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Abstract. This paper surveys the work of Charles Conley and his students on Morse
decompositions for flows on compact metric spaces, as well as the more recent
development of the connection matrix formalism for detecting connections between
the Morse sets of a Morse decomposition.

0. Introduction

This paper is a survey of some of the ideas of Charles Conley and his students
about the qualitative description of flows. It was Charlie’s view that a useful
qualitative theory should have two key properties. First, it should be applicable to
continuous flows on fairly general topological spaces. This is important even in the
context of smooth flows on manifolds when it is necessary to restrict attention to a
compact invariant set or to form a quotient space. Second, the theory should be
stable under perturbation of the flow. This insures that the qualitative predictions
are physically meaningful. It also makes the various elements of the qualitative
description ‘computable’ by permitting perturbation of a given flow to a simpler
one nearby.

A fundamental result of Coniey’s is that every flow on a compact metric space
can be decomposed as a chain recurrent part and a gradient-like part [3]. The chain
recurrent set is a compact invariant set which contains the non-wandering set plus
points which, roughly speaking, become recurrent when small errors are introduced
into the flow. On each component of the chain recurrent set, the flow is chain
transitive. The flow on the rest of the space is gradient-like in the sense that there
is a continuous Lyapunov function which is strictly decreasing on orbits which are
not chain recurrent. If the components of the chain recurrent set are identified to
points, a gradient-like flow is obtained on the quotient space. Thus the problem of
providing a qualitative description falls naturally into two parts, the description of
the components of the chain recurrent set and the description of how these com-
ponents are connected to one another.

The simplest instance of this decomposition is the gradient flow of a Morse
function ([10], [12]). In this case the components of the chain recurrent set are the
critical points of the function. The function itself can be used as a Lyapunov function.
Morse’s approach to the description of the components was to assign to each
restpoint an index which captures the local features of the flow. Connections between
restpoints can be found by using the Lyapunov function to construct a filtration of
the space by positively invariant sets such that the difference of two successive sets
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in the filtration contains a single restpoint. Connections between adjacent restpoints
are then reflected in the relative topology of the sets in the filtration.

Conley’s approach to the general case is similar. In the light of the decomposition
theorem mentioned above, it would be natural to try to assign an index to each
component of the chain recurrent set and then use the Lyapunov function to construct
a filtration. However, without further assumptions on the flow, this decomposition
can be too fine to be stable. In particular, the chain recurrent set may have infinitely
many components and these can accumulate on one another. These difficulties led
to the idea of a Morse decomposition. A Morse decomposition of a flow is a finite
collection of disjoint, compact invariant sets which together contain all the recurrent
behaviour of the flow in the sense that if they are identified to points, a gradient-like
flow is obtained. The elements of the decomposition are called Morse sets. A given
flow may have many such Morse decompositions. The chain recurrent set is precisely
the set of points which belongs to every Morse decomposition. In the case where
the chain recurrent set has only finitely many components, these components form
a Morse decomposition which is the finest possible for the given flow. For example,
when the chain recurrent set is hyperbolic, the Morse sets in this finest Morse
decomposition are just the basic sets of the spectral decomposition ([1], [6]). In
the general case, each Morse set consists of some of the components of the chain
recurrent set together with the orbits connecting them. A Morse decomposition is
stable in the sense that nearby flows admit similar decompositions.

Once a Morse decomposition has been found, a qualitative description analogous
to that of Morse can be given. The individual Morse sets are described by the Conley
index which provides a stable description of the local dynamics. Connections

-between the Morse sets can be found by constructing filtrations by positively invariant
sets and studying the topology of these sets. The principal tool for this purpose is
the connection matrix. For a Morse decomposition with N Morse sets, the connection
matrix is an N x N matrix whose entries are maps between homology groups
associated to the various Morse sets. These entries reflect the existence of connecting
orbits in the flow. In particular, if there is no chain of connecting orbits between
two given Morse sets, then the corresponding entry of the matrix will be a trivial
map. It is sometimes possible to combine the general properties of connection
matrices with topological information about a filtration to deduce that a certain
entry is non-trivial and so prove the existence of connecting orbits.

Even in the classical case of a gradient flow, the connection matrix can provide
more information than the usual analytical methods using the Morse inequalities
or spectral sequences. The reason is that the connection matrix describes a more
general type of filtration. A filtration constructed from a Lyapunov function consists
of a nested sequence of compact positively invariant sets. The Morse sets are between
successive sets of the filtration. This imposes a total ordering on the Morse sets
which is usually quite unnatural in the sense that a different Lyapunov function
could produce a different ordering. The topological analysis of such a filtration can
usually find connections only between Morse sets which are adjacent in the ordering.
Now there is a natural partial ordering associated to a Morse decomposition; namely,
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two Morse sets are related in the order iff there is a sequence of connecting orbits
between them. Of course if this partial order were known, there would be no need
for a connection matrix. It may happen however that some information about this
order is known and it is important to use it to deduce more. The starting point for
the connection matrix theory is a Morse decomposition with a partial order known
to be compatible with the flow. Then a filtration can be constructed not with nested
sets but rather with sets whose intersections and unions reflect the partial order.
From this a connection matrix is computed which can detect connections between
Morse sets which are adjacent in the partial order.

The goal of this paper is to explain what a connection matrix is, how to construct
one for a given flow and how to use one to find connecting orbits. The question of
why they exist will remain somewhat mysterious. However, it is true of many
algebraic topological machines that they can be used effectively in practice long
after the details of their construction have been forgotten. For more information
one should read Franzosa’s original paper ([7], [8]). Section 1 concerns partially
ordered Morse decompositions and the associated filtrations. Section 2 is devoted
to connection matrices and includes an axiomatic presentation of their main proper-
ties as well as complete computations of the connection matrices for two examples.

Connection matrices have been applied to problems in ecology by Reineck [13]
and to travelling waves by Mischaikow [11]. (The author would like to thank them
both for their careful lectures on the subject at the University of Minnesota.)

1. Morse decompositions

Let S be a compact Hausdorff space with a flow ¢(x,t)=x-1; x€ S, teR. S could
be a compact invariant set in some larger space which need not be compact. If K
is any subset of S, we define the forward limit set w(K) to be the largest invariant
set in the closure of K- [0, o) and the backward limit set »*(K) to be the largest
invariant set in the closure of K- (—o0, 0].

Let M={M(p): pe P} be a finite collection of disjoint compact invariant sets.
For these sets to form a Morse decomposition it is required that all of the recurrent
behaviour of the flow takes place inside them. In other words, orbits cannot cycle
back and forth between two of the sets. This can be achieved by insisting that orbits
run downhill with respect to some partial order on the collection.

Definition. A Morse decomposition of S is a finite collection M={M(p): pc P} of
disjoint, compact invariant subsets of S which can be partially ordered in such a
way that for every x € S either

(i) xe M(p) for some p
or

(ii) there exist M(p) < M(p*) with w(x)<c M(p) and w*(x)< M(p*).
The collection together with the partial order is called an ordered Morse decomposi-
tion of S. A subset of § which belongs to some Morse decomposition is called a
Morse set.

It should be pointed out that every Morse decomposition is naturally ordered by
the flow. Namely, we can define a relation by setting M( p) < M(p’) if there is some
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orbit running from M(p’) to M(p) and then extend to get transitivity. Because of
the no-cycle condition in the definition, this relation is a partial order. It is the
smallest admissible partial order for M. However, it is sometimes useful to consider
stronger orderings, especially when the natural ordering is unknown.

Example. Let S be a compact Riemannian manifold and F: S - R a smooth function
with finitely many critical points. The vector field —grad F determines a flow of S.
Let M be the set of critical points on F. If the critical values of distinct critical
points are distinct, then they provide a total order on M and M is an ordered Morse
decomposition of S. The ordering is generally different from the natural one. For
example, in figure 1 the partial order induced by the flow is A< B<D, C<D,

C<E, A<E. c

A
FIGURE 1

Once a Morse decomposition is known, a variety of cruder ones can be obtained
by combining some of the Morse sets and their connecting orbits into bigger Morse
sets. Some care must be taken to guarantee that the new sets are compact and that
the no-cycle condition holds. A subset I of M is called an interval if whenever
M(p), M(p)el and M(p)<M(p")<M(p'), also M(p")el. If no order is
specified, the natural one is assumed. Let C(M(p), M(p')) or just C(p, p’) denote
the set of connecting orbits running from M(p) to M(p'); in particular, C(p, p) =
M(p). Then the amalgamated Morse set is M(I) = u C(p, p’), where the union runs
over all pairs of Morse sets in L. It is not difficult to show that this is a compact
invariant set. If the same construction is attempted with a subcollection which is
not an interval, compactness may be lost. For example, figure 2 depicts a flow on
a triangle with a Morse decomposition {A, B, C}. The union of A, C and C(A, C)
is not compact because {A, C} is not an interval. On the other hand every other
subset of {A, B, C} is an interval and the corresponding amalgamations are compact.
Viewing M(I) as a single Morse set leads to the collection M/I consisting of M(I)
together with the Morse sets not contained in I. It can be shown that M/l is a Morse
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FIGURE 2

decomposition ([7], [8]). Hence M(I) is a Morse set. If we attempt to combine
Morse sets which do not form an interval, then even if the amalgamated set is
compact, the no-cycle condition may be violated. For example, in figure 1 the union
of A, D and C(A, D)= is compact but it is connected to B by orbits running in
both directions.

The importance of this construction lies in the fact that cruder Morse decomposi-
tions are easier to understand. An analysis of several of the decompositions M/I
may lead to an understanding of M itself.

The stability of Morse decompositions derives from their relationship with attrac-
tors and repellers which are inherently stable.

Definition. An attractor in S is a compact invariant set which is the w-limit set of
some neighbourhood of itself in S. A repeller in S is a compact invariant set which
is the w*-limit set of some neighbourhood of itself in S.

If A is an attractor, then the set of all points of S which are not attracted to A
is a repeller, A*, called the dual repeller of A [2]. The collection {A, A*} is called
an attractor-repeller pair; it is the simplest instance of a Morse decomposition.
Morse decompositions can be amalgamated into attractor-repeller pairs, usually in
many different ways. Suppose that I is an attracting interval in M;; that is, an interval
such that M(p)el and M(p')< M(p) implies M(p’)el. Let I* =M\I. Then I* is
also an interval and {M(I), M(I*)} is an attractor-repeller pair. In the example of
figure 1, each of the following is an attracting interval (the natural order is used):

{A, B, C, D, E}
% N
{A, B, C, D} {A, B, C, E}
M < NY
{A, B, C}) {A, C, E}
< N c
{A, B} {A, C}
N [ >
{A} {C}
S [~

1]
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It is evident that the collection of attractors arising from this ordered Morse
decomposition is closed under unions and intersections. This holds for every Morse
decomposition.

Definition. An attractor filtration in S is a finite collection A of attractors in S
satisfying

(i) e A and Se€A,

(ii) if A,A'e A, then An A, AUA'€eA.

These are just the axioms for a topology on S; thus the collection of attractors
of an ordered Morse decomposition is a (finite) topology.

The ordered Morse decomposition can be recovered from the attractor filtration.
First, the Morse sets are just the intersections A*~ A’, where A c A’ are attractors
in the filtration with no intermediate attractors; i.e. Ac A"c A’ implies A"= A or
A"= A'. Next, a partial order is defined by the rule: M(p) = M(p’) iff every attractor
containing M(p’) also contains M(p). One can check that this is the same as the
original partial order. For example, from the fact that, in the diagram above, the
smallest attractor containing D is M({A, B, C, D}), we recover the fact that A< D,
B <D and C < D but E % D. In this correspondence, stronger partial orders deter-
mine smaller attractor filtrations.

An interesting corollary of this discussion is the characterization of Morse sets
in S as intersections of attractors and repellers. We saw that any Morse set can be
so represented: conversely, if M =A¥nA’, where Ac A’ are attractors, then
M={A, M, A'*} is a Morse decomposition so M is a Morse set.

The one-to-one correspondence between ordered Morse decompositions and
attractor filtrations can be used to continue an ordered Morse decomposition to a
nearby flow. To see this we will study the continuation of attractors or, more
generally, of isolated invariant sets. We will allow perturbations not only of the
flow but of the space S itself. Thus we will admit the possibility that S is a compact
invariant subset of a flow on a larger space I' and perturb the larger flow. To keep
the theory flexible, it is preferable not to impose stringent hypotheses on I, but the
constructions to follow require that S< X <T', where X is a locally compact
metrizable space. X need not be invariant under the flow but must possess a kind
of local positive invariance, as described in the following definition.

Definition. X cT is a local flow if for every xe X there is a neighbourhood U
relative to X and a T >0 such that

U-[0, T)c X.

As an example, imagine a flow on R’ which leaves the (x, y)-plane invariant.
Suppose that the flow in the plane has the behaviour indicated in figure 3 on the
boundary of a square. Then if T is R?, X is the open square and S is the set of all
orbits which stay in X for all time, all of the above conditions will be met. Note
that X need not have interior in I'. This approach is useful for studying perturbations;
for example, if the flow on R’ also preserves the planes parallel to the (x, y)-plane,
it can be viewed as a continuous one-parameter family of flows in the plane. In an

https://doi.org/10.1017/50143385700009445 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700009445

Morse decompositions and connection matrices 233

FIGURE 3

application to partial differential equations, I' might be a function space and X a
locally compact subset known to contain the solutions of interest.

Consider a perturbation of the local flow X. Clearly some condition on S < X is
needed to guarantee that there will be a unique compact invariant set of the flow
which can be identified as the perturbation of S.

Definition. Let X =T be alocal flow. A compact set N < X is an isolating neighbour-
hood in X if the maximal invariant subset of N lies in the interior of N relative
to X. S< X is an isolated invariant set in X if it is the maximal invariant set in
some isolating neighbourhood in X.

The condition for an isolating neighbourhood can be rephrased as follows:
boundary points of N eventually leave N in forward or backward time. Since N
and its boundary are compact, this condition is stable under perturbations of the
local flow which are small in the compact-open topology. Invariant sets in nearby
local flows which are isolated by the same isolating neighbourhood are said to be
related by continuation. This can be extended to distant flows by using a sequence
of isolating neighbourhoods.

Let S’ denote a continuation of S to a nearby flow. If A is an attractor in S, we
will show that A continues to an attractor A’ in S’. Let U be a neighbourhood of
A in S such that w(U)=A and let V be an isolating neighbourhood of S and S’
in X. Now U is of the form Wn S, where W is a neighbourhood of A in X; then
V n W is an isolating neighbourhood of A in X. Thus A continues to some isolated
invariant set A'c §’. Since A is an attractor, there will be some T>0 with
U-T< Vn W and this will still hold if U is fattened to a neighbourhood W’ of A
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in X. If the perturbation is small enough, we will have A’ W' and (W'n§')T<
VA Wn S'. This implies that o( W' nS')= A’, so A’ is an attractor in S.

Now we can continue an ordered Morse decomposition of S to an ordered Morse
decomposition of S’ by making use of the equivalent attractor filtration. Each
attractor in the filtration continues to every sufficiently near flow. Since there are
only finitely many attractors in the filtration, we can continue them all at once.
Moreover, continuation of attractors commutes with unions, intersections and
inclusions, so we obtain an attractor filtration of S’ with the same order structure.
From this we can construct an ordered Morse decomposition by the method
described above.

Consider figure 1 again. If we take a perturbation which eliminates the restpoint
B, then the Morse set corresponding to B in the perturbed Morse decomposition
will be empty. The ordering will no longer be the natural one since the new B is
not connected to anything. A different perturbation produces a Morse set consisting
of three restpoints; the ordering is the natural one since the connections from D to
B and from B to A persist.

In the next section we take up the qualitative analysis of a flow with a Morse
decomposition. However, it is often very difficult to find even a crude Morse
decomposition for a given flow. Most of the applications of the theory have been
to flows where some kind of Lyapunov function is available to limit the recurrent
behaviour. We will now describe a flow of this type which will be as an example
throughout the rest of the paper. It is modelled on a problem in celestial mechanics:
the study of the collision manifold of the planar three-body problem.

Consider a flow on I'=S8?x8” which is gradient-like with respect to a function
f:T >R, i.e. fis strictly decreasing on orbits which are not restpoints. We will study
the restpoint connections in the positively invariant region X = { f = 0}. X is homeo-
morphic to S*x D’. More generally, for ¢ <0, let X, ={f=c}. Let 7: X - S? be the
projection to the first factor. It is given that the projections w(X,) are the sets
K.={g=c}, where g is a function on S? whose level sets are shown in figure 4.
Moreover 7: X, - K_ is a homotopy equivalence for every c; all of the topology of
the level sets of f is reflected in the level sets of g. The local flow on X has eight
restpoints and their projections are the eight critical points of g visible in figure 4.
All of the restpoints are hyperbolic and their unstable manifolds have the same
dimensions as those of the projected restpoints do in the flow of —grad g. The
restpoint connections in the latter flow are clear from the figure: each saddle is
connected to the two adjacent sinks and each source is connected to all six saddles
and sinks. The problem is to show that the corresponding restpoint connections
occur in the local flow X. It is relatively easy to study the connections originating
at the restpoints C, since the unstable manifolds are one-dimensional. Suppose it
is given that these connections are the same as those in 8%; we will see below that
restpoint connections originating at E' and E” can be found very easily by using
the connection matrix. For now, we will just choose convenient Morse decomposi-
tions. The main Morse decomposition of interest is simply the set of restpoints, but
to simplify computations later we will also consider the coarser decomposition
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w(E’)

w(E")

FIGURE 4

obtained by amalgamating E’ and E” into a single Morse set E. The natural orderings
are as yet unknown, but the assumptions above imply that the natural partial ordering
of the corresponding restpoints in S” is admissible. We will use this partial ordering
in what follows rather than the ordering by f-values, since it is preferable to use
the weakest order known to be admissible. The partial order is represented by the
graph below, where the existence of a directed path from A to B represents the
relation B < A.

2. Connection matrices

Let I" be a topological space with a flow, X a locally compact metric local flow in
I, and S an isolated invariant set in X. Suppose an ordered Morse decomposition
of S, M={M(p): pe P}, is known. In this section we will associate to M an algebraic
structure which reflects the topological structure of the Morse sets of M, the nature
of the local flow nearby and the pattern of connecting orbits between them. This
algebraic model of M will be stable with respect to perturbations of the local
flow X.

The Conley index provides a stable description of an isolated invariant set in a
local flow. The basic properties of this index will be given briefly below (see [2],
[3], [5] and {14] for details). First we will show that not only S, but every Morse
set in S, is isolated. Let I be an interval in M and let M(I) be the corresponding
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Morse set. We saw in § 1 that M (I) is the intersection of an attractor and a repeller
in S. Since attractors and repellers in S are themselves isolated invariant sets in X|
M(T) is an isolated invariant set in X.

We will use the Conley index of M(I) to represent M(I) in the algebraic model.
The index of an isolated invariant set S is actually more a topological structure
than an algebraic one. From the geometrical information contained in the family
of isolating neighbourhoods of S, it condenses the stable part. The construction
depends on the existence of special neighbourhoods of S in X.

Definition. Let N,< N, be compact subsets of X. N, is positively invariant in N, if
whenever xe N,, t>0 and x- te N,, then x:- 1€ N,. N, is an exit set for N, if it
is positively invariant in N, and if for any x € N, with x- [0, )& N, there is a
T>0 with x-[0, T)= N, and x- T€ N,.

A pair of compact sets (N, Ny) in X is an index pair for S in X if Ny is an exit
set for N, and if the closure of N;\ N, is an isolating neighbourhood for S.

In figure 3 the compact pair consisting of the square and the vertical line segments
in its boundary is an index pair for whatever invariant set is inside the square.
Another index pair for the same isolated invariant set is shown in figure 5 (assuming

/ AN

N

N
s

X /

FIGURE 5

nothing stays in the smaller square). It can be shown that any isolated invariant set
has index pairs [2]. In practice, they are often found with Lyapunov functions. In
the example described at the end of § 1, compact pairs of the form (X, X,) with
d < ¢ are index pairs provided ¢ and d are not ‘critical values’.

The concept of an index pair evolved from that of an isolating block [4]. From
our point of view, an isolating block is just a particularly nice index pair which
exists in the setting of smooth flows- on manifolds. A fundamental property of
isolating blocks is that for points in N, which eventually leave, the time required
to hit the exit set depends continuously on the initial conditions. An index pair with
this property is called regular, and it is known that regular pairs always exist [14].
The pairs that one constructs in examples are invariably regular.
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A comparison of figures 3 and 5 shows that a given isolated invariant set may
have topologically distinct index pairs. However, the relative topology of any two
index pairs is the same up to homotopy. From an index pair one can construct a
quotient space N,/ N, with a distinguished point (the equivalence class of N). It
is a remarkable fact that the quotient spaces associated to two different index pairs
are homotopy equivalent ([2], [14]).

Definition. The Conley homotopy index of S, h(S), is the common homotopy type
of the quotiented index pairs of S.

In figures 3 and 5, if the exit sets are collapsed to a point, the resulting spaces
can be deformed into circles. Thus the homotopy index of the isolated invariant set
in the square is the homotopy type of a pointed circle, i.e. a circle with a distinguished
point. It is possible (but in no way necessary) that the invariant set in the square
is a saddle point. Thus the index of a saddle point in the plane is a pointed circle.
More generally, it is easy to show that the homotopy index of a hyperbolic restpoint
in a flow on a manifold is the homotopy type of a pointed sphere of dimension
equal to that of the unstable manifold of the restpoint; the dimension of this sphere
is just the usual Morse index.

The homotopy equivalences between the different quotiented index pairs are
constructed by using the local flow. These homotopy equivalences can be included
in the index object to provide additional structure when necessary.

Definition. The Conley index of S, I(S), is the collection of all quotiented index
pairs of S in X with the additional structure of a homotopy class of flow-induced
homotopy equivalences between any two of them.

This index is a so-called connected simple system of spaces and homotopy classes
of maps. It squeezes virtually all of the useful information out of the local dynamics
near S in X.

We will not make use of the full structure of the Conley index in what follows.
In fact, it is useful to replace the homotopy index with something even weaker but
more algebraic. Most of the algebraic objects associated to spaces in algebraic
topology are homotopy invariant. For example, the singular homology groups of a
space depend only on the homotopy type. Any such object associated to N,/ N,
can therefore be viewed as an algebraic index of S. The homology index of S, H(S),
is the graded group {H,(h(S)): n=0,1,...}, where H,(h(S)) stands for the nth
singular homology group of any of the pairs (N,/ Ny, *), where * is the distinguished
point, with coefficients in some Abelian group G which is suppressed in the notation.
The homology index of a hyperbolic restpoint with d-dimensional unstable manifold
is: Hy(S) = G, H,(S) =0 for n # d. It is often simpler to compute with the homology
index than with the homotopy index, although some information is lost in the
transition.

To study all of the Morse sets M(I) in an ordered Morse decomposition M
simultaneously, it is important to choose index pairs systematically. The main
problem is to find index pairs for the attractors in the corresponding attractor
filtration.
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Definition. Let A be an attractor filtration in S. An index filtration for A in X is a
collection of compact subsets of X, {N{A): Ac A}, such that

(i) N(AnB)=N(A)n N(B) and N(AuB)=N(A)u N(B) for every A,
BeA.

(ii) (N(A), N(@)) is an index pair for A in X.

If (N;, N,) is an index pair for S in X, then there exists such an index filtration
for any given attractor filtration with N(S) = N, and N(J) = Ny([7], [8]). For the
special case of a totally ordered decomposition, this fact was known earlier. The
difficulty in the partially ordered case is in trying to satisfy both the intersection
condition and the union condition. It is instructive to experiment with the flow in
figure 1.

Once an index filtration has been constructed, we have index pairs for any Morse
set in the decomposition. Let I be any interval in M. Then M(I) can be represented
as the intersection of an attractor and a repeller, say A B*, where A, Be A and
Bc< A. It is then easy to see that (N(A), N(B)) is an index pair for M(I).

We will choose an index filtration for the model problem from § 1. For the sake
of simplicity we will use ithe coarser Morse decomposition. First we choose N(S) =
X = X, and N(J) = (. This is an index pair for S. Note that for ¢ large and negative
the set K, in S” is a union of three discs, one around each of the projected restpoints
B;. The corresponding components of X, will serve as the neighbourhoods N(B;);
they are four-dimensional balls. For {i, j, k} ={1, 2, 3} there is an attractor in S
consisting of B;, B;, and the unstable manifold of C;. Call this attractor A,. For
N(A,) we choose a small ball around the respoint C, and append forward orbits
to make a positively invariant set. To this we add the previously chosen neighbour-
hoods N(B;) and N(B;). Thus N(A;) is a four-dimensional tube connecting two
four-dimensional balls. Clearly this construction assures that N(A;)n N(A;)=
N(By) as required. Aside from S itself, the only other attractors in the attractor
filtration are unions of those already discussed, and so the corresponding N are
determined. Of particular interest later will be the attractor A, U A, U A; which we
call simply A. A and E form an attractor-repeller pair in S. N(A) consists of three
balls cyclically connected by three tubes. A more natural choice for N(A) might
be a set X, with ¢ chosen just below the level of the restpoints which comprise E.
We will use such a set later, but this choice would violate the union condition and
so would not yield an index filtration.

When an index filtration has been constructed, all of the indices of the Morse
sets M(I) can be found. But we are also in a position to study connecting orbits
between the Morse sets. We begin with connections between adjacent Morse sets.

Definition. A pair (1,J) of disjoint intervals of M is adjacent if 1L J is an interval
and if for any M(p)el and M(q)eJ, M(p) % M(q). The corresponding Morse
sets are then an adjacent pair of Morse sets.

Since by definition the Morse set M(I) lies above M(J) in the ordering (or at
least no lower), we will be looking for connecting orbits running from M(I) to
M (J). One easily finds attractors A> B> C in the attractor filtration such that
M(I)= An B* and M(J) = B C*. From the index filtration we obtain a triple of
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compact sets (N(A), N(B), N(C)) such that the first two sets form an index pair
for M(I), the second pair form an index pair for M(J), and the first and third form
an index pair for M(IUJ). At this point we will retreat to the homology index,
although it is possible to continue the discussion at the geometrical level by introduc-
ing exact sequences of topological spaces ([9], [14]). If we suppose that the index
pairs above are all regular, then the homology of the quotiented index pairs is the
same as the relative homology of the pairs themselves: for example H(M(I)) =
H(N(A), N(B)). Therefore the exact homology sequence of the triple becomes a
sequence relating the indices of the invariant sets:

> H,(3) > H,(13) > H,(1) > H,,(J) >

Here we have written H(J) instead of H(M(J)) and IJ instead of 1uJ. The
connecting homomorphism & : H,(I)> H,_,(J) is called the connection map of the
adjacent pair; it is independent of the choice of the triple used to compute it. If
there were no connecting orbits from M(I) to M(J), then the Morse set M(LJ)
would just be their union. In this case, by choosing a triple which splits into parts
near M(I) and parts near M(J), it is easy to show that the exact sequence above
represents H, (IJ) as the direct sum of H,(I) and H, (J). It follows that the connection
map is the trivial homomorphism. Therefore a non-trivial connection map implies
the existence of a connecting orbit.

As an example, consider the model problem. We will take 1={E’, E"} and
J=M\I={C;, B;:i=1,2,3}. ThenlJ=M. We have M(I)={E’', E"}, M(J)= A and
M(1J) = S. Thus we are looking for connections from the restpoints E’ or E” to the
attractor A. These obviously exist since the unstable manifolds of E’ and E” must
go somewhere, but we will compute the connection map 8 anyway. The triple of
attractors S © A>J can be used to represent these Morse sets as intersections of
attractors and repellers. The triple (S, X, ), with ¢ just below the level of E’ and
E", can be used to compute the connection map. We have seen that homologically
this triple can be replaced by the triple (S, K., &) in the projection. The relevant
portion of the exact homology sequence of this triple is:

0- H,(S%) > H,(S’, K.)~> H,(K.)~>0.

The left and right groups are isomorphic to G, the coefficient group, while the
middle group is isomorphic to G® G. The natural way to decompose the middle
group is to use the generators o' and " depicted in figure 6. These two-dimensional
discs are relative two-cycles in (S?, K,). Also shown in figure 6 is a one-cycle 8 in
K, generating its first homology. With this basis the boundary map 6:G® G-> G
is given by the matrix (1,-1), which means that 8§(a’)=-8(a")=8 and
6(ga’+ha")=(g—h)B for g, he G.

The number of adjacent pairs of Morse sets arising from a given Morse decomposi-
tion can be enormous, and each adjacent pair determines a connection map. It is
clear, however, that these maps cannot be completely independent of one another.
In the model problem, for example, connections from E to A are also connections
from E’ or E” to some of the restpoints in A. The connection maps from E to A
and from E’ and E” to C; must be related. Thus there is some hope of packing all
of the connection map data into a reasonably simple structure.
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FIGURE 6

Consider attractors A>D B> C> D and intervals I=AnB* J=BnC*, K=Cn
D*, 1J=An C*, JK= B D* and K= A~ D*. The homology exact sequences
of the triples (N(A), N(B), N(C)), (N(A), N(C), N(D)), (N(A), N(B), N(D))
and (N(B), N(C), N(D)) form a braided diagram which shows how the corre-

sponding connection maps are related:

- /
H(1J)
8(1J,K) \ )
H(K)
ﬁ JK)
H(JK) 8(1,J)
H(IJK) \H(J)
H(lJ) 8(J, K)
w K)
H(l) H(K)
[ \
H(JK)
- ~
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Using such braided diagrams, Franzosa was able to condense all of the information
contained in the connection maps of an ordered Morse decomposition into a single
matrix of maps, the connection matrix.

Before presenting the axioms for connection matrices, we will show how to use
the braids to obtain a matrix in the relatively simple case of a totally ordered Morse
decomposition with three Morse sets. These can play the role of I, J and K in the
braid above if the ordering is K<J<I. The attractors are A=S=1JK, B=JK,
C =K and D =(. Then the six Morse sets which occur in the braid diagram are
the only Morse sets of the decomposition, and the four connection maps in the
diagram are the only connection maps of the decomposition. Thus the complete
algebraic description of the decomposition consists of six homology indices and
four connecting maps. The connection matrix approach will have the effect of storing
the same information in three homology indices and three connection maps.

Assume that the coefficient group is the field G = Z,, so that all homology groups
are (graded) vector spaces. The three homology indices in the connection matrix
description are those of I, J and K. Let v=H(I)® H(J)® H(K). An element of V
is a triple (o, @', @"), where the components are homology classes of the same
degree. V is again a graded vector space. We will define a degree —1 mapping
A: V-V which summarizes all of the connection data. Such a mapping can be
represented by a 3 X 3 matrix, each entry of which is a degree —1 mapping between
two of the summands of V. To be specific, we associate the first row and column
with I, the second with J and the third with K. So, for example, the entry in the
first row and second column of A is a degree ~1 map A(1,2): H(I)»> H(J). Since
all of the vector spaces are graded, the matrix should be visualized as having some
‘depth’; alternatively, one can think of a sequence of matrices A, taking degree n
homology to degree n —1 homology.

Some of the entries can be filled in on the basis of general principles which apply
to all connection matrices. There can be no connecting orbits from a Morse set to
another one which is higher with respect to the ordering, nor are there connecting
orbits from a Morse set to itself. So it is natural to take all of the entries on or
below the diagonal to be zero (the trivial map of graded vector spaces). Because
(I,J) and (J,K) are adjacent pairs of Morse sets, we already have degree —1
connection maps between their homologies. We canset A(1,2) =5(1,J)and A(2,3) =
8(J,K). From just this much information, we can recover the homology indices
H(1J) and H(JK) up to isomorphism by a simple procedure. Let the upper 2x2
diagonal block of A act on V(IJ) = H(I)® H(J). Call this block A(1J):

0 &1, J)]

A(L)) = [0 0

Since A(1J)>=0, the graded vector space V(I1J) together with the degree —1 map
A(1J) forms a chain complex and has a graded homology vector space: HA(IJ) =
image (AL1J)/ker (ALJ)). It turns out that H A(1J) and H (1J) are isomorphic. Similarly
H(JK) can be recovered using the lower 2x2 diagonal block of A. It should be
pointed out that the isomorphism between HA and H is not natural or ‘flow-induced’;
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in fact it need not be unique. This artificiality is the price to be paid for storing
H(1J) in the connection matrix. For the construction of such isomorphisms it is
required that the coefficient group be a field.

It remains to recover H(LJK) and the other two connection maps §(1J, K) and
8(1, JK). We will define the entry A(1, 3) so as to make this possible. We can try to
find H(IJK) by viewing V as a chain complex with boundary map A. First we
should check that A% =0. The only entry of A% which is not obviously 0 is A*(1,3) =
8(1,J)8(J, K) (where the maps are to be composed from left to right). From the
braid diagram we find that A’(1, 3) can be written as a composition of three maps,
two of which are successive maps in an exact sequence. It follows that this entry
of A% is indeed 0. Thus we can use A itself as a boundary map on V and so we
obtain a homology group HA(IJK)=image (A)/ker (A). We will see that an
isomorphism of HA(IJK) and H(IJK) can be constructed if A(1,3) is properly
chosen.

The connection map 8(1J, K) comes from an exact sequence relating the indices
H(1J), H(1JK) and H(K) (see the braid diagram). There is an analogous exact
sequence involving the artificial homology indices HA. There is a short exact
sequence of vector spaces

0> V(J)> V> V(K)->0
where the maps are simply inclusion and projection of direct sums. Each of these
vector spaces was made into a chain complex above by using an appropriate
submatrix of A for the boundary map (the boundary map for V(K) = H(K) is the
lower 1x1 diagonal submatrix, i.e. 0). From homology theory we obtain a long
exact sequence which covers the one containing §(1J, K):

> HA(K) — HAJK) —p HA(L)) — 220 A(K) —
|
l id H lwu.n lid
v
—» H(K) —™ HJK) —> H)) —Smwx " HK) —™

Here & is the isomorphism mentioned above. The connecting homomorphism
A(12,3) turns out to be induced by the map (A(1, 3), A(2, 3)): V(1J)~» V(K). By
choosing A(1, 3) properly, the right square can be made to commute. Now it follows
that HA(IJK) and H(1JK) have the same dimension and so are isomorphic;
moreover, there is an isomorphism making the diagram commute. Thus by choosing
A(1, 3) properly, we can recover both H(IJK) and 8(1J, K). Similarly, some choice
of A(1, 3) will allow us to recover 6(I, JK). By using the braid diagram, one can
show that there is some way to choose A(1, 3) which is compatible with both exact
sequences. Still A(1, 3) need not be uniquely determined by the construction.

This construction can be carried out for any ordered Morse decomposition. To
make this precise, we will present axioms that a connection matrix for the given
decomposition should satisfy. Then the theorem will be that at least one such matrix
exists.

Let M={M(p): pc P} be the given decomposition and let V be the direct sum
of the homology indices of the Morse sets: V=@ ,., H(M(p)). We always assume
that the homology has field coefficients. Then V is a graded vector space over the
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field. A connection matrix will be a degree —1 linear map A: V - V with the properties
described below. Such a map can be viewed as a matrix in the following way: A is
determined by the linear maps A(p, q): H(M(p))-> H(M(q)), for p, g € P, which
are the components of the restrictions of A to the summands. If we assign a column
to each summand, then elements of V can be viewed as row vectors with entries in
the summands. Then the map A is represented by a matrix with entries A(p, q)
which acts on the row vectors from the right. The entries A(p, g) are themselves
linear maps of graded vector spaces, and so if bases were to be chosen for these
spaces, they could be represented by matrices as well. Often the vector spaces
H(M(p)) are one-dimensional in some degree and 0 in the other degrees. In this
case the maps A(p, q) can be viewed as elements of the field and A becomes an
ordinary matrix.
The first two properties of a connection matrix are:

CM1. A is a boundary map; that is, a degree —1 linear map with A”=0.

CM?2. A is upper triangular with respect to the partial order; that is, A(p, q)=0
unless p > q.

These axioms are motivated by the need to recover the indices of the Morse sets
M(I), for intervals I, by a procedure like the one described above. Namely, let
V(I) =@, H(M(p)) and let A(I): V(I) > V(I) be the ‘diagonal block’ of A& with
entries A(p, g), p, g€ 1. Then one can show that the two axioms hold for A(I) as
well. The graded vector space V(I) together with the boundary map A(I) can be
viewed as a chain complex, and so there is a graded homology vector space:
HA(I)=image (A(I))/ker (A(I)). We want this artificial homology vector space to
be isomorphic to the real homology index H(I).

CM 3. For each interval I there is an isomorphism ®(I): HA(I) > H(I). Moreover,
if [={p} for some pe P, then ®(I)=id.

We do not require these isomorphisms to be unique or in any way natural. We
do want them to be compatible with the exact sequences containing the connection
maps. If I and J are adjacent intervals and 1J the union interval, then there is an
obvious inclusion map V(J)-> V(1J) and projection map V(IJ)- V(I). Since they
commute with the restrictions of A, they can be viewed as chain maps of chain
complexes. This leads to an exact sequence to be isomorphic to the real exact
sequence relating the homology indices.

CMa4. For each adjacent pair of intervals (I, J) the following diagram commutes:

—= HA(J) — HA(L) —= HA() — e yaQg) —
lrbur LI R P )
— HJ) — HU)) — H(I) 2 L HJ) —=

where A(I, J) is the submatrix of A consisting of all the A(p, q) for pel and g J,
and A(I, J) is the induced map on homology.

To say that A is induced by A means that A[v] =[A(v)], where the brackets denote
homology classes; it is easy to check that this is well defined. When I={p} and
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J={q} for adjacent Morse sets M(p) and M(q), then the vertical maps ®(I) and
®(J) are identity maps by CM3. Thus A(L, J) = A(p, q) = 8(p, q). This observation
is a double-edged sword. If a connection map 8( p, q) is known, then the correspond-
ing entry in the connection matrix can be filled in. On the other hand, if such an
entry in the connection matrix is deduced, we get information about the connection
map &(p, q) and hence about the orbits connecting the Morse sets M (p) and M(q).
This is the approach we will use below in the examples.

An ordered Morse decomposition may have a great number of intervals and
adjacent pairs of intervals, especially if the partial order is weak. Thus CM3 requires
that a great deal of information be stored in the connection matrix, and CM4
involves many compatability conditions on the isomorphisms. Nevertheless, Fran-
zosa was able to show that every ordered Morse decomposition has at least one
connection matrix ([7], [8]). The proof uses braid diagrams to construct A and the
isomorphisms ®(I) in such a way that all the compatibility conditions hold. In
applications, the knowledge that at least one such matrix exists is often enough to
deduce what some of the entries must be and so to obtain information about
connecting orbits. For this purpose, no information about the construction of the
rest of A or about the isomorphisms ® is required.

Some ordered Morse decompositions have several connection matrices. If two
partial orderings of the same Morse sets are given, then the weaker one will admit
fewer connection matrices because it has more intervals and adjacent pairs of
intervals and so CM3 and CM4 are harder to satisfy. Thus non-uniqueness may
arise from using too strong a partial order, i.e. from lack of knowledge of the true
flow-induced order. But even if the flow-induced order is used, there may be several
connection matrices. This can be a reflection of the occurrence of unstable connec-
tions between the Morse sets. For the case of a flow-ordered Morse decomposition
consisting entirely of hyperbolic restpoints with transverse stable and unstable
manifolds, Reineck has shown that the connection matrix is unique [13].

Connection matrices are stable with respect to continuation of ordered Morse
decompositions. If a Morse decomposition M of S is continued to a Morse decompo-
sition M’ of §’, then for any interval I the indices of the corresponding Morse sets
are isomorphic ([9], [14]). Moreover, these isomorphisms are natural, so that if I
and J are an adjacent pair, the exact sequences containing the connection maps
S(M(I), M(J)) and 8(M'(I), M'(J)) are equivalent. From this it follows that a
connection matrix for M can be conjugated to a connection matrix for M’ with
respect to the given order. We have seen in examples above that the flow-induced
order on M may not be the flow-induced order on M’; the new flow-induced order
may be weaker because some connections are broken. Thus the continued connection
matrices may not all work for the flow-induced order. However, the connection
matrices for the flow-induced order on M’ will be a subset of the continued matrices.
In particular, if the connection matrix for M is unique, it will continue to the unique
connection matrix for M’.

We will bring this survey to a close by computing connection matrices for two
examples. First consider the flow on the circle shown in figure 1 with the Morse
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decomposition {A, B, C, D, E}. Restpoints D and E have index pairs consisting of
an interval and its endpoints. The quotient spaces are pointed circles and so the
graded homology indices with coefficients in G = Z, are isomorphic to G in degree
1 and to 0 in all other degrees. Restpoints A and C have index pairs consisting of
intervals with empty exit sets. The quotient spaces are intervals together with a
disjoint distinguished point (the equivalence class of the empty set). The graded
homology indices are isomorphic to G in degree 0 and to O elsewhere. Finally B
has an index pair consisting of an interval and one endpoint. The quotient space
is the same and so the graded homology index is 0 in every degree. This reflects
the fact that B can be perturbed away.

The graded vector space V is the direct sum of these homology indices and is
therefore trivial except in dimensions 0 and 1, so the degree —1 map A: V> V is
trivial except in dimension 1. Thus A reduces to a single 5 X 5 matrix of maps between
degree 1 homology indices and degree 0 homology indices. Since these indices are
all either trivial or one-dimensional, the entries of this matrix are either trivial or
isomorphisms. With respect to any bases, the trivial map is represented by the 1x1
matrix 0 and an isomorphism by the 1x 1 matrix 1. Thus A is represented by a 5% 5
matrix of Os and 1s.

We will assign the first row and column to E, the second to D and so on. Since
the indices of A, B and C are trivial in degree 1, all of the entries in the corresponding
rows are 0. Similarly all entries in the B, D and E columns are 0. This leaves the
entries A(D, A), A(D, C), A(E, A) and A(E, C) undetermined:

0 0 A(E,C) 0 A(E A)
0 A(D,C) 0 A(D,A)
0 0 0 0
0 0 0 0
0 0 0 0

Now (D, C), (E,A) and (E, C) are adjacent pairs of Morse sets, so by the
observation following CM4, the corresponding entries in the matrix are connection
maps 8. These could be computed by choosing an index filtration and constructing
the exact sequences of appropriately chosen triples as described above in the
definition of a connection map. But the main point of the connection matrix is to
avoid such computations. To illustrate this we will compute the matrix from the
axioms.

First of all we should be able to recover the index of the whole circle as the
homology of the chain complex (V, A). An index pair for the circle is the circle
itself with empty exit set. The quotient space is a circle with a disjoint distinguished
point and the homology index is G in degrees 0 and 1 and 0 in all other degrees.
We have seen that V has dimension 2 in degrees 0 and 1 and dimension 0 in all
other degrees. If A, denotes A in degree n, then the homology of the complex (V, )
is

A1=

S O OO

HA,=ker A,/image A, =ker 4,,
HA,=ker Ay/image A, = G® G/image A, .
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Now 4, is just the 5% 5 matrix above. To reproduce the homology index of the
circle, it must have one-dimensional kernel and image, i.e. rank 1. To get more
information, note that since D is a repeller and C an attractor, {A, B, E} is an
interval I in the flow-induced order. An index pair for M(I) is obtained by deleting
neighbourhoods of C and D from S'. This pair is two disjoint intervals with one
endpoint of each in the exit set. From this we see that H(I) is trivial. Now the
artificial homology HA(I) is obtained from the chain complex (V(I), A(I)), where
V()=H(A)Y®H(B)®H(E)=H(A)®H(E) and

0 0 A(E A)
AI)y=j0 0 0
00 0

For this complex to have trivial homology we must have A(E, A)=1. In a similar
way we can show that the other three unknown entries of A are 1s, and so

0 01 01
0 01 01
A=10 0 0 0 0O
00 0 00
00 0 0O

It is interesting to compare the amount of information necessary to derive this
connection matrix with the amount of information which can be extracted from it.
We started with the flow in figure 1 about which everything was already known,
but in computing A we used only the following facts: the existence of a Morse
decomposition with five Morse sets; the homology indices of these Morse sets and
of the whole space; the fact that certain subsets of the decomposition form adjacent
pairs of intervals; and the homology indices of these intervals. We did not explicitly
use any information about connecting orbits other than the obvious lack of connect-
ing orbits leading into D and E or out of C. To put it another way, we did not use
our knowledge of the flow-induced partial order, except for the facts that in this
order D and E are maximal while A and C are minimal. Nevertheless, we uniquely
determined A. It follows that this A is a connection matrix for the flow-induced
order. By CM2 we conclude that in the flow-induced order, E> A, E>C, D> A
and D> C. This means that each of D, E is connected to each of A, C by a
connecting orbit or by a chain of connecting orbits. While this is obvious from the
figure, it is not obvious how it follows from the minimal information we used to
compute the matrix.

Now we turn to the model problem in $?x S% Recall that we have a Morse
decomposition {E’, E”, C;, B;; j =1, 2, 3} consisting of eight restpoints. At the end
of § 1 we gave a partial order which is admissible. Since all restpoints are hyperbolic,
the homology indices are the homologies of pointed spheres of dimensions given
by the unstable manifolds. Thus the indices of E' and E” are G in degree 2 and 0
otherwise; the index of C; is G in degree 1 and 0 otherwise; and the index of B, is
G in degree 0 and 0 otherwise. Thus A will be trivial except in degrees 1 and 2.
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Many of the entries of the matrices A, and A, are also trivial because one of the
corresponding vector spaces is zero-dimensional.

We will assign rows and columns to the restpoints in the order E’, E”, C,, ..., B;.
Then A, takes the form

0
0

*

A,

I
S O O O o o
S oo o CcC oo
O O O O OO
S OO o0 oo
S O oo 0 oo
S O ¥ 2 O OO
OO O ¥ OO

SO O ¥

0 000 0O O0DO

Here * denotes an entry which is as yet unknown. All of the Os are clear except for
the ones embedded in the 3 X3 block containing the *s. These are obtained from
CM2 and the partial order; for example, A(C,, B,) =0 because in the partial order
the relation B, < C, does not hold. We can determine the unknown entries by the
following simple argument. Recall the attractor A consisting of the last six restpoints
and their unstable manifolds. We found an attractor neighbourhood for A in the
form of four-dimensional tubes cyclically connected to four-dimensional balls. Thus
the homology index of A is that of a circle with a disjoint distinguished point. By
CM3 we must be able to recover this homology from the chain complex
(V(A), A(A)), where V(A) is the direct sum of the indices of the six restpoints in
A and A(A) is the lower right 6 X6 submatrix of A. By arguments very similar to
those used in the first example it is found that A; must have rank 2 and that all of
the *s are actually 1s. This could have been anticipated because of the existence of
the connecting orbits between the restpoints. In fact, it is possible to compute these
entries directly from the exact sequences of appropriate triples.

We now turn to A, which contains the entries relevant to the study of connections
from E’ and E" to the C,. It is clear that

(

3

*

A2=

(=R I = =T =
S OO O o %

S O O OO0 OO
S OO0 o oo C

[ R e N = =R =R =T o)
O O OO O O ¥ ¥
(== oo i B = = = I = )

SO OO O O x*

00 00

CM1 requires that the matrix product A,A, =0. Using the information about A,
obtained above shows that the entries in each row of A, sum pairwise to 0 mod 2
and so we have A(E, C,)=A(E, C,) =A(E, C;) and A(D, C,)=A(D, C,)=A(D, G5).
By CM3 the homology of the chain complex (V, A) is isomorphic to that of the
isolated invariant set S consisting of all eight restpoints and their unstable manifolds.
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But S has an attractor neighbourhood X, (see the end of § 1) homotopy equivalent
to S2 Thus the homology index of S is G in degrees 0 and 2 and 0 otherwise. On
the other hand, the artificial homology group HA, =ker A,. Therefore A, must have
rank 1. This means that one or both of the unknown rows consist of 1s. We will
see that all of the unknown entries are 1s.

Recall the attractor-repeller pair (E, A), where E ={E’, E"} and A is the attractor
described above. We computed the connection map §(E, A) as an example earlier.
We had H,(E)=G® G and H,(A)=G. With respect to certain bases for these
spaces, 6(E, A) was represented by the matrix (1, —1). With G = Z, this becomes
(1, 1). Now in the direct sum representation of H,(E) the factors can be taken as
H,(E') and H,(E"). Since E' and E” are an adjacent pair of intervals, CM4 provides
a commutative diagram

—» HA(E') —>HA(E) —> HA(E") —*
id PE) id
—> H(E’) —= H(E) —>H(E") -
The bottom row is the direct sum representation of H(E) and it follows that the

top row is a similar representation for HA(E). A portion of the analogous diagram
for the adjacent pair (E, A) is

- 0 —» HAL(S) —» HAL(E) 2EA) HA(A) —»
l 10(5) l@(E) l@(A)
—= 0 —» HyS) — H(E) —2X22 o H(A) —»

We know that 8(E, A) restricts to an isomorphism on each summand. Since ®(E)
respects the direct sum decomposition, the same must be true for A(E, A). This
latter map is the map on homology induced by the upper right 2 x 6 submatrix of
A.. Even without looking into the details of how A(E, A) is induced, it is clear that
its restrictions to the summands of HA,(E) are determined by the individual rows
of this submatrix. If these are to be non-trivial, neither row can vanish. Therefore
all of the *s in A, are indeed 1s.

Since E’ and E” are adjacent to the C; in the partial order, the corresponding
entries A are connection maps. We have seen that a non-trivial connection map
implies the existence of a connecting orbit, so we can conclude that there are
connecting orbits from each of the restpoints E’ and E” to each of the restpoints
C;; j=1,2,3. Because of the stability of connection matrices, we can even conclude
that these connecting orbits are in some sense transverse. One cannot find these
connections using Morse theory in the usual way. Once E’ and E” have each been
connected to one of the restpoints C;, they are cancelled homologically and no
further connections can be detected.

These examples illustrate the way in which the connection matrix exploits the
partial order structure to reveal the rich network of connections between the Morse
sets. The connection matrix thrives on complexity.
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