Z) 
is torsion free. Since Sq2e = 0 and 0 G $(0) , where $ is the secondary operation 
associated with the relation Sq2Sq2 = O(Z), classical obstruction theory tells us 
tha t there is a map g : M —• S4 such tha t g*i = e, and so 7 = g*7 is a spin 
3-bundle satisfying the conditions P i ( 7 ) = 4<? and 2e G 0 4 (7 , *) . (See [13].) 
Therefore £ is stably isomorphic to 7 since 04(£, 7) = 04(£, *) — 0 4 ( 7 , *) and 
TTi(BSO) = 0, 5 ^ i ^ 7. We have established t ha t geometric dimension 

« g 3. 

Massey has shown tha t wn-i(vM) = 0 for any closed, orientable n-manifold 
[5] and so Theorem 3.1 follows from this fact, Lemma 3.3, and Hirsch's 
theorem on immersions. If I f is a spin ^-manifold, n = 6 or 7, it follows from 
Wu ' s formula tha t w±(M) = 0 and hence w±(vM) = 0. Therefore, Theorem 3.2 
follows from Lemma 3.3. There is reason to believe t ha t Theorem 3.2 is true 
without the spin hypothesis: w±(vM) = 0 for any closed, orientable w-manifold, 
n = 6 or 7 [5]. 
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