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Abstract. This paper analyzes the space HomHðp; 1Þ, where p is an irreducible, tame supercus-
pidal representation of GLðnÞ over a p-adic field and H is a unitary group in n variables con-
tained in GLðnÞ. It is shown that this space of linear forms has dimension at most one. The
representations p which admit nonzero H-invariant linear forms are characterized in several

ways, for example, as the irreducible, tame supercuspidal representations which are quadratic
base change lifts.
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1. Introduction

The theory of quadratic base change for automorphic representations of GLðnÞ has

been studied extensively (for example, [2, 4, 17, 22, 28, 30]) and has had numerous

applications to number theory, including Wiles’ celebrated proof of Fermat’s Last

Theorem. The theory relies on establishing the existence of local base change maps

and, at present, this is achieved via global techniques involving adelic trace formulas.

As efficient as the global techniques are, they tell us relatively little about the fine

structure of the local representations in the image of the local base change maps.

The point of the present paper is to provide a detailed study of the tame supercus-

pidal representations which arise in this manner.

The representations in question are traditionally characterized in terms of a

character relation or an invariance property under a Galois action. The global theory

suggests that they may also be described in terms of harmonic analysis on the

analogues of symmetric spaces over non-Archimedean local fields. In particular, if

F=F 0 is a quadratic extension of non-Archimedean local fields of characteristic zero

and odd residual characteristic, we show in Theorem 4.4 that a tame supercuspidal
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representation ðp;VpÞ of G ¼ GLðn;F Þ is a base change lift from GLðn;F
0Þ precisely

when it is distinguished by a unitary group in n variables H � G in the sense that

HomHðp; 1Þ 6¼ 0. The latter space consists of those linear forms L on Vp such that

LðpðhÞvÞ ¼ LðvÞ, for all h 2 H and v 2 Vp. The result described above was conjec-

tured by Jacquet and Ye [19, 20] for quasisplit unitary groups. In the case in which

F=F 0 is unramified and the unitary group is quasisplit, a proof has also just been

obtained by D. Prasad [27], with no assumption of tameness, using entirely different

methods than ours.

The original motivation for our paper lies in a more difficult conjecture of Jac-

quet, which asserts that if p is any irreducible, supercuspidal representation of
G ¼ GLðn;FÞ and H is a unitary subgroup in n variables then the dimension of

HomHðp; 1Þ is at most one. In Theorem 3.3, we prove that this conjecture holds

for tame supercuspidal representations. In particular, if the residue field of F has

characteristic p > n then the conjecture holds for all irreducible, supercuspidal

representations. The importance of such ‘multiplicity one’ results in harmonic ana-

lysis over both local and global fields is made evident, for example, by the promi-

nent role played by Whittaker models in the theory of automorphic

representations. In our setting, the multiplicity one property says that the represen-

tation space of an H-distinguished representation p has a canonical model as a
space of functions on HnG. Indeed, Frobenius reciprocity correlates the existence

of a nonzero linear form in HomHðp; 1Þ with a model for the representation space
of p as a space of functions on HnG and, therefore, the H-distinguished represen-

tations of G may be viewed those representations which contribute to the harmonic

analysis on HnG.

Another major objective of this paper is to describe the H-distinguished tame

supercuspidal representations p of G in terms of the inducing data in Howe’s con-
struction. Suppose, for example, that p is associated to an admissible quasicharacter
y of E	, where E=F is a tamely ramified extension of degree n. We show that there
must exist an automorphism s of E which restricts to the nontrivial element of

GalðF=F 0Þ and is such that y ¼ y0 
NE=E0 , for some quasicharacter y
0 of the multipli-

cative group of the fixed field E 0 of s. Moreover, we prove in Proposition 6.1 that y0

must be admissible over F 0 and the quasicharacters which arise in a Howe factoriza-

tion of y0 lift by quadratic base change to give a Howe factorization of y.
Let us now briefly outline the contents of the paper. According to Howe’s con-

struction, a tame supercuspidal representation p is realized as an induced repre-
sentation from a certain subgroup R of G which depends on the admissible

quasi-character y which parametrizes p. The subgroup R is a product of various

factors. The main point of Section 2 is to show that these factors may be chosen

in a way which is compatible with the involution which defines the unitary group

H. In Section 3, we state the multiplicity one result discussed above, Theorem 3.3,

for H-distinguished tame supercuspidal representations and we discuss correspond-

ing properties involving unitary similitude groups. Various equivalent characteriza-

tions of H-distinguished tame supercuspidal representations are given in Theorem
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4.4. Finite field analogues are also discussed in Section 4. A global argument is

described in Section 5 which proves that if p is H-distinguished then it must be

Galois invariant or, equivalently, a base change lift from GLðn;F 0Þ. The details of

this argument appear in a separate paper [10]. The basic notions associated with

admissible quasicharacters and their Howe factorizations are recalled in Section 6.

As mentioned above, we show how quadratic base change lifting preserves Howe

factorizations. In Section 7, we present the facts needed for Howe’s construction

which involve Heisenberg and Weil representations over the field Fp, where p is

the characteristic of the various residue fields. Lemma 7.1 gives a simple description

of when a Heisenberg group over Fp is distinguished with respect to an arbitrary sub-

group. Proposition 7.2 says that if the subgroup is a maximal isotropic subspace then

the Heisenberg representation is always distinguished and the space of invariant lin-

ear forms has dimension one.

In Section 8, we review Howe’s construction of tame supercuspidal representations

as induced representations p ¼ IndGRðkÞ from compact-mod-center subgroups R.

Here, we use the content of Sections 2, 6 and 7. A key technical device which is used

in our constructions of Heisenberg andWeil representations is that the�1 eigenspaces

of the involution defining the Lie algebra of H give rise to canonical polarizations

of the relevant symplectic spaces. This choice of polarization, which is discussed in

Section 8, does not necessarily agree with the standard canonical polarizations which

occur in the literature of tame supercuspidal representations. Therefore, it is neces-

sary to discuss the effect of varying the polarization and this is done in Section 9.

After having laid out some of the groundwork for the proofs of Theorems 3.3 and

4.4 in Sections 2–9, the heart of the proofs is developed in Sections 10–14. In Section

11, the basic problems are reduced to problems regarding compact groups.

Lemma 11.2 involves an application of Mackey Theory to decompose HomHðp; 1Þ
into pieces of the form HomR\gHg1 ðk; 1Þ, as g ranges over the double coset space
RnG=H. Proposition 12.1 states that all of these pieces vanish, except for

HomR\Hðk; 1Þ. For a given p, the inducing representation k is a tensor product
k1 � � � � � kr of representations ki attached to the factors in the Howe factorization
of the admissible quasicharacter which parametrizes p. We show in Proposition

13.1 that the elements of the spaces HomR\Hðk; 1Þ have factorizations, where the fac-
tors lie in certain spaces HomR\Hðki; WiÞ. The latter spaces are computedmainly in Sec-
tion 10, with one exceptional case deferred until Section 12. (See Proposition 10.1 and

Proposition 12.3.) In the final section of the paper, we apply some techniques due to

Jeff Adler to prove the existence of distinguished tame supercuspidal representations.

The work in this paper follows up initial investigations carried out by the first

author together with Zhengyu Mao [8, 9]. There, preliminary examples of H-distin-

guished representations are obtained from distinguished representations associated

to various subgroups of GLðnÞ over a finite field. Other types of distinguished tame

supercuspidal representations of GLðnÞ arise in applications involving the reducibi-

lity of certain induced representations studied in papers by the second author

and Joe Repka [25, 26]. Conditions on the inducing data of the distinguished
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representations which appear in the latter two papers are very similar to conditions

obtained in the present paper. The methods developed in this paper to detect distin-

guishedness of tame supercuspidal representations by unitary groups of rank n can

be applied more generally. In particular, if H is replaced by GLðn;F 0Þ or by

GLðn=2;FÞ 	GLðn=2;FÞ, if n is even, these methods have been used to determine

which tame supercuspidal representations are H-distinguished [12]. Preliminary

investigations [11] indicate that a similar approach applies when H is an orthogonal

group of rank n.

2. Embeddings

Let F be a finite extension of Qp, for some odd prime p, and assume E is a tamely

ramified extension of F of degree n. In Section 8, we will recall Howe’s method of

associating to each admissible quasicharacter of E	 an irreducible, supercuspidal

representation of G ¼ GLðn;F Þ, customizing the construction where necessary to

make it compatible with the involution defining our unitary group. It is these repre-

sentations which we refer to as ‘tame supercuspidal representations’ throughout the

paper.

The first step in Howe’s construction is to fix embeddings of the relevant fields in

the Lie algebra g ¼ glðn;F Þ. Assume s and t are automorphisms of order two of E
and F, respectively, such that s restricts to t. The fixed fields of the automorphisms s
and t are denoted by E 0 and F 0, respectively. In general, if L is a p-adic field, we use

the notationOL for the ring of integers of L and we let PL denote the maximal ideal

ofOL. Let G ¼ GLðn;F Þ and g ¼ glðn;F Þ. If x 2 g then x� denotes the matrix given

by applying t to the entries of tx. If x� ¼ x we say that x is Hermitian. The group G

acts on the set of Hermitian matrices in G by g � x ¼ g x g�. According to a classical

result of Jacobson, this action has two orbits and the orbit of a Hermitian matrix

x 2 G is determined by its discriminant, that is, the class of det x in F 0	=NF=F 0 ðF
	Þ.

(A very different classification holds over Archimedean fields in terms of the signa-

ture of a Hermitian matrix.) When two Hermitian matrices lie in the same G-orbit,

we say that they are similar.

PROPOSITION 2.1. There exists an embedding of E in g such that if E is identified

with its image in g then sðxÞ ¼ x�, for all x 2 E. Consequently, the elements of E 0

correspond to Hermitian matrices.

The proof of Proposition 2.1 will require the following lemma:

LEMMA 2.2. NE 0=F 0 ðE
0	Þ�=NF=F 0 ðF

	Þ.

Proof. A similar result appears in [26]. It is useful to recall the proof here, since it

makes evident several distinct cases which lie beneath the surface throughout this

paper. Following [26], to obtain an element a 2 E 0	 such that NE=FðaÞ ¼ NE 0=F 0 ðaÞ =2
NF=F 0 ðF

	Þ, we can take a to be any nonsquare root of unity in E 0 if E=E 0 is ramified,

and we can take a to be any prime element in E 0 otherwise.
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Case 1: E=E 0 and F=F 0 both unramified. In this case, by uniqueness of unramified

extensions, the residual degree fðE=FÞ must be odd. If $E 0 is a prime element for E 0

then NE=Fð$E 0 Þ has odd valuation, and therefore cannot be a norm from F, as F=F 0 is

unramified.

Case 2: E=E 0 ramified. In this case, by Lemma 5.4 of [25], F=F 0 is ramified and the

ramification degrees eðE=FÞ ¼ eðE 0=F 0Þ are odd. Let E
0

un be the maximal unramified

extension of F 0 contained in E 0. Then, as E 0=E
0

un is totally ramified, there is no loss

of generality in taking a to be a nonsquare root of unity in E
0

un. Hence,

NE 0=E 0un
ðaÞ ¼ aeðE

0=F 0Þ is a nonsquare, since eðE 0=F 0Þ is odd. Now if NE
0

un=F
0 ðaeðE

0=F 0ÞÞ

were a square inO	

F 0 , it would force NE
0

un=F
0 ðO

	

E
0

un
Þ to consist of squares, which, by the

surjectivity of the norm map over finite fields, is not the case. Thus NE 0=F 0 ðaÞ is a
nonsquare in O	

F 0 , and, as F=F
0 is ramified, a nonsquare in O	

F 0 cannot be a norm

from F.

Case 3: E=E 0 unramified and F=F 0 ramified. Let e be a nonsquare root of unity in
E

0

un. Pick a prime element $ 2 F 0 such that F ¼ F 0ð
ffiffiffiffiffi
$

p
Þ. The compositum FE

0

un is

just E
0

unð
ffiffiffiffiffi
$

p
Þ. As E 0=E

0

un is totally ramified, e is a nonsquare in E 0 and hence

E ¼ E 0ð
ffiffi
e

p
Þ and sðeÞ ¼ 

ffiffi
e

p
. So

ffiffiffiffiffiffi
e$

p
2 E 0 and E

0

unð
ffiffiffiffiffiffi
e$

p
Þ is a quadratic ramified

extension of E
0

un. Now NE 0=E 0un
ð$E 0 Þ is a prime element in E

0

un, and by transitivity of

norm, is a norm from E
0

unð
ffiffiffiffiffiffi
e$

p
Þ. That is, NE 0=E 0un

ð$E 0 Þ 2 b2e$ þP2
E
0

un
, for some

b 2 O	

E
0

un
. Note that $ ¼ NFE

0

un=E
0

un
ð

ffiffiffiffiffi
$

p
Þ. Hence, we have NE 0=E 0un

ð$E 0 Þ 2

eNFE
0

un=E
0

un
ðFE0	unÞ. This implies

NE 0=F 0 ð$E 0 Þ 2 NE
0

un=F
0 ðeÞNFE

0

un=F
0 ðFE 0	un Þ � NE

0

un=F
0 ðeÞNF=F 0 ðF

	Þ:

It follows thatNE 0=F 0 ð$E 0 Þ 2 NF=F 0 ðF
	Þ if and only ifNE

0

un=F
0 ðeÞ 2 NF=F 0 ðF

	Þ. Recalling

that both FE
0

un=E
0

un and F=F 0 are ramified and e is a nonsquare root of unity in E
0

un,

we see that if we replace E 0 by E
0

un and E by FE
0

un; we are in the situation of Case 2

and, hence, NE
0

un=F
0 ðeÞ =2NF=F 0 ðF

	Þ. &

Proof of Proposition 2:1: Fix an F 0-basis fx1; . . . ; xng of E 0. View the elements of

F n as column vectors and define an F-linear isomorphism v : E ffi F n by vð
P

i xixiÞ ¼
tðx1; . . . ; xnÞ. When x 2 E, we let iðxÞ 2 g be the matrix which satisfies

iðxÞvðyÞ ¼ vðxyÞ, for all y 2 E. In other words, i : E ,!g is just the regular repre-
sentation of E associated to the given basis. Define a nondegenerate Hermitian form

(with respect to F=F 0) on E by hx; yi ¼ trE=FðxsðyÞÞ. The matrix of this Hermitian
form with respect to v is the symmetric matrix x whose ijth entry is xij ¼ trE 0=F 0 ðxi xjÞ.
If x; y; z 2 E then hsðxÞy; zi ¼ hy; xzi and this implies that iðsðxÞÞ� x ¼ x iðxÞ.

Suppose that x ¼ g� g, for some g 2 G. The embedding of E in g given by identi-
fying x 2 E with g iðxÞ g1 satisfies the desired relation sðxÞ ¼ x�, for all x 2 E. It

remains to consider the case in which x ¼ g� g cannot be solved or, equivalently,

x is not similar to the identity matrix. Assuming we are in this case, then,

according to Lemma 2.2, we may choose a 2 E0	 such that NE 0=F 0 ðaÞ =2NF=F 0 ðF
	Þ.
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Note that x iðaÞ is Hermitian. The determinant of iðaÞ does not lie in NF=F 0 ðF
	Þ,

since det iðaÞ ¼ NE=FðaÞ ¼ NE 0=F 0 ðaÞ. Therefore, there must exist g 2 G such

that x iðaÞ ¼ g� g. Again, x 7! g iðxÞ g1 is an embedding of E in g with the desired
property. &

In [15], Howe associates to each quasicharacter y of E which is admissible over F a
tower of intermediate fields of E=F:

F ¼ E0 �= E1 �= � � � �= Er ¼ E:

The relation between y and the associated tower will be recalled later, but this is ir-
relevant for our immediate purposes. For the quasicharacters we consider, it will

turn out that all of the subfields Ei are stable under s and if E 0
i is the fixed field

of sjEi then Ei is a quadratic extension of E
0
i and, in addition, Ei ¼ E 0

iF. Thus,

the fields E 0
i form a tower

F 0 ¼ E 0
0 �= E 0

1 �= � � � �= E 0
r ¼ E 0:

For each index i, let

ni ¼ ½E : Ei� ¼ ½E
0 : E 0

i� and n0i ¼ ½Ei : F� ¼ ½E
0
i : F

0�:

Let gi denote the Lie algebra glðni;EiÞ.

We will now construct an embedding of E in g that has the property that sðxÞ ¼ x�

for all x 2 E. Let us stress at the outset, however, that we will not be applying

Proposition 2.1 directly to the extension E=F. Rather, we apply it the extensions

Ei=Ei1 and move up the tower of subfields of E one step at a time.

The first step is to apply Proposition 2.1 to E1=F to obtain an embedding of g1 in
g, using the fact that g1 ¼ glð½E : E1�;E1Þ and g ¼ glð½E : E1�; glð½E1 : F�;FÞÞ.
Moving up the tower of subfields, we similarly obtain embeddings gi ,! gi1 which
we regard as inclusions. Thus, we have

E ¼ gr �= gr1 �= � � � �= g0 ¼ g:

Note that gi is a space of ni 	 ni block matrices in gi1, where the blocks of x 2 gi
lie in Ei � glð½Ei : Ei1�;Ei1Þ. We also observe that gi is the centralizer of Ei in g.
Similarly, there is a chain of groups

E	 ¼ Gr �= Gr1 �= � � � �= G0 ¼ G;

where Gi ¼ GLðni;EiÞ is the centralizer of Ei in G.

Suppose e1; . . . ; en is an F-basis of E. This gives an identification of E with F n,

viewed as a space of column vectors. If x 2 E then multiplication by x determines

an F-linear transformation of E and hence a matrix in g. Thus we have an embedding
of E in g associated to the given basis and we refer to this as the regular representa-
tion of E in g associated to e1; . . . ; en. It is easy to verify that given any embedding of
E in g there exists a basis e1; . . . ; en such that the associated regular representation is
identical to the given embedding. (In fact, the basis is unique if we assume, in addi-

tion, that e1 ¼ 1.)
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Let us assume that we have chosen e1; . . . ; en so that the regular representation is

just the embedding of E we have fixed above. Using the associated identification of E

with F n, we identify the fractional ideals Pk
E in E with lattices in F n. This lattice flag

in F n gives rise to the filtration of g by the parahoric OF-algebras

bj ¼ fx 2 g : xPk
E � Pjþk

E ; for all integers kg:

Let b ¼ b0. The corresponding parahoric subgroups are defined by B ¼ B0 ¼ b	 and
Bj ¼ 1þ bj, for j > 0. When 04 i4 r, we take bj;i ¼ bj \ gi and when, additionally,
j is nonnegative, we let Bj;i ¼ Bj \ Gi.

The next result is a refinement of Proposition 2.1 in the case in which E 0=F 0 is

unramified.

LEMMA 2.3. Assume E 0=F 0 is unramified. There exists an OF-basis of OE such that

if E is embedded in g via the regular representation associated to this basis then

sðxÞ ¼ x�, for all x 2 E.

Proof. Our proof is obtained by refining the proof of Proposition 2.1 as follows.

Assume the basis x1; . . . ; xn in the proof of Proposition 2.1 is an OF 0-basis of OE 0 .

Let d be the discriminant ideal in OF 0 associated to OE 0 , that is, the ideal generated

by the determinant of x. Let D be the different of OE 0 with respect to OF 0 or, in

other words, the ideal of OE 0 whose inverse as a fractional ideal is the largest

fractional ideal I such that trE 0=F 0 ðIÞ � OF 0 . The discriminant and the different are

related by d ¼ NE 0=F 0 ðDÞ and, since E 0=F 0 is unramified, we have D ¼ OE 0 . (See

Proposition 6, §3 and Corollary 1 of Theorem 1, §5 in Chapter III of [29].) It follows

that the symmetric matrix x in the proof of Proposition 2.1 lies in GLðn;OF 0 Þ.

Let K ¼ GLðn;OFÞ. The K-orbits of Hermitian matrices in G, where K acts by

k � x ¼ kxk�, were originally described by Jacobowitz in [16]. (See also [9].) One

can restrict Jacobowitz’ result to obtain a description of the K-orbits of hermitian

matrices in K. When F=F 0 is unramified, then there is a single orbit. When F=F 0 is

ramified, there are two orbits, one is represented by the identity matrix and the other

is represented by any diagonal matrix with diagonal ð1; . . . ; 1; dÞ, where d 2 O	

F 0 is a

nonsquare in the residue field of F 0.

Assume first that x ¼ k� k, for some k 2 K. Then x 7! k iðxÞ k1 is an embedding

of E in g of the desired type. Now suppose x ¼ k� k has no solutions k 2 K. Then

F=F 0 must be ramified. Since E 0=F 0 is unramified, E=F must also be unramified. It

follows that E=E 0 must be ramified. We therefore are in case (ii) in the proof of

Lemma 2.2. In this case, the element a is chosen to be a root of unity. The matrix
x iðaÞ is hermitian and lies in K, but it cannot lie in the K-orbit of x since it does
not lie in the G-orbit of x. Therefore, x iðaÞ ¼ k� k must have a solution k 2 K.

For such a solution k, a suitable embedding is again given by x 7! k iðxÞ k1. &

The following invariance properties will be used implicitly throughout the paper:

LEMMA 2.4. If i and j are integers and 04 i4 r then g�i ¼ gi and b�j ¼ bj. If Z 2 E
0	

and sZ is defined on g by sZðxÞ ¼ Z x� Z1 then sZðgiÞ ¼ gi and sZðbjÞ ¼ bj.
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Proof. It is well known that gi is the centralizer of Ei in g and b is the intersection
of all maximal orders in g which contain OE. All of the assertions follows readily

from these characterizations of gi and b. &

3. Unitary Groups and Similitude Groups

Fix a Hermitian matrix Z 2 G. Associated to Z is a unitary group HZ ¼ fg 2 G :

gZg� ¼ Zg, a unitary similitude group H0
Z ¼ fg 2 G : gZg�Z1 2 F	g, and a homomor-

phism mZ : H
0
Z ! F0	 defined by gZg� ¼ mZðgÞZ, for g 2 H0

Z. (Note that it is common

in the literature to define ‘the unitary group associated to Z’ by the condition
g�Zg ¼ Z, rather than gZg� ¼ Z. This convention produces the group

HZ1 ¼ Z1HZZ.)
In this paper, we are mainly interested in unitary groups, but we will make some

elementary remarks which might be helpful in applying our results for unitary

groups to similitude groups. Before doing this, let us state some simple facts about

unitary groups. We observe, first of all, that if g 2 G then gHZg
1 ¼ HgZg� . Conse-

quently, the conjugacy class of the unitary group HZ is determined by the G-orbit

of the Hermitian matrix Z, relative to the action g � Z ¼ g Z g�. As mentioned in the
previous section, there are two G-orbits of Hermitian matrices in G. However, when

n is odd it turns out that the two associated conjugacy classes of unitary groups are

identical. Indeed, if n is odd then we may take Z1 ¼ 1 and Z2 2 F 0	 NF=F 0 ðF
	Þ as

representatives of the two orbits of hermitian matrices. But then the associated uni-

tary groups HZ1 and HZ2 are identical, since Z1 and Z2 both lie in the center of G. On
the other hand, when n is even the two conjugacy classes of unitary groups will be

distinct.

In general, if n is even or odd, if one takes Z to be an antidiagonal Hermitian
matrix then HZ is a quasisplit unitary group with a Borel subgroup consisting

of upper triangular matrices. If n is odd then all unitary groups must therefore

be quasisplit. If n is even then HZ is quasisplit exactly when ð1Þn=2 det Z 2
NF=F 0 ðF

	Þ.

Our interest is in studying the irreducible tame supercuspidal representations

ðp;VpÞ of G which are HZ-distinguished in the sense that the space HomHZ ðp; 1Þ is
nonzero. Here, HomHZ ðp; 1Þ designates the space of all linear forms L on Vp such

that LðpðhÞvÞ ¼ LðvÞ, for all h 2 HZ and all v 2 Vp.

LEMMA 3.1. If p is a complex representation of G then for each g 2 G the

map L 7! Lg, where LgðvÞ ¼ LðpðgÞ1vÞ defines an isomorphism HomHZ ðp; 1Þ ffi
HomgHZg1 ðp; 1Þ.

Since our objective in this paper is to analyze the spaces HomHZðp; 1Þ associated to
a given irreducible, tame supercuspidal representation p, Lemma 3.1 implies that
only the conjugacy class of HZ is relevant. Therefore, we are justified in making

the following simplifying assumption in the rest of the paper:
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ASSUMPTION. If n is odd, we assume Z ¼ 1. If n is even, we assume that either
Z ¼ 1 or Z is some fixed element a 2 E

0	 such that NE 0=F 0 ðaÞ =2 NF=F 0 ðF
	Þ. Further-

more, if Z 6¼ 1 and E=E 0 is unramified, we assume Z is a prime element in E 0. If Z 6¼ 1
and E=E 0 is ramified, we assume Z is a nonsquare root of unity in E 0.

The existence of a is guaranteed by Lemma 2.2. The fact that, when Z 6¼ 1,
the specific choices of Z are consistent with the condition which defines a is
apparent from the constructions in Case 1 and 3 in the proof of Lemma 2.2. It is also

apparent from examining this proof that the prime element in E 0 or nonsquare

root of unity may be chosen arbitrarily. This will be relevant at times when we

wish to place compatibility restrictions on the choices of prime elements. The fact

that Z is hermitian results from our choice of embedding of E in g in the previous
section.

Having fixed Z, we let H ¼ HZ. Then H may regarded as the group of elements

h 2 G such that sZðhÞ ¼ h1, where sZ is the anti-involution of g (and, by restriction,
G) given by sZðxÞ ¼ Z x� Z1. The restriction of p to the center Z of G is a one-dimen-
sional representation o: Z! C

	 which, if p is HZ-distinguished, must be trivial on

the kernel of NF=F 0 : F	 ! F 0	. Therefore, we will fix, once and for all, such an o
and only consider those p which restrict to this o. Equivalently, we have fixed a
homomorphism o0 : NF=F 0 ðF

	Þ ! C
	 and then let o ¼ o0 
NF=F 0 .

Let us now turn our attention towards the similitude groups. Most of the above

remarks regarding unitary groups apply equally well to unitary similitude groups,

though we will not repeat them. The homomorphism mZ, referred to as the ‘similitude
ratio’, gives rise to an exact sequence

1! HZ ! H0
Z ! mZðH

0
ZÞ ! 1:

We observe that ZHZ consists of those g 2 H0
Z such that mZðgÞ lies in the image of the

norm map NF=F 0: F
	 ! F 0	. In other words, we have another exact sequence

1! ZHZ ! H0
Z ! mZðH

0
ZÞ=NF=F 0 ðF

	Þ ! 1:

It follows that H0
Z=ZHZ is a finite abelian group isomorphic to mZðH

0
ZÞ=NF=F 0 ðF

	Þ.

Fix a homomorphism w: H0
Z ! C

	 which restricts to o on Z and is trivial on HZ.

This is equivalent to selecting a homomorphism w0: mZðH
0
ZÞ ! C

	 which restricts to

o0 on NF=F 0 ðF
	Þ and then taking w ¼ w0 
 mZ. The number of such homomorphisms is

the same as the order of mZðH
0
ZÞ=NF=F 0 ðF

	Þ. Let HomH0
Z
ðp; wÞ denote the space of all

linear forms L on Vp such that LðpðgÞvÞ ¼ wðgÞLðvÞ, for all g 2 H0
Z and v 2 Vp. We

say p is ðH0
Z; wÞ-distinguished if HomH0

Z
ðp; wÞ 6¼ 0. Fourier inversion on the finite

group H0
Z=ZHZ yields the following:

LEMMA 3.2. If p is a complex representation of G which restricts to o on Z then

there is a canonical isomorphism HomHZðp; 1Þ ffi �wHomH0
Z
ðp; wÞ, where w ranges over

the homomorphisms H0
Z ! C

	 which restrict to o on Z and are trivial on HZ. In

particular, L 2 HomHZðp; 1Þ is mapped to ðLwÞ, where
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LwðvÞ ¼
X

g2H0
Z=ZHZ

LðpðgÞvÞ wðgÞ1:

The inverse mapping is given by

LðvÞ ¼ jmZðH
0
ZÞ=NF=F 0 ðF

	Þj1
X
w

LwðvÞ:

Lemma 3.2 exhibits the precise relation between distinguishedness relative to uni-

tary groups and distinguishedness relative to unitary similitude groups. Before ana-

lyzing this relation, we now state one of our main results:

THEOREM 3.3. If p is an irreducible tame supercuspidal representation of G then the

dimension of HomHðp; 1Þ is at most one.

The proof of Theorem 3.3 occupies the bulk of this paper. It is summarized in Sec-

tion 14. For the remainder of this section, we assume Theorem 3.3 is true. Suppose n

is odd. Then H0
Z ¼ ZHZ and mZðH

0
ZÞ ¼ NF=F 0 ðF

	Þ. If p is H-distinguished then its cen-
tral character o will be a base change lift of two characters o1 and o2 of F 0	. Both
o1 and o2 restrict to the same quasicharacter w of NF=F 0 ðF

	Þ. Lemma 3.2 reduces to

the identity HomHZ ðp; 1Þ ¼ HomH0
Z
ðp; wÞ. In fact, when n is odd then all notions of

distinguishedness are equivalent. In other words, if p is HZ-distinguished for any Z
then it is HZ-distinguished for all Z. Moreover, p is HZ-distinguished if and only if

it is (H0
Z; w)-distinguished.

Now suppose n is even. Then H0
Z=ZHZ has order two and mZðH

0
ZÞ ¼ F 0	. Lemma

3.2 says

HomHZ ðp; 1Þ ffi HomH0
Z
ðp;o1 
 mZÞ �HomH0

Z
ðp;o2 
 mZÞ:

Theorem 3.3 implies that we have the following dichotomy:

PROPOSITION 3.4. If p is an HZ-distinguished irreducible tame supercuspidal

representation of G then it is either ðH0
Z;o1 
 mÞ-distinguished or ðH0

Z;o2 
 mÞ-dis-
tinguished, but not both.

4. Cuspidal Representations Invariant Under an Automorphism

There are corresponding theories over global fields and over finite fields of cuspidal

representations of GLðnÞ which are distinguished by a unitary group. It is known, for

example, that the analogue of Theorem 3.3 is true for such fields. We now recall two

results for finite fields and then discuss their analogues for p-adic fields. The first

result is based on analogous facts appearing in [25, 26].

LEMMA 4.1. Let E be a degree n extension of a finite field F which is embedded, via

an F-embedding, in the ring M of n-by-n matrices with entries in F. Assume i is a ring

automorphism of M and let G ¼M	 ¼ GLðn;FÞ and T ¼ E	. Suppose y is a regular

character of T and let k be the irreducible, cuspidal representation of G associated to y
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by the Deligne–Lusztig construction. Then k � k 
 i precisely when there exists an

automorphism s of E which agrees with i on F and satisfies y ¼ y 
 s. Moreover, if ijF
has order k, then s must also have order k.

Proof. The Deligne–Lusztig construction has an inherent symmetry under auto-

morphisms which yields the identity:

RG
iðTÞðy 
 i

1Þ 
 i ¼ RG
TðyÞ:

It follows that k � k 
 i precisely when

RG
iðTÞðy 
 i

1Þ ¼ RG
TðyÞ:

But the latter condition is equivalent to the existence of an F-isomorphism

a: iðEÞ ! E which satisfies y 
 i1 ¼ y 
 a. The existence of a is in turn equivalent
to the existence of an automorphism s (¼ a 
 i) of E which agrees with i on F and

satisfies y ¼ y 
 s.
Now let k denote the order of ijF ¼ sjF. Let E 0 denote the fixed field of sk. Since

y ¼ y 
 sk, Hilbert’s Theorem 90 implies that y factors through the norm map from
E to E 0. Since E 0  F, regularity of y implies that E 0 ¼ E. Thus s has order k. &

Assume now that the restriction of i to F has order 2 and thus smust have order 2.
Let E 0 be the fixed field of s and put F 0 ¼ E 0 \ F. If F 0 has q elements, then

jFj ¼ q2; jE 0j ¼ qn and jEj ¼ q2n:

There are two notable consequences of this. First, we observe sðtÞ ¼ tq
n

. Thus,

k � k 
 i if and only if yðtÞ ¼ yðtq
n

Þ, for all t 2 T. Equivalently, y is trivial on
Uð1;E=E 0Þ. Next, we note that F is a subfield of E 0 exactly when n is even. In this

case, the condition y ¼ y 
 s contradicts the regularity of y and thus no such y
can exist. (One can also arrive at a contradiction by arguing that E 0 cannot contain

F since sjF ¼ ijF is nontrivial.) We also remark that the field E 0 is independent of s,
since it is the unique subfield of E of order qn.

PROPOSITION 4.2. Let E be a degree n extension of a finite field F which is

embedded, via an F-embedding, in the ring M of n-by-n matrices with entries in F.

Assume that F is a quadratic extension of some field F 0 and i is the automorphism of M

given by applying the nontrivial Galois automorphism of F=F 0 to the entries of each

matrix in M. Let G ¼M	 ¼ GLðn;FÞ and T ¼ E	. Suppose y is a regular character of
T and let k be the irreducible, cuspidal representation of G associated to y by

the Deligne–Lusztig construction. Then the following conditions are equivalent:

ðiÞ The space of k has nonzero vectors fixed by Uðn;F=F 0Þ.

ðiiÞ k � k 
 i.
ðiiiÞ There exists an automorphism s of E which agrees with i on F and satisfies

y ¼ y 
 s.
ðivÞ y is trivial Uð1;E=E 0Þ.

When n is even, these conditions are never satisfied.
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Proof. The equivalence of conditions (i) and (ii) is a result of Gow [7]. The

equivalence of conditions (ii), (iii) and (iv) follows from the above discussion. &

The fact that conditions in Proposition 4.2 cannot be satisfied when n is even will

allow us to strengthen the results of [9] in Proposition 12.2 below. There is an

analogue of Lemma 4.1 for supercuspidal representations:

LEMMA 4.3. Let p be an odd prime and F a finite extension of Qp. Let E be a tamely

ramified degree n extension of F which is embedded, via an F-embedding, in the ring M

of n-by-n matrices with entries in F. Assume i is a ring automorphism of M and let

G ¼M	 ¼ GLðn;FÞ and T ¼ E	. Suppose y is an admissible character of T and let p
be the irreducible, supercuspidal representation of G associated to y by Howe’s con-

struction. Then p � p 
 i precisely when there exists an automorphism s of E which

agrees with i on F and satisfies y ¼ y 
 s. Moreover, if ijF has order k, then s must also

have order k.

Proof. The proof of Lemma 4.3 is entirely analogous to the proof of Lemma 4.1

since Howe’s construction has the same type of symmetry under automorphisms as

the Deligne–Lusztig construction. &

We now would like to consider the analogue of Proposition 4.2 for supercuspidal

representations.

THEOREM 4.4. Let p be an odd prime and F a finite extension of Qp. Let E be a

tamely ramified degree n extension of F which is embedded, via an F-embedding, in the

ring M of n-by-n matrices with entries in F. Assume that F is a quadratic extension of

some field F 0 and i is the automorphism of M given by applying the nontrivial Galois

automorphism of F=F 0 to the entries of each matrix in M. Let G ¼M	 ¼ GLðn;FÞ and

T ¼ E	. Suppose y is an admissible character of T and let p be the irreducible,

supercuspidal representation of G associated to y by Howe’s construction. Let H be a

unitary group in G associated to some Hermitian matrix Z 2 G. Then the following

conditions are equivalent:

ðiÞ The space HomHðp; 1Þ is nonzero.
ðiiÞ p � p 
 i.
ðiiiÞ p is a base change lift from GLðn;F 0Þ.

ðivÞ There exists an automorphism s of E which agrees with i on F and satisfies

y ¼ y 
 s.
ðvÞ y is trivialUð1;E=E 0Þ, where E 0 is the fixed field of an automorphism of E of order

two which agrees with i on F.

The equivalence of (ii), (iv) and (v) follows from Lemma 4.3.

DEFINITION. Under the hypotheses of Theorem 4.4, a representation p which
satisfies condition ðiiÞ will be referred to as a Galois invariant representation.
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The equivalence of (ii) and (iii) is part of the theory of quadratic base change. We

recall that, by definition, if p is a base change lift of p0 then this means that there is
a specific relation between the twisted character of p and the character of p0. For more
details on base change, we refer the reader to [2], in particular, Theorem 6.2. The fact

that (i) implies (ii) is addressed in the next section. The proof that (ii) implies (i) uses

the theory developed in the bulk of this paper. A summary of the proof is in Section 14.

It should be noted that, due to Theorem 3.3, condition (i) in the statement of

Theorem 4.4 is equivalent to the condition dimHomHðp; 1Þ ¼ 1. We also remark that
in condition (v) E 0 cannot contain F since sjF ¼ ijF is nontrivial. Since the five con-
ditions in Theorem 4.4 do not depend on the choice of the Hermitian matrix Z, we
have the following corollary:

COROLLARY 4.5. Let p be an odd prime and F=F 0 a quadratic extension, where F 0

is a finite extension of Qp. Let p be an irreducible tame supercuspidal representation of

G ¼ GLðn;FÞ. Suppose H and H0 are unitary groups in G associated to two matrices in

G which are Hermitian with respect to F=F 0. Then p is H-distinguished if and only if it

is H0-distinguished.

Let us now mention another issue regarding quadratic base change for supercus-

pidal representations which is not resolved in the present paper. Suppose E=F is a

tamely ramified degree n extension and y is a quasicharacter of E	 which is admis-
sible over F. Let py denote the irreducible, supercuspidal representation of G given
by Howe’s construction [15] and suppose py is a quadratic base change lift from
G0 ¼ GLðn;F 0Þ. Then, in fact, p is the base change lift of two irreducible, supercus-
pidal representations p0 and p00 of G0 ¼ GLðn;F 0Þ. According to Theorem 4.4, there
must exist an automorphism s of order two of E which restricts to the nontrivial
Galois automorphism of F=F 0 and which satisfies y ¼ y 
 s. Thus y is a base change
lift of two quasicharacters y0 and y00 of the multiplicative group of the fixed field E 0

of s. We can order the latter quasicharacters so that y0 restricts to the central char-
acter of p0. It is tempting to conjecture that p0 ¼ py0 and p00 ¼ py00 . However, as we
will see in this paper, there is more than one ‘natural’ correspondence between qua-

sicharacters and tame supercuspidal representations. For any one of these corre-

spondences, one might expect that these identities are true up to twisting by a

quasicharacter which, hopefully, can be explicitly computed.

5. Galois Invariance of Distinguished Supercuspidal Representations

The purpose of this section is to state the following result (which is proven in [10])

and to briefly indicate the (global) techniques involved in its proof.

PROPOSITION 5.1. Assume F=F 0 is a quadratic extension of non-Archimedean local

fields of characteristic zero with residue fields of odd characteristic. Assume

Z 2 GLðn;FÞ is Hermitian with respect to F=F 0. If p is an irreducible, supercuspidal
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representation of GLðn;FÞ which is distinguished with respect to the unitary group HZ

then p must be Galois invariant.

For the rest of this section, we will switch to global notations. Let F=F 0 be a quad-

ratic extension of number fields. Our attention will be focused on a particular finite

place v0 of F
0 which is inert in F. Let w0 be the place of F which lies above v0.

The quadratic extension which occurs in Proposition 5.1 should be viewed as the

quadratic extension Fw0=F
0
v0
. We consider the F 0-group G which is obtained

from the F-group GLn by restriction of scalars. Let G ¼ GðF 0Þ ¼ GLðn;FÞ,

GA ¼ GðF 0
A
Þ ¼ GLðn;FAÞ and, when v is place of F

0, let Gv ¼ GðF 0vÞ. We use similar

notations for the other F 0-groups we consider. Fix an automorphism a of G of order
two which is defined over F 0 and let H be the F 0-subgroup of G consisting of the

fixed points of a. Let Z be the center of G and let ZH ¼ Z \H.

Suppose o ¼ �vov is a character of ZA which is trivial on ZH;AZ and let p be an
irreducible, automorphic, cuspidalH-distinguished representation of GA with central

character o. We say that p is H-distinguished if there exists j in the space of p such
that

PðjÞ ¼
Z
ZH;AHnHA

jðhÞ dh 6¼ 0:

The following is proven in [10]:

THEOREM 5.2. If r is an Hv0 -distinguished, irreducible, supercuspidal representation

of Gv0 ¼ GLðn;Fw0Þ then there exists an H-distinguished, irreducible, automorphic,

cuspidal representation p ¼ �vpv of GA ¼ GLðn;FAÞ such that pv0 ’ r.

For our purposes, the automorphism a is given by aðgÞ ¼ Z t �g1 Z1, where Z is a
fixed Hermitian matrix in GLðn;FÞ. and let UðZÞ be the associated unitary subgroup
of GLðn;FÞ. The statement of Proposition 5.1 involves the choice of a Hermitian

matrix in GLðn;Fw0Þ. For simplicity, we assume that this matrix lies in GLðn;FÞ

and corresponds to our matrix Z. (It is explained in [10] how one easily reduces to this
case.) Let r be the representation which occurs in the hypothesis of Proposition 5.1.
Applying Theorem 5.2, we obtain an automorphic cuspidal representation p with r as
the component at v0. Now an elementary argument given in [13], and also appearing

in [5, 10] and [19], proves that p is Galois invariant in the sense that pðgÞ is equivalent
to the representation g 7! pð �gÞ, where g 7! �g is the nontrivial Galois automorphism

of F=F 0. Therefore r must also be Galois invariant and Proposition 5.1 follows.

6. Admissible Quasicharacters

We will now recall some basic facts about admissible quasicharacters from [15] and

refine various details so as to make them compatible with the relevant Galois auto-

morphisms which arise in our applications.
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First, we need some notations. Let E be a tamely ramified extension of F of degree

n or, in other words, if p is the characteristic of the residue field of E and if eðE=FÞ is

the ramified degree of E=F then p does not divide eðE=FÞ. Whenever L is a subfield of

E, we letOL denote the ring of integers of L and PL is the maximal ideal ofOL. The

residue field is kL ¼ OL=PL and its order is denoted qL. Choose a prime element $L

for each L so that if F � L1 � L2 � E then $eðL2=L1Þ
L2

$1
L1
is a root of unity in L1

whose order is relatively prime to p. Then if CL is the group generated by $L and

the roots of unity in L with order relatively prime to p then NL2=L1ðCL2Þ � CL1 .

Howe’s construction depends on the choice of a quasicharacter y of E	 which is
admissible over F in the following sense.

DEFINITION. A quasicharacter y of E	 is admissible over F if:

ð1Þ y 6¼ y0 
NE=L for every quasicharacter y
0 of every intermediate field L of E=F

(other than E), and

ð2Þ if y ¼ y0 
NE=L on 1þPE for some quasicharacter y
0 of some intermediate field

L of E=F (other than E), then E=L must be unramified.

We will also say that y is a base change lift from L if y ¼ y0 
NE=L for some qua-

sicharacter y0 of L. In this case, we will abbreviate y0 
NE=L as y
0E. The admissible

quasicharacters of interest to us are those which are quadratic base change lifts. In

other words, we will assume that E is a quadratic extension of a field E 0 and

y ¼ y
0E for some quasicharacter y0 of E0	. We will let s denote the nontrivial auto-

morphism of E=E 0. Our assumption that y is admissible over F implies that F can-
not be contained in E 0. Thus F must be a quadratic extension of the field

F 0 ¼ F \ E 0.

The most basic examples of admissible quasicharacters are those quasicharacters

y of E	 which are generic over F. To recall the notion of genericity, we set some
more notations. Fix a character cF 0 of F

0 of conductor PF 0 . For each intermediate

field L of E=F 0, let cL be the character of L of conductor PL defined by

cL ¼ cF 
 trE=L. The conductoral exponent of y is denoted fðyÞ. If fðyÞ > 1 then
there exists a unique element gy 2 CE such that yð1þ xÞ ¼ cEðgyxÞ, for all
x 2 PfðyÞ1

E . We refer to gy as the standard representative for y. The standard repre-
sentatives are invariant under base change in the sense that gy ¼ gy0 when y is a base
change lift of y0.

DEFINITION. A quasicharacter y of E	 is generic over F if fðyÞ > 1 and E ¼ F ½gy�,
or if fðyÞ ¼ 1 and y is admissible over F.
Note that if fðyÞ > 1, then invariance of standard representatives under base

change implies that y must be admissible over F if it is generic over F and

fðyÞ > 1. We also emphasize that if fðyÞ ¼ 1, then gy is not defined.
In Section 2, we discussed towers of intermediate fields of E=F. The towers of

interest to us arise from the following factorization:
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THE HOWE FACTORIZATION OF y. Given a quasicharacter y of E	 which

is admissible over F, there is a unique tower F ¼ E0 � E1 � � � � � Er ¼ E and

unique positive integers f1 > � � � > fr such that there exists a (nonunique) sequence

y0; . . . ; yr of quasicharacters of E	0 ; . . . ;E
	
r , respectively, such that y ¼

Qr
i¼0 y

E
i and,

when i > 0, the conductoral exponent of yEi is fi and, in addition, yi is generic overEi1.

We are specifically interested in those y which are base change lifts from E 0. For

these quasicharacters, we have:

PROPOSITION 6.1. Assume y is a quasicharacter of E	 which is admissible over F

and suppose y0 is a quasicharacter of E0	 such that y ¼ y
0E. Then y0 is admissible over

F 0. Assume y0 ¼
Qr

i¼0 y
0E 0

i is a Howe factorization of y0 and F 0 ¼ E 0
0 � E 0

1 �

� � � � E 0
r ¼ E 0 is the corresponding tower of fields. Let Ei ¼ FE 0

i, for 04 i4 r, and

let yi be the quasicharacter of E	i defined by y
0Ei

i . Then y ¼
Qr

i¼0 y
E
i is a Howe fac-

torization of y.
Proof. Suppose that y0 is not admissible over F 0. There are two ways this could

happen. In the first case, there exists a proper subextension L0 of E 0=F 0 such that

y0 ¼ y
0E 0

L0 for some quasicharacter y
0
L0 of L

0	. But then if L ¼ FL0 and yL ¼ y
0L
L0 , we

would have y ¼ yEL contradicting the admissibility of y. In the second case, there
exists a proper subextension L0 of E 0=F 0 such that E 0=L0 is ramified and y0 ¼ y

0E 0

L0 on

1þPE 0 for some quasicharacter y0L0 of L
0	. Note that NE=E 0 ð1þPEÞ ¼ 1þPE 0 and

therefore if L ¼ FL0 and yL ¼ y
0L
L0 then y ¼ yEL on 1þPE. If E=L is ramified this

contradicts the admissibility of y. On the other hand, if E=L is unramified then L=L0

must be ramified and E=E 0 must be unramified and hence generated by a square root

of a root of unity E. Replacing L by L0½E� causes L=L0 to become unramified and E=L

to become ramified. Again, we contradict the admissibility of y and deduce that y0

must indeed be admissible over F 0.

Assume i > 0 and fi > 1. By invariance of standard representatives under base

change, we have gyi ¼ gy0i . Thus

Ei1½gyi � ¼ FE 0
i1½gy0i � ¼ FE 0

i ¼ Ei

and, consequently, yi is generic over Ei1. Now suppose i > 0 and fi ¼ 1. Then since

NE=E 0 ð1þPEÞ ¼ 1þPE 0 , we see that y0i has conductor 1þPE 0 . Therefore, i ¼ r and

E 0
i=E

0
i1 ¼ E 0=E 0

r1 is unramified and y0r is not a base change lift from a proper

intermediate field of E 0=E 0
r1. The fact thatE

0=E 0
r1 is unramified is equivalent to

the fact that this extension must be generated by roots of unity of prime to p order.

Since E=Er1 inherits the latter property, it must also be unramified. Therefore,

showing that yr is generic over Er1 amounts to showing it is not a base change lift

from a proper intermediate field L of E=Er1. However, if yr were a base change lift
from L then y would also be a base change lift from L, which would contradict the

admissibility of y. The proof is now complete. &

We now record some elementary properties of the conductoral exponents of yEi
and y

0E 0

i .
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LEMMA 6.2. Let fi and f 0i be the conductoral exponents of y
E
i and y

0E 0

i , respectively,

when 14 i4 r. Then:

ðiÞ fi  1 ¼ eðE=E 0Þ ðf 0i  1Þ, for all i.

ðiiÞ fr ¼ 1 if and only if f 0r ¼ 1.

ðiiiÞ If E=E 0 is unramified then fi ¼ f 0i, for all i.

ðivÞ If E=E 0 is ramified then fi is odd, for all i.

ðvÞ If fr ¼ 1 then E=E 0 is unramified if and only if Er1=E
0
r1 is unramified.

ðviÞ If fr ¼ 1 and E=E 0 is unramified then nr1 ¼ ½E : Er1� ¼ ½E
0 : E 0

r1� is odd.

Proof. In general, if L=K is an extension of subfields of E with ramified degree

eðL=KÞ and w is a quasicharacter of K	 then the relation between the conductoral
exponents of w and wL is given by

fðwLÞ  1 ¼ eðL=KÞ ð fðwÞ  1Þ:

Applying this to the conductoral exponents f 0i and fi gives (i). Assertions (ii), (iii) and

(iv) are immediate consequences of (i). Assertion (v) holds, since fr ¼ f 0r ¼ 1 and

admissibility imply that E=Er1 and E 0=E 0
r1 are unramified and thus eðE=E

0Þ ¼

eðE=E 0
r1Þ ¼ eðEr1=E

0
r1Þ. To prove (vi), let us suppose that fr ¼ 1, E=E

0 is unra-

mified and nr1 is even. Then E 0=E 0
r1 must contain a quadratic unramified exten-

sion of E 0
r1. However, such a quadratic extension cannot exist since Er1 is the

unique quadratic unramified extension of E 0
r1 which is contained in E and Er1

is not contained in E 0. &

7. Heisenberg and Weil Representations over Fp

Fix an odd prime p and a nontrivial additive character z of Fp. Let W be a finite-

dimensional nondegenerate symplectic space over Fp with symplectic form hh ; ii.

Assume thatWþ andW form a polarization ofW, that is, Wþ andW are totally

isotropic subspaces of W and Wþ þW ¼W. Let Z ¼ Fp and define a Heisenberg

group structure on the Cartesian product H ¼W	 Z by the multiplication rule

ðw1; z1Þðw2; z2Þ ¼ ðw1 þ w2; z1 þ z2 þ
1
2 hhw1;w2iiÞ:

We identify Z, Wþ and W with the subgroups 0	 Z, Wþ 	 0 and W 	 0,

respectively.

Let zþ be the character of WþZ ¼Wþ 	 Z defined by zþðwzÞ ¼ zðzÞ, where
w 2Wþ and z 2 Z. Let ðr;VÞ be the induced representation IndHWþZðz

þ
Þ. This is a

Heisenberg representation of H corresponding to the central character z. The prop-
erties of such Heisenberg representations, as well as the associated Weil representa-

tions, are studied in detail in [6]. In this section, we recall some basic facts from [6]

and develop the theory of invariant linear forms and distinguishedness for the

Heisenberg representations. This theory is then applied in Section 8 to the construc-

tion of tame supercuspidal representations.
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If K is a subgroup of H then let

VK ¼ fv 2 V : rðkÞj ¼ j for all k 2 Kg:

If x 2 H, we let VK
x denote the space of functions in VK with support contained in

WþZxK. Define an H-invariant inner product on V by

j1 � j2 ¼
X
w2W

j1ðwÞ �j2ðwÞ:

There is an isomorphism VK ffi HomKðr; 1Þ given by associating to j0 2 VK the lin-

ear form lðjÞ ¼ j � j0.
The following elementary result gives an exhaustive description of when the Hei-

senberg representation r is K-distinguished with respect to any subgroup K of H.
Though we only need to use this result in one of its simplest cases, we include the

general statement because it highlights the exceptional simplicity of Heisenberg

representations over Fp.

LEMMA 7.1. Suppose K is a subgroup of H and X is a set of representatives for the

double coset space WþZnH=K. Then VK ¼ �x2XV
K
x and each space VK

x has dimension

one if WþðxKx1Þ \ Z ¼ f1g and dimension zero otherwise.

Proof. If f 2 VK and x 2 X then define fx 2 VK by taking fx ¼ f on WþZxK and

fx " 0 outside of W
þZxK. We have f ¼

P
x2X fx. Therefore, we have a direct sum

decomposition VK ¼ �x2XV
K
x . So in order to compute V

K it suffices to compute the

spaces VK
x .

Fix x 2 X. If VK
x is nonzero then there is a unique element xx 2 VK

x such that

xxðxÞ ¼ 1 and it is defined on WþZxK by xxðwzxkÞ ¼ zðzÞ, where w 2Wþ, z 2 Z
and k 2 K. In this case, VK

x must be the one-dimensional space spanned by xx.
The space VK

x will be nonzero precisely when the above formula for xx gives a well-
defined function. In order for xx to be well-defined, we must have zðz1Þ ¼ zðz2Þ when-
ever w1z1xk1 ¼ w2z2xk2, with w1;w2 2Wþ, z1; z2 2 Z and k1; k2 2 K. Note that
since z is a nontrivial character of a cyclic group of finite order, the kernel of z is tri-
vial. Thus the condition zðz1Þ ¼ zðz2Þ is equivalent to the condition z1 ¼ z2. Letting

w ¼ w11 w2; z ¼ z11 z2 and k ¼ k2k
1
1 ;

we see that VK
s 6¼ 0 precisely when the following condition is satisfied: whenever

w 2Wþ, z 2 Z, k 2 K and wzxk ¼ x, it must be the case that z ¼ 1. Equivalently,

the latter condition says that WþðxKx1Þ \ Z ¼ f1g. &

A matrix representation for H is obtained as follows. Choose a basis e1; . . . ; e2‘ of

W such that e1; . . . ; e‘ is a basis of W
þ and e‘þ1; . . . ; e2‘ is a basis of W

. Use

this basis to identify W with F2‘p , viewed as a space of column vectors. Let j be

the matrix of the symplectic form in the sense hhw1;w2ii ¼
tw1jw2. We will assume

our basis is chosen so that j takes the block matrix form
�
0 1

1 0

�
, where the blocks have

dimensions ‘	 ‘.
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Identify ðw; zÞ 2 H with the block matrix

1 1
2
tw j z

0 1 w
0 0 1

0
@

1
A 2 GLð2‘þ 2;FpÞ;

where the diagonal blocks are square matrices of rank 1, 2‘ and 1, respectively. The

group S ¼ SpðWÞ acts on H by its action on the first factor ofW	 Z. In the matrix
representation, s 2 S acts according to

Ad
1 0 0
0 s 0
0 0 1

0
@

1
A

0
@

1
A:

The group S also has a more traditional matrix representation as the group block
matrices s ¼

�
a b
c d

�
, with ‘	 ‘ blocks, such that ts j s ¼ j. In the latter representation,

S acts on W by matrix multiplication
�
a b
c d

��
wþ

w

�
. We will sometimes use the notation

s � w for the action of S on W, in order to avoid potential conflicts of notation

between the two different matrix representations of S. We will use a similar notation
s � h for the action of S on H.
We are also interested in the semidirect product S	H with multiplication given by

ðs1; h1Þðs2; h2Þ ¼ ðs1s2; ðs
1
2 � h1Þh2Þ:

In the GLð2‘þ 2;FpÞ matrix representation, S	H corresponds to SH ¼ fsh : s 2 S;
h 2 Hg, with multiplication given by matrix multiplication.
The Heisenberg representation ðr;VÞ of H has a unique extension ðr̂;VÞ to S	H

which we refer to as the ‘Weil representation of S	H’ (relative to the choice of cen-
tral character and polarization). The equivalence class of r̂ only depends on the cen-
tral character. The Weil representation may be described explicitly as follows. The

Siegel parabolic subgroup of S is the group P ¼ fs 2 S : s �Wþ �Wþg. In the

GLð2‘;FpÞ representation, P consists of the elements in S of the form
�
a b
0 d

�
. To be

even more explicit, each element of P has the form

pðx; yÞ ¼
y 0
0 ty1

� �
1 x
0 1

� �
;

where tx ¼ x. The unipotent radical N of P consists of those elements of the form
pðx; yÞ with y ¼ 1. Since S is generated by P and the element j ¼

�
0 1

1 0

�
, the Weil

representation on S is completely described by the action of P and j. The action

of P on V is given by

r̂ðpðx; yÞÞjðhÞ ¼ ðdet yÞðp1Þ=2 jð pðx; yÞ1 � h Þ:

The action of j is nearly a Fourier transform. More specifically, if j 2 V and

w 2W then

r̂ð jÞjðwÞ ¼ E p‘=2
X
w2W

jðwÞ zðhh jw;wiiÞ;
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where E is the root of unity defined by

E ¼ ð1Þ‘ðp1Þ=2 p1=2
X
t2Fp

zðt2=2Þ

0
@

1
A
‘

:

(See [6] for more details.) Since r̂ðjÞj is determined by its restriction toW, the equa-

tion above fully determines the action of r̂ðjÞ on V.

PROPOSITION 7.2. Suppose W0 is maximal totally isotropic subspace of W

embedded as a subgroup in H via the map w 7! ðw; 0Þ from W to W	 Z. Then

HomW0
ðr; 1Þ has dimension one. In particular, HomWðr; 1Þ is the one-dimensional

space spanned by the linear form lðjÞ ¼ jð1Þ.
Proof. We begin by treating the case of W0 ¼W by applying Lemma 7.1 with

K ¼W. Since H ¼WþZW, we may take the set X in the statement of Lemma 7.1

to be f1g. Then HomWðr; 1Þ ffi VW

ffi VW

1 and, moreover, VW

1 has dimension one,

since WþW \ Z ¼ f1g. But the linear form defined by lðjÞ ¼ jð1Þ is clearly a
nonzero element of HomWðr; 1Þ and, hence, we must have HomWðr; 1Þ ¼ Cl. This
proves our claims whenW0 ¼W. Now supposeW0 is an arbitrary maximal totally

isotropic subspace of W. Then there exists s 2 S such that s �W0 ¼W. It follows

that W0 and W are conjugate as subgroups of S	H. Consequently,

HomW0
ðr̂; 1Þ ffi HomWðr̂; 1Þ. But

HomW0
ðr̂; 1Þ ¼ HomW0

ðr; 1Þ and HomWðr̂; 1Þ ¼ HomWðr; 1Þ ¼ Cl:

Therefore, HomW0
ðr; 1Þ has dimension one. &

8. The Construction of ji

The purpose of this section is to construct some auxiliary representations which arise

in Howe’s construction of tame supercuspidal representations of G. Our tame super-

cuspidal representations will have the form p ¼ IndGRðkÞ, where the inducing repre-
sentation is a tensor product k ¼ k0 � � � � � kr of the character k0 ¼ y0 
 det with
certain representations ki: R! AutðViÞ, where 14 i4 r. Each ki corresponds to a
factor yi in the Howe factorization of the admissible quasicharacter y. The problem
of computing H-invariant linear forms on the space of p will ultimately reduce via a
factorization theory to the problem of computing the spaces HomR\Hðki; WiÞ for cer-
tain quadratic characters Wi.
We adopt the notations used in the statement of Proposition 6.1. In particular,

there are quasicharacters y and y0 such that y ¼ y
0E and associated Howe factoriza-

tions and towers of fields. Associated to the tower fEig are the Lie algebras fgig and
the groups fGig defined in Section 2, as well as the parahoric algebras and groups b,
bj, bj;i, B, Bj and Bj;i. As in the statement of the Howe factorization, fi denotes the

conductoral exponent fðyEi Þ. When 04 i4 r, let
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‘i ¼
fi
2

	 

and mi ¼

fi þ 1

2

	 

:

In general, we will let Oi and O0

i denote the rings of integers of Ei and E 0
i, respec-

tively, and fix prime elements $i and $0
i in these rings according to the conventions

in Section 6. Let Pi ¼ $iOi and pi ¼ $0
iO

0

i. Thus PE ¼ Pr and PE 0 ¼ pr. The cor-
responding residue fields are denoted ki and k0i.

The representations ki we define will be representations of the group

R ¼ E	BðyÞ ¼ E	BðyrÞ � � �Bðy1Þ;

with BðyiÞ ¼ B‘i;i1 and BðyÞ ¼ BðyrÞ � � �Bðy1Þ.
Fix, for the remainder of this section, an index i 2 f1; . . . ; rg. The first case we dis-

cuss is the case in which fi ¼ 1 and thus i ¼ r. Then the fact that yr is generic over
Er1 implies E=Er1 must be unramified. We observe that yr restricts to a character
of the multiplicative group of the residue field kr of E. The constructions of Green

and Deligne and Lusztig [3] associate to the latter character a cuspidal representation

ðrr;VrÞ of GLðnr1; kr1Þ. We regard rr as a representation of R \ B, using the fact

that ðR \ BÞ=ðR \ B1Þ ffi GLðnr1; kr1Þ. The group R is generated by the elements of

R \ B together with a prime element $r1 of Er1. Define the representation kr of R
on Vr by the formula krð$

j
r1kÞ ¼ yrð$r1Þ

jrrðkÞ, for all j 2 Z and k 2 R \ B.

For the rest of this section, we assume fi > 1. Under this assumption, ki is pro-
duced using a Heisenberg/Weil representation construction which depends on the

choice of a ‘special isomorphism’ (in the sense of [31], as described below). There

is a particularly desirable choice of special isomorphism which is compatible with

the anti-involution sZ. This special isomorphism comes from an especially conve-

nient choice of polarization of the relevant symplectic space. Since this special iso-

morphism and the associated correspondence between admissible quasicharacters

and tame supercuspidal representations may not agree with the traditional conven-

tions in the literature, it will be necessary in the next section to discuss some aspects

of how varying the special isomorphism affects Howe’s construction.

The construction of ki begins with an explanation of how to transport the discus-
sion in the previous section to the setting which is relevant to tame supercuspidal

representations. Let deti and tri denote the determinant and trace maps on gi ¼
glðni;EiÞ. Define a multiplicative inner product on g by hx; yi ¼ cFðtr0ðxyÞÞ: The

orthogonal complement of a subset S of g is defined by:

S? ¼ fx 2 g : hx; yi ¼ 1; for all y 2 Sg:

If S is a closed subgroup of g then ðS?Þ? ¼ S and if S1;S2 are closed subgroups then

ðS1 \ S2Þ
?
¼ S?1 þ S?2 . When g 2 G and S is a subset of g then we have ðgSg1Þ?

¼ gS?g1.

We now state a lemma which describes the orthogonal complements of most

importance in the rest of the paper. In order to do this, however, a few more nota-

tions are needed. Let sZ be the anti-involution of g defined by sZðxÞ ¼ Z x� Z1. Then
the Lie algebra of the unitary group H is
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h ¼ fx 2 g : sZðxÞ ¼ xg:

Now fix an element ci 2 E 0
i such that y

0
ið1þ xÞ ¼ cE 0

i
ðci xÞ, for all x 2 p

m0i
i , where

m0i ¼ bðfðy
0
iÞ þ 1Þ=2c and fðy0iÞ is the conductoral exponent of y

0
i. Such an element ci

exists and, though it is not unique, the coset ci þ p
1m0i
i is well defined. We note that

ci must lie in p
1fðy0iÞ
i  p

2fðy0iÞ
i and one may easily check that if mi ¼ bðfðyiÞ þ 1Þ=2c,

then yið1þ xÞ ¼ hci; xi, for all x 2 pmii .

LEMMA 8.1.

ðiÞ h? ¼ fx 2 g : sZðxÞ ¼ xg.

ðiiÞ E 0 ¼ E \ h?.
ðiiiÞ b?k ¼ b1k, for all integers k.
ðivÞ ci 2 ðbfi þ hÞ? \ E, for all i 2 f1; . . . ; rg such that fi > 1.

ðvÞ If fr ¼ 1 then ci 2 ðbfi þ ghg1Þ? \ Er1, for all i 2 f1; . . . ; r 1g and g 2 Gr1.

Proof.We first observe that h? consists of those x 2 g such that hx; y sZðyÞi ¼ 1,
for all y 2 g. This condition can be rewritten as hx; yi ¼ hx; sZðyÞi ¼ hsZðxÞ; yi or as
hx sZðxÞ; yi ¼ 1. In the latter form, assertion (i) becomes obvious. Assertion (ii)
follows from (i) and the fact that sZðxÞ ¼ sðxÞ, for all x 2 E. Assertion (ii) is stan-

dard. (See [15] or [24], for example.) To prove (iv), we note that from (ii) we have

ci 2 E 0 ¼ E \ h?. On the other hand, ci 2 p
1fðy0iÞ
i � P1fðyiÞ

i � P1fi
E � b1fi . Hence,

we have ci 2 b1fi \ E \ h? ¼ ðbfi þ hÞ? \ E. The proof of (v) is similar to the proof

of (iv), once we observe that ci 2 Er1 \ gh?g1. The latter fact holds since g com-
mutes with all elements of Er1 and, in particular, with ci. &

Define the groups

Ji ¼ 1þ ðb‘i;i1 \ g?i Þ þ b2‘i;i;

J0i ¼ 1þ ðbmi;i1 \ g?i Þ þ b2‘i;i:

Note that when fi is even, the groups Ji and J0i are identical since ‘i ¼ mi. Define a

character oi of E
	B0;iJ

0
i by oi ¼ yi 
 deti on E	B0;i and oiðxÞ ¼ hci; x 1i on J0i.

Let J00i ¼ kerðoijJ
0
iÞ.

Let Hi ¼ Ji=J
00
i , Zi ¼ J0i=J

00
i andWi ¼ Ji=J

0
i and define a (multiplicative) symplectic

form on Wi by

hhx; yiii ¼ oiðxyx
1y1Þ ¼ hci; ½x 1; y 1�i:

(Via the map 1þ x 7! x, we obtain an isomorphism of Wi with the additive Fp-vec-

tor space ðb‘i;i1 \ g?i Þ=ðbmi;i1 \ g?i Þ: It is frequently more convenient to deal with
this additive model for Wi.)

The groupHi turns out to be isomorphic to a Heisenberg group over Fp associated

to the symplectic space, however, when defining the Weil representation it is impor-

tant to be specific about this isomorphism. This is done as follows. If mp is the group
of complex pth roots of unity then the restriction zi of oi to J0i gives rise to an exact

sequence
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1! J00i ! J0i ! mp ! 1

and an identification of Zi with mp. Define H

i to be the standard multiplicative Hei-

senberg group associated to the symplectic spaceWi, that is, H

i ¼Wi	mp with mul-

tiplication defined by

ðv; aÞðw; bÞ ¼ ðvw; ab hhv;wiiðpþ1Þ=2i Þ:

Note that t 7! tðpþ1Þ=2 should be regarded as the analogue in mp of the map t 7! t=2 in

Fp.

DEFINITION. Given i, a special isomorphism is a homomorphism n: Hi ! H

i such

that the following diagram commutes:

1 ! Zi ! Hi ! Wi ! 1

# # # # #

1 ! mp ! H

i ! Wi ! 1;

where all of the maps other that n are the obvious ones.

This notion is discussed in detail in [31]. We will recall below how, once one specifies

a special isomorphism, one obtains a correspondence between admissible quasi-

characters and tame supercuspidal representations. In particular, there is a canonical

special isomorphism (described in great generality in Proposition 11.4 of [31]) which

gives rise to Howe’s correspondence, as described in [15] and [24]. Even though the

main results of this paper are independent of the choice of special isomorphism, it

is necessary to make a specific choice in order to carry out our calculations.

We now define a particularly convenient special isomorphism. This will depend on

first defining a polarization of Wi which is compatible with with the anti-involution

sZ. Define the subgroups of Ji by

Jþi ¼ 1þ ðb‘i;i1 \ g?i \ h?Þ þ b2‘i;i1;

Ji ¼ 1þ ðb‘i;i1 \ g?i \ hÞ þ b2‘i;i1

and let Hþ
i and H

i , respectively, be the images of J
þ
i and Ji in Hi. These subgroups

of Hi satisfy Hþ
i \ Zi ¼ f1g ¼ H

i \ Zi. Therefore, the natural map Hi !Wi

restricts to give isomorphisms Hþ
i ffiWþ

i and H
i ffiW

i , where Wþ
i and W

i are

the images of Jþi and Ji , respectively, in Wi.

LEMMA 8.2. The subspaces Wþ
i and W

i form a polarization of Wi.

Proof. We need to show that Wþ
i and W

i are totally isotropic and

Wi ¼Wþ
i �W

i . The fact that W
þ
i is totally isotropic results from the following

observation. If a; b 2 h? then, since ci 2 E 0 ¼ E \ h? and ½a; b� 2 h, we have
hci; ½a; b�i ¼ 1. Similarly, one sees that W


i is totally isotropic. Next, we note that

every x 2 g has a canonical decomposition x ¼ xþ þ x, where xþ ¼ ðxþ sZðxÞÞ=2
2 h? and x ¼ ðx sZðxÞÞ=2 2 h. If x lies in b‘i;i1 then so do its components x

þ and

x. It follows that Wi ¼Wþ
i �W

i . &
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Suppose hþ 2 Hþ
i and h 2 H

i . Let w
þ and w be the images of hþ and h inWþ

and W, respectively. If z 2 Zi, we take

n\i ðh
þhzÞ ¼ ðwþw ; ziðzÞ hhh

þ; hiiðpþ1Þ=2Þ:

This defines the special isomorphism which we refer to as the natural special

isomorphism.

Fix an arbitrary special isomorphism n. We now are ready to construct the repre-
sentation ki ¼ kni of the group R ¼ E	BðyÞ. Note that R ¼ RiJiR

0
i, where

Ri ¼ R \ Gi ¼ E	BðyrÞ . . .Bðyiþ1Þ and R0i ¼ Bðyi1Þ . . .Bðy1Þ. The symplectic group
Si ¼ SpðWiÞ acts on H


i by s � ðv; aÞ ¼ ðs � v; aÞ. The main significance of choosing a

special isomorphism is that it is used to transfer the action of Si on H

i to an action

of Si on Hi. Specifically, Si acts on Hi by s � h ¼ n1ðs � nðhÞÞ. Let ðri;ViÞ be the

induced representation IndHi

Hþ
i
Zi
ðzþi Þ, where zþi is the character of Hþ

i Zi defined by

zþi ðh
þzÞ ¼ ziðzÞ when hþ 2 Hþ

i and z 2 Zi. This is a Heisenberg representation.

According to Proposition 7.2, HomH
i
ðri; 1Þ has dimension one and is generated

by the linear form liðjÞ ¼ jð1Þ. As discussed above, the representation ri extends
uniquely to a Weil representation ðr̂i;ViÞ of Si 	 Hi. We stress that the definition

of Si	Hi and the definition of the Weil representation on Si both depend on the

choice of special isomorphism. It should also be emphasized that the discussion

above becomes trivial in the case that fi is even, since then Wi ¼ 0.

Let SpðHiÞ be the group of all automorphisms of Hi which (modulo Zi) define

elements of Si and define the group SpðH

i Þ similarly. Then the natural maps

SpðHiÞ ! Si and SpðH

i Þ ! Si are isomorphisms. The action of the group E	B0;i

by conjugation on Hi defines a homomorphism xi: E	B0;i ! SpðHiÞ with the prop-

erty that, for all g 2 E	B0;i, the composite map n 
 xiðgÞ 
 n1 is an element of
SpðH


i Þ.

The homomorphism xi extends to a homomorphism E	B0;i	 Hi ! Si	 Hi which

we use to pull back the Weil representation r̂i to a representation k
i of E
	B0;i	 Hi

on the space Vi. We also have another representation of E
	B0;i 	 Hi obtained by

inflating oi up from E	B0;i. This representation will be denoted infðoiÞ. Note that

whenever x 2 B2‘i;i ¼ E	B0;i \ Ji the representation k
i � infðoiÞ is trivial on the ele-

ment ðx; x1Þ 2 E	B0;i 	 Hi. Therefore, k
i � infðoiÞ factors through E	B0;iJi ¼

E	B0;i BðyiÞ. The restriction of the resulting representation of E	B0;i BðyiÞ
to R \ Gi1 ¼ E	BðyrÞ . . .BðyiÞ defines our desired representation ki on R \ Gi1.

If i ¼ 1 this defines ki on R. Otherwise, if i > 1, we take kið1þ xÞ ¼

hci; xi on Bðyi1Þ . . .Bðy1Þ to complete the definition of ki on R in the case for

which fi > 1.

Since the construction of ki when fi > 1 is somewhat complicated, let us now sum-

marize its main features. First of all, the representation space of ki is the same as the
representation space Vi of the Heisenberg representation ri. Secondly, if fi is even
then ki is simply the one-dimensional representation of R defined on

E	BðyrÞ � � �BðyiÞ by restricting oi and on Bðyi1Þ . . .Bðy1Þ by kið1þ xÞ ¼ hci; xi.

Finally, if fi is odd and greater than 1, then
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kiðxyzÞ ¼ yiðdetiðxÞÞ r̂iðxiðxÞÞriðyÞ hci; z 1i;

where x 2 Ri, y 2 Ji and z 2 R0i. Since the construction of ki depends on the choice of
the special isomorphism n, it is more appropriate to use notations such kni , r̂

n
i and

Si 	 nHi, rather than ki, r̂i and Si	 Hi, to reflect this dependence. We will use these

more complete notations when it is necessary to signify the choice of special iso-

morphism. When using the natural special isomorphism, we use notations such as

k\i , r̂
\
i and Si	 \Hi.

9. Varying the Special Isomorphism

The notations in this section are the same as in the previous section. Recall that we

have defined an anti-involution of g and, by restriction, of G by the formula

sZðxÞ ¼ Z x� Z1, where the Hermitian matrix Z is always chosen to lie in E
0	. Let

iZ be the involution of G given by iZðgÞ ¼ sZðgÞ
1.

Let ~Z 2 k0r be the image in k
0
r of $

0k
r Z, where k is the integer for which $

0k
r Z 2 O

0	

r .

When E 0=E 0
r1 is unramified, we will assume that $

0
r ¼ $0

r1. Let

G ¼ ðR \ BÞ=ðR \ B1Þ ffi
k	r ; if fr > 1;
GLðnr1; kr1Þ; if fr ¼ 1;

�

where ni ¼ ½E : Ei�. Let

B ¼ ðR \HÞ=ðR \H \ B1Þ:

Note that R \H ¼ R \H \ B and, therefore, B may be viewed as a subgroup of G.
We have

B ffi

Uð1; kr=k
0
rÞ; if fr > 1 and E=E 0 is unramified;

f�1g; if fr > 1 and E=E 0 is ramified;
Uð~Z; kr1=k0r1Þ; if fr ¼ 1 and E=E 0 is unramified;
Oð~Z; kr1Þ; if fr ¼ 1 and E=E 0 is ramified:

8>><
>>:

Here, if L=K is quadratic extension with respect to which x is an invertible hermitian

matrix of rank s, then Uðx;L=KÞ denotes the unitary group in GLðs;LÞ defined by

gxg� ¼ x. The notation Oðx;LÞ for orthogonal groups is similar.

LEMMA 9.1. Suppose ki ¼ kni , for some special isomorphism n: Hi ! H

i . Then the

contragredient representation ~ki is equivalent to ki 
 iZ.
Proof. Throughout the proof, we assume we have fixed the special isomorphism n

and we suppress it from the notation. The central character zi of the Heisenberg
representation ri is given by restricting the character oi to J0i. A straightforward

computation shows that zi 
 sZ ¼ zi or, equivalently, zi 
 iZ ¼ z1i . Up to iso-

morphism, the contragredient representation ~ri is the Heisenberg representation
of Hi with central character z1i . Therefore, ~ri is equivalent to ri 
 iZ. One of
the basic properties of the Weil representation r̂i (see [6]) is that its contragredient is
the Weil representation which is the unique extension of ~ri to Si	 Hi. Hence,
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the contragredient of r̂i must be equivalent to r̂i 
 iZ. Therefore, ~k
i � infðoiÞ~ is

equivalent to ðk
i � infðoiÞÞ 
 sZ and our assertion follows. &

LEMMA 9.2. Given any two special isomorphisms n1 and n2, there exists a character w
of R such that kn2i ¼ kn1i � w and w 
 iZ ¼ w1. Furthermore:

ðiÞ If fr ¼ 1, E=E
0 is ramified and nr1 is even then w2jR \H " 1.

ðiiÞ In all other cases, wjR \H " 1.

Proof. By definition, kn1i and kn2i coincide on R \ B1. Therefore, there exists a

character w of R which is trivial on R \ B1 and satisfies k
n2
i ¼ kn1i � w. By Lemma 9.1,

w 
 iZ ¼ w1.
Suppose fr > 1. Then R=ðR \ B1Þ ffi E=ð1þPEÞ. For each a 2 E	, we have

wðsðaÞÞ ¼ wðiZðaÞÞ
1
¼ wðaÞ. Therefore, since E	 \H is the unitary group Uð1;E=E 0Þ,

Hilbert’s Theorem 90 implies wjE	 \H " 1.

Now suppose that fr ¼ 1. There exists a character w0 of O
	

r1 which is trivial on

1þPr1 and is such that w is the inflation of w0 
 detr1 from B0;r1 to

R \ B ¼ B0;r1ðR \ B1Þ. The condition w 
 iZ ¼ w1 implies w0 
 s ¼ w0. Note that
detr1ðxÞ ¼ sðdetr1ðxÞÞ

1, for all x 2 B0;r1 \H. If E=E 0 is unramified, we apply

Hilbert’s Theorem 90 to kr1=k
0
r1 to deduce that wjB0;r1 \H " 1. Now suppose

E=E 0 is ramified. Then w0ðdetr1ðxÞÞ ¼ w0ðdetr1ðxÞÞ
1, for all x 2 B0;r1 \H, since w0

is trivial on 1þPr1 and s induces the identity map on kr1. In other words, we have
w
02jB0;r1 \H " 1. Since we may choose $r so that sð$rÞ ¼ $r, it follows that

wð1Þ ¼ 1. Thus w0ðð1Þnr1 Þ ¼ 1. If nr1 is odd this implies w0ð1Þ ¼ 1, which com-
pletes the proof. &

Recall that Pi is the stabilizer of W
þ
i in Si. The subgroup Mi of elements of Pi

which also stabilize W
i forms a Levi component of Pi. Suppose x 2 Ri \H.

Then, since x 2 E	B0;i \H ¼ B0;i \H, the operator AdðxÞ stabilizes

b‘i;i1 \ g?i \ h? and b‘i;i1 \ g?i \ h and, hence, xiðxÞ 2Mi. We may choose an

Fp-basis of Wþ
i which gives rise to an identification Wþ

i ffi F‘
p, where p2‘þ1 is

the order of Hi. We also obtain an identification Mi ffi GLð‘;FpÞ. There is a

unique character mi of Mi of order two. It corresponds to the character

g 7! ðdet gÞðp1Þ=2 of GLð‘;FpÞ under any isomorphism of Mi with GLð‘;FpÞ.

The following result involves the Weil representation constructed using the natural

special isomorphism:

LEMMA 9.3. If fi > 1, j 2 Vi, x 2 Ri \H and h 2 Hi, then

r̂\i ðxiðxÞÞjðhÞ ¼ miðxiðxÞÞjðxiðxÞ
1
� hÞ;

where the action of Si on Hi in the expression xiðxÞ
1
� h is defined relative to the nat-

ural special isomorphism. Furthermore, miðxiðxÞÞ ¼ 1, unless fr ¼ 1, E=E
0 is ramified

and nr1 is even.
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Proof. Choose j, x and h as in the hypothesis of the lemma. We will assume fi
is odd, since otherwise our claim is trivial. The stated formula for r̂\i ðxiðxÞÞjðhÞ
follows directly from the discussion in x 2 of [6]. (We should warn the reader that

in [6] the space Vi is replaced by the space of all functions onW
i . The identification

of Vi with the latter space is simply given by restricting functions on Hi to functions

on W
i .)

It remains to compute miðxiðxÞÞ. We first observe that xijB1;i " 1 and thus the
restriction of xi to Ri \H factors through the quotient group

B ¼ ðR \HÞ=ðR \H \ B1Þ ¼ ðRi \HÞ=ðRi \H \ B1Þ:

Moreover, if x 2 Ri \H then, viewing xiðxÞ as an element of Si, we note that

xiðxÞðW
þ
i Þ �Wþ

i and xiðxÞðW
i Þ �W

i . Therefore, x gives rise to a homomorphism
x0i : B!Mi. We must show that the quadratic character mi 
 x

0
i of B is trivial except

in the case in which fr ¼ 1, E=E
0 is ramified and nr1 is even.

If fi is even or if E=E
0 is ramified and fr > 1 then our assertion follows from

the fact that x0i itself is trivial. Another case which may be easily excluded is the
case in which E=E 0 is ramified and nr1 is odd. In this situation, we first observe

that mi 
 x
0
i is a quadratic character of an orthogonal group and, moreover, every

quadratic character of the orthogonal group is trivial on the special orthogonal

group. Furthermore, miðx
0
ð1ÞÞ ¼ 1, since x0ð1Þ ¼ 1, and our claim follows.

It remains to treat the case in which E=E 0 is unramified. We assume $r ¼ $0
r and,

in addition, if fr ¼ 1, we assume $r ¼ $r1 ¼ $0
r ¼ $0

r1. Let Z
0 ¼ $‘i

r Z. Since Z0

lies in E0	, it is an invertible Hermitian matrix and there is an associated unitary

group HZ0 with Lie algebra hZ0 . If sZ0 is the anti-involution of g given by

sZ0 ðxÞ ¼ Z0 x� Z
01 then the elements of HZ0 satisfy sZðhÞ ¼ h1 and the elements of hZ0

satisfy sZ0 ðxÞ ¼ x. There is a finite Lie group L with Lie algebra l defined by

L ¼ ðB0;i1 \HZ0 Þ=ðB1;i1 \HZ0 Þ;

l ¼ ðb0;i1 \ hZ0 Þ=ðb1;i1 \ hZ0 Þ:

The structure of L is partially described as follows. Note first that B0;i1=B1;i1 is iso-

morphic to a product of eðE=Ei1Þ copies of GLðfðE=Ei1Þ; ki1Þ. There is an auto-

morphism of order two defined on this group by iZðgÞ ¼ sZðgÞ
1 whose group of

fixed points is L. A given factor in the product decomposition of B0;i1=B1;i1 is

either paired with another factor by iZ or it is preserved by iZ. The group of iZ-fixed
points for each set of paired factors is isomorphic to GLð fðE=Ei1Þ; ki1Þ, while

the group of iZ-fixed points for each stable factor is isomorphic to

UðfðE=Ei1Þ; ki1=k
0
i1Þ. Therefore, L is isomorphic to a product of general linear

groups and unitary groups. What is most relevant for us is that L is the Fp-rational

points of a connected reductive group defined over Fp and l is its Lie algebra over Fp.

It is known that in such a situation if g 2 L then the determinant of AdðgÞ: l! l is
always 1.
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Now define

L0 ¼ B0;r1 \H; if fr ¼ 1;

and

L0 ¼ E	 \H ¼ Uð1;E=E 0Þ; if fr > 1:

Then L0 contains a set of coset representatives for B and L0 � B0;i1 \HZ0 . (To see

that L0 � B0;i1 \HZ0 when fr ¼ 1, use the fact that sZ ¼ sZ0 on gr1, since
$‘i

r 2 E 0
r1.) It follows that B may be regarded as a subgroup of L.

Next, we observe that, in fact, hZ0 ¼ $‘i
r h from which it follows that x 7! $‘i

r x

gives an isomorphism of l with l0 ¼ ðb‘i;i1 \ hÞ=ðbmi;i1 \ hÞ. Note that l decomposes
as l ¼ l1 � l2, with

l1 ¼ ðb0;i1 \ g?i \ hZ0 Þ=ðb1;i1 \ g?i \ hZ0 Þ;

l2 ¼ ðb0;i \ hZ0 Þ=ðb1;i \ hZ0 Þ;

and there is an analogous decomposition l0 ¼ l01 � l02. The summand l01 is just the
image of W

i under 1þ x 7! x. Let L2 ¼ ðB0;i \HZ0 Þ=ðB1;i \HZ0 Þ. Note that L
0 �

B0;i \HZ0 and therefore the elements of L
0 project to elements of L2, as well as L.

Returning to the task at hand, we need to compute miðxiðxÞÞ when x 2 L0. This

amounts to determining whether or not the determinant of AdðxÞ onWþ
i is a square.

If xþ 2 GLðW
þ
i Þ and x2 GLðW


i Þ are the linear transformations determined by the

adjoint action of x, then it is easy to see that det xþ ¼ det x
1
 . (See [6].) Therefore, it

suffices to compute detAdðxÞjl01. We have

detAdðxÞjl01 ¼
detAdðxÞjl0

detAdðxÞjl02
¼
detAdðxÞjl

detAdðxÞjl2
:

Here, the second equality follows from the fact that if j is the map from l0 to l given
by y 7! $‘i

r y then jðAdðxÞyÞ ¼ AdðxÞjðyÞ, since x 2 L0. By the argument given

above, we know that detAdðxÞjl ¼ 1. A similar argument also applies to l2 and
allows us to deduce our result. &

10. Invariant Linear Forms on the Space of ji when fi > 1

The purpose of this section is to prove the following proposition:

PROPOSITION 10.1. Assume fi > 1 and ki ¼ kni for some special isomorphism

n : Hi ! H

i . Then there exists a quadratic character Wi of R \H such that

HomR\Hðki; WiÞ ¼ HomBðyiÞ\Hðki; 1Þ

is the one-dimensional space spanned by the linear form liðjÞ ¼ jð1Þ. Moreover, Wi is
trivial unless fr ¼ 1, E=E

0 is ramified and nr1 is even.

Recall that a character w is said to be ‘quadratic’ if w2 ¼ 1. The proof of Proposi-
tion 10.1 uses two lemmas:
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LEMMA 10.2. Let G be a group and H the subgroup of fixed points of an auto-

morphism a of order two. Assume that A and B are a-stable subgroups of G such that

H1ðf1; ag;A \ BÞ ¼ 1, that is, the sets

Z1 ¼ fx 2 A \ B : aðxÞ ¼ x1g and B1 ¼ fz aðzÞ1 : z 2 A \ Bg

are identical. Then AB \H ¼ ðA \HÞðB \HÞ.

Proof. Under the stated assumptions, suppose that a 2 A, b 2 B and ab 2 H. Then

ab ¼ aðaÞaðbÞ implies a1aðaÞ ¼ b aðbÞ1 2 Z1. Therefore, there exists z 2 A \ B such

that a1aðaÞ ¼ z aðzÞ1. We now have ab ¼ ðazÞðz1bÞ, where az 2 A \H and

z1b 2 B \H. &

Suppose Ei : b‘i;i1! BðyiÞ is the Cayley transform defined by

EiðxÞ ¼ ð1þ x=2Þð1 x=2Þ1:

This map is bijective with inverse E1i ðyÞ ¼ 4 Eið2yÞ. We also observe that

EiðxÞ " 1þ x modulo b2‘i;i1. The Cayley transform commutes with the involution

sZðxÞ ¼ Z x� Z1 of g.

LEMMA 10.3. The Cayley transform Ei restricts to a bijection b‘i;i1 \ h ffi BðyiÞ \H.

Proof. Suppose x 2 b‘i;i1 \ h. Then sZðEiðxÞÞ ¼ EiðsZðxÞÞ ¼ EiðxÞ ¼ EiðxÞ
1. Thus

EiðxÞ 2 BðyiÞ \H. Similarly, one shows that if y 2 BðyiÞ then E1i ðyÞ 2 b‘i;i1 \ h. &

Proof of Proposition 10:1. Consider first the action of k\i on Vi. As before, we write

R ¼ Ri Ji R
0
i and note that each factor is stable under the automorphism iZðgÞ ¼

sZðgÞ
1. Applying Lemma 10.2, we see there is a corresponding decomposition of

R \H. Define a character of R \H by wðxyzÞ ¼ miðxiðxÞÞ, where x 2 Ri \H,

y 2 Ji \H and z 2 R0i \H. Since, up to scalar multiples, li is the unique nonzero
ðJi \HÞ-invariant linear form on Vi, it suffices to show that li is invariant under
R0i \H and transforms by w on Ri \H in order to prove our assertions for k\i .
To prove invariance under R0i \H, it suffices to show invariance under BðyjÞ \H

for each j < i, according to Lemma 10.2. So let us suppose that z 2 BðyjÞ \H. It

suffices to show that hci; z 1i ¼ 1. There must exist x 2 b‘j;j1 \ h such that

z ¼ EjðxÞ. Since z 1 " x modulo b2‘j;j1, we conclude that z 1 lies in

ðb‘j;j1 \ hÞ þ b2‘j;j1 � hþ bfi . Applying Lemma 8.1(iv), it now follows that li must
be invariant under R0i \H.

Next, we consider how li transforms under Ri \H. According to Lemma 9.3, we

have

liðk
\
i ðxÞjÞ ¼ liðoiðxÞ r̂

\
i ðxiðxÞÞjÞ ¼ oiðxÞ miðxiðxÞÞjð1Þ;

for all x 2 Ri \H. Therefore, it suffices to show that oi or, equivalently, yi 
 deti is
trivial on Ri \H. Recall that Z 2 E0	 and thus Z 2 Gi. Observe also that Ri \H is

contained in the group Hi ¼ Gi \H. The image of Hi under deti is contained in

Uð1;Ei=E
0
iÞ. Since yi is trivial on the latter group, our claims regarding k\i follow.
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To deduce what is asserted about kni , for arbitrary n, one can now simply apply

Lemma 9.2. &

11. Three Reductions of the Main Problem

The objective of this paper is to study the spaces HomHðp; 1Þ associated to the tame
supercuspidal representation p ¼ IndGRðkÞ. Towards this end, we discuss in this sec-
tion three reductions of the main problem. The first says that we are justified in

assuming that y0 ¼ 1. The second reduces our problem to the problem of looking

at the various spaces HomR\gHg1 ðk; 1Þ, as g varies over a set of representatives for
the double coset space RnG=H. The final reduction says that it suffices to look at

the double coset RH. We complete the third reduction step in the next section, where

we consider the case in which fr ¼ 1.

Recall that k ¼ k0 � � � � � kr, where k0 is the character of R given by y0 
 det. Let
kð0Þ ¼ k1 � � � � � kr.

LEMMA 11.1. HomHðInd
G
RðkÞ; 1Þ ffi HomHðInd

G
Rðk

ð0ÞÞ; 1Þ.

Proof. We have an isomorphism of IndGRðk
ð0ÞÞ � y0 with Ind

G
RðkÞ given by f 7! ~f,

where ~fðgÞ ¼ y0ðdet gÞ fðgÞ. Since y0 
 det is trivial on H, the identity map gives an

isomorphism between HomHðInd
G
Rðk

ð0ÞÞ � y0; 1Þ and HomHðInd
G
Rðk

ð0ÞÞ; 1Þ. Our claim

follows. &

In light of Lemma 11.1, we will assume y0 ¼ 1 for the rest of the paper. We now
state the second reduction step.

LEMMA 11.2. HomHðp; 1Þ ffi �g2RnG=HHomR\gHg1 ðk; 1Þ.
Proof. Let F be the G-module consisting of all functions f : G! V such that

fðhgÞ ¼ kðhÞfðgÞ, for all h 2 R and g 2 G, with the G-action given by g � fðg0Þ ¼ fðg0gÞ.

Let F c be the submodule of those f whose support has compact image in RnG. In

other words, F c is the representation space of p. Let F g;c be the submodule of f 2 F c

with support in RgH. There is a canonical isomorphism F c ffi �g2RnG=HF g;c which

maps f 2 F c to the collection of functions ðfgÞ, where fg is obtained by restricting f to

RgH and then setting fg " 0 outside of RgH. From this, we obtain an associated

canonical isomorphism

HomHðp; 1Þ ¼ HomHðF c; 1Þ ffi
M

g2RnG=H

HomHðF g;c; 1Þ

sending L to the collection of linear forms Lgðf Þ ¼ LðfgÞ. Next, we observe that
there is an isomorphism HomHðF g;c; 1Þ ffi HomR\gHg1ðk; 1Þ such that if L 2
HomHðF g;c; 1Þ corresponds to the linear form l 2 HomR\gHg1 ðk; 1Þ which satisfies

Lð fÞ ¼
X

h2ðg1Rg\HÞnH

lð fðghÞÞ:

We refer the reader to the proof of Lemma 7 in [8] for further details. &
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For the third reduction, we require the following notations. Given i 2 f1; . . . ;

r 1g, let yðiÞ ¼ yEiþ1 � � � y
E
r and let k

ðiÞ ¼ kiþ1 � � � � � kr denote the representation
of Ri ¼ E	BðyðiÞÞ on VðiÞ ¼ Viþ1 � � � � � Vr associated to yðiÞ. Let Hi ¼ H \ Gi and

let B0ðyÞ ¼ B0ðyrÞ � � �B0ðy1Þ, where B0ðyiÞ ¼ Bmi;i1.

LEMMA 11.3. Assume g 2 G and HomR\gHg1 ðk; 1Þ 6¼ 0. If fr > 1 then g 2 RH. If

r > 1 and fr ¼ 1 then g 2 RGr1H.

Lemma 11.3 will be strengthened in the next section by removing the technical

conditions which apply to the case of fr ¼ 1.

In spirit, the proof of Lemma 11.3 is similar to an induction on the length r of the

Howe factorization of y, where one verifies the cases of r ¼ 1 and r ¼ 2 separately to
begin the process. Briefly stated, the argument goes as follows. Assume r > 2. Sup-

pose g 2 G and l is a nonzero element of HomR\gHg1ðk; 1Þ. To show that g 2 RH,

we successively show that g lies in RG1H;RG2H; . . . ;RGr1H by repeatedly applying

the following lemma to k; kð1Þ; . . . ; kðr2Þ.

LEMMA 11.4. If f1 > 0, g 2 G and HomB0ðyÞ\gHg1 ðk; 1Þ 6¼ 0, then g 2 RG1H.

Lemma 11.4 will be proven at the end of this section. The following proof of

Lemma 11.3 relies on the validity of Lemma 11.4.

Proof of Lemma 11:3: Assume g 2 G is chosen so that HomR\gHg1 ðk; 1Þ is non-
zero. Since the space HomR\gHg1 ðk; 1Þ only depends on the double coset RgH which

g represents, we are free to replace g with another double coset representative when it

is convenient to do so. The assumption that HomR\gHg1 ðk; 1Þ is nonzero implies that
HomB0ðyÞ\gHg1 ðk; 1Þ is also nonzero. We are assuming that f1 > 1 and thus we may
apply Lemma 11.4 to deduce that g 2 RG1H. If r ¼ 1 then RG1H ¼ RH and we have

the desired result in this case.

Now assume r > 1. Since g 2 RG1H, we may assume g 2 G1. If f2 ¼ 1, we are

done, so we will assume f2 > 1. Suppose l is a nonzero element of HomB0ðyÞ\gHg1

ðk; 1Þ. Fix an elementary tensor v
1 � � � � � v
r which is not in the kernel of l. Define a
nonzero linear form lð1Þ 2 Homðkð1Þ; 1Þ on elementary tensors by

lð1Þðv2 � � � � � vrÞ ¼ lðv
1 � v2 � � � � � vrÞ:

We assert that lð1Þ is ðB0ðyð1ÞÞ \ gH1g
1Þ-invariant. Indeed, this will follow once

we show that k1jðB1;1 \ gH1g
1Þ " 1, since B0ðyð1ÞÞ � B1;1. Note that inf ðo1Þ ¼

o1 ¼ y1 
 det1 ¼ 1 on E	B0;1 \ gH1g
1, where the last equality follows from Hil-

bert’s Theorem 90. Therefore, k1 ¼ k
1 ¼ r̂1 
 x1 on E	B0;1 \ gH1g
1. Since B1;1 is

contained in the kernel of x1, we conclude that the restriction of k1 to

B1;1 \ gH1g
1 is a multiple of the trivial representation, as claimed.

At this point, we have shown that HomB0ðyð1ÞÞ\gH1g1
ðkð1Þ; 1Þ is nonzero. Since

f2 > 1, we may apply Lemma 11.4 to kð1Þ to see that g 2 RG2H. Thus we may assume

that g 2 G2. If r ¼ 2, we are done since then G2 ¼ E	 � RH. Otherwise, we continue
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to apply Lemma 11.4 repeatedly to kð2Þ; kð3Þ; . . . until we conclude g 2 RH or, if

fr ¼ 1, g 2 RGr1H. &

The rest of this section is devoted to the proof of Lemma 11.4. If fi > 1, then the

representation ki has the property that, on B0ðyiÞ � � �B0ðy1Þ, it is a multiple of the char-
acter defined by

1þ x 7! hci; xi; x 2 bmi;i1 þ � � � þ bm1;0:

If fr ¼ 1, then the restriction of kr to B0ðyÞ is a multiple of the trivial representation.
Define cð1Þ 2 E by

cð1Þ ¼
c2 þ � � � þ cr1; if fr ¼ 1;
0; if r ¼ 1;
c2 þ � � � þ cr; if r5 2 and fr > 1:

8<
:

If f1 > 1 then, since m15mi for 24 i4 r, it follows that the restriction of k to Bm1 is

a multiple of the character

1þ y 7! hc1 þ cð1Þ; yi; y 2 bm1 :

Therefore, if f1 > 1 then HomBm1
\gHg1 ðk; 1Þ is nonzero precisely when the latter

character is trivial on Bm1 \ gHg1. The next lemma translates this statement into

a geometric condition on the Lie algebra.

LEMMA11.5. If f1 > 1and HomBm1
\gHg1 ðk; 1Þ 6¼ 0; then c1 þ cð1Þ 2 b1m1 þ gh?g1.

Proof. Since b1m1 þ gh?g1 ¼ ðbm1 \ ghg1Þ?, it suffices to show that hc1þ

cð1Þ; zi ¼ 1, for all z 2 bm1 \ ghg1. In view of the remarks above, we know that hc1þ
cð1Þ; yi ¼ 1 whenever 1þ y 2 Bm1 \ gHg1. To make the transition from the algebra

bm1 to the group Bm1 , we again use the Cayley transform EðzÞ ¼ ð1þ z=2Þð1 z=2Þ1

as a substitute for the exponential map. Let aðzÞ ¼ ðgZg�Þz�ðgZg�Þ1. Then aðzÞ ¼ z
is the defining condition for ghg1 and aðyÞ ¼ y1 is the defining condition for

gHg1.

Suppose z 2 bm1 þ ghg1. Then

aðEðzÞÞ ¼ EðaðzÞÞ ¼ EðzÞ ¼ EðzÞ1.

Therefore, EðzÞ 2 Bm1 \ gHg1 and thus hc1 þ cð1Þ; EðzÞ  1i ¼ 1. Since c1 þ cð1Þ 2

P1f1 � b?f1 � b?2m1 and since EðzÞ " 1þ z modulo b2m1 , we have hc1 þ cð1Þ; zi ¼

hc1 þ cð1Þ; EðzÞ  1i ¼ 1. Our claim follows. &

LEMMA 11.6. If f1 > 1, then AdB‘1ðc1 þ cð1Þ þ b1;1m1 Þ ¼ c1 þ cð1Þ þ b1m1 .
Proof. By Lemma 6 of [15], we have

AdB‘1ðg1 þ b1;1m1Þ ¼ g1 þ b1m1 :

Our assertion is now a consequence of the fact that c1 þ cð1Þ 2 g1 þP2f1 . &
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LEMMA 11.7. If g 2 G and g sZðgÞ 2 Gi then g 2 GiH.

Proof. Let Z1 ¼ fg 2 Gi : g ¼ sZðgÞg and B1 ¼ fg sZðgÞ : g 2 Gig. From the theory

of Hermitian matrices over local fields, we know that an element of Z1 lies in B1

precisely when its discriminant is a norm. Now suppose g 2 G and g sZðgÞ 2 Gi. Then

g sZðgÞ is an element of Z1 whose discriminant is a norm. Thus g sZðgÞ ¼ g1 sZðg1Þ, for
some g1 2 Gi. Now g11 g ¼ sZðg11 gÞ implies g 2 g1H � GiH, which proves our

assertion. &

LEMMA 11.8. If f1 > 1 and c1 þ cð1Þ 2 b1m1;1 þ gh?g1 then g 2 G1H.

Proof. Let z 2 b1m1;1 and x 2 h? be such that c1 þ cð1Þ þ z ¼ gxg1. From

sZðc1 þ cð1ÞÞ ¼ c1 þ cð1Þ and sZðxÞ ¼ x, we see that

c1 þ cð1Þ þ z ¼ g sZðgÞ ðc1 þ cð1Þ þ sZðzÞÞ ðg sZðgÞÞ
1:

Note that c1 þ cð1Þ þ z 2 g1 þ b2f1;1. Similarly for c1 þ cð1Þ þ sZðzÞ. We can apply
Lemma 8 of [15] to conclude that g1 ¼ gsZðgÞ ðg1Þ ðg sZðgÞÞ

1. As g1 generates E1=F,
this condition is equivalent to g sZðgÞ 2 G1, that is, giðg1Þ 2 G1. Now applying

Lemma 11.7, we deduce g 2 G1H. &

Proof of Lemma 11:4. Assume f1 > 1 and HomB0ðyÞ\gHg1 ðk; 1Þ 6¼ 0. Then by
Lemma 11.5 and Lemma 11.6, there exists b 2 B‘1 such that c1 þ cð1Þ 2 b1;1m1þ
bgh?ðbgÞ1. By Lemma 11.8, bg 2 G1H. Hence, g 2 B‘1G1H � RG1H. &

12. The Case of fr ¼1

According to the strategy outlined in Section 11, the computation of the space

HomHðp; 1Þ of H-invariant linear forms associated to the supercuspidal representa-
tion p ¼ IndGRðkÞ reduces to a matter of computing the spaces HomR\gHg1ðk; 1Þ as g
ranges over a set of representatives for RnG=H. This section is devoted to demon-

strating that all double cosets other than RH are extraneous. We prove:

PROPOSITION 12.1. If g 2 G and HomR\gHg1 ðk; 1Þ 6¼ 0 then g 2 RH.

The proof appears at the end of the section after a substantial amount of prepara-

tion. When fr > 1 then assertion in Proposition 12.1 has been shown in Section 11 in

Lemma 11.3. Therefore, throughout this section we assume fr ¼ 1. There are

two cases which are considered separately: the case of r ¼ 1 and the case of r5 2.

In light of Lemma 11.3, when r5 2, it suffices to show that if g 2 Gr1 and

HomR\gHg1 ðk; 1Þ 6¼ 0 then gmust lie in RH. The cases r ¼ 1 and r5 2 will subdivide

further depending on the image of R \ gHg1 over the residue field. For most g, the

corresponding group over the residue field will be ‘superunipotent’ in the sense that it

contains the unipotent radical of a parabolic subgroup. If it is not superunipotent

and if g =2RH then it turns out that we obtain a symplectic group over the residue

field. The parallel roles played by unipotent radicals and symplectic groups is remi-

niscent of a similar phenomenon which links the theories of symplectic models

and Whittaker/Gelfand/Graev models. This phenomenon was first observed by
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Klyachko [21], in the context of finite fields, then studied by Heumos and Rallis [14]

over local fields and Jacquet and Rallis [18] over global fields.

Once Proposition 12.1 is established, it will remain to study the spaces

HomR\Hðk; 1Þ. In Section 13, we show that these spaces factor into spaces

HomR\Hðki; diÞ. When fi > 1, HomR\Hðki; diÞ has already been described in Proposi-
tion 10.1. A secondary focus of this section is to provide the analogue of Proposition

10.1 when fi ¼ 1.

Having described our objectives, let us now attend to the case of f1 ¼ 1. The main

results are taken from [9] with one enhancement which allows us to prove that the

dimension of HomHðp; 1Þ is one. The work in [9] draws on [8] as well as results of
Gow [7], Klyachko [21] and Lusztig [23] involving the representation theory of finite

groups of Lie type.

Recall that q0 and q00 are the orders of the residue fields k0 and k00 of F and F 0,

respectively. If F=F 0 is unramified, that is, if q0 ¼ q020, then GLðn; k0Þ contains the

standard unitary group Uðn; q0Þ. When F=F 0 is ramified, we will consider the stan-

dard orthogonal group Oðn; q0Þ and, when n is even, the orthogonal group

O0ðn; q0Þ associated to the diagonal matrix diag ð1; . . . ; 1; dÞ, where d is some fixed
nonsquare element of k0	0 . When F=F 0 is ramified and n is even, we also consider

the symplectic group Spðn; q0Þ. We will say that a subgroup of GLðn; k0Þ is superuni-

potent if it contains the unipotent radical of a proper parabolic subgroup of

GLðn; k0Þ. The significance of this notion is that when S is superunipotent and r
is an irreducible cuspidal representation of GLðn; k0Þ, then the space of p cannot con-
tain any nonzero vectors which are fixed by S.

When f1 ¼ 1, E=F must be unramified, y ¼ y1 and yjO	

E is the inflation of a char-

acter w of the multiplicative group of the residue field k1 of E. In addition,

y ¼ y0 
NE=E 0 for some quasicharacter y0 of E 0	 or, equivalently, y is trivial on
Uð1;E=E 0Þ. The group R ¼ E	B is generated by a prime element $0 of F and the

elements of B. Deligne–Lusztig’s construction associates to w a cuspidal representa-
tion ðr1;VÞ of GLðn; k0Þ which we sometimes view as a representation of B via the
isomorphism B=B1 ffi GLðn; k0Þ. The representation k of R on V is defined by

kð$jbÞ ¼ yð$Þjr1ðbÞ, for all j 2 Z and b 2 B. Suppose we are given g 2 G. The deter-

minant of any element of gHg1 has modulus one and thus R \ gHg1 ¼ B \ gHg1.

If Ug is the image of B \ gHg1 in GLðn; qÞ under the isomorphism

B=B1 ffi GLðn; k0Þ, then HomR\gHg1 ðk; 1Þ ¼ HomUg
ðr1; 1Þ and

HomHðp; 1Þ ffi
Y

g2RnG=H

HomUg
ðr1; 1Þ:

PROPOSITION 12.2. Assume f1 ¼ 1.

ð1Þ dimHomHðp; 1Þ ¼ 1.
ð2Þ Suppose F=F 0 is unramified. Then n must be odd. If g 2 RH, then Ug is conjugate

to Uðn; q0Þ and dimHomUg
ðr1; 1Þ ¼ 1. Otherwise, if g 2 G RH, then Ug is

superunipotent and HomUg
ðr1; 1Þ ¼ 0.

232 JEFFREY HAKIM AND FIONA MURNAGHAN

https://doi.org/10.1023/A:1019667617221 Published online by Cambridge University Press

https://doi.org/10.1023/A:1019667617221


ð3Þ Suppose F=F 0 is ramified. If g 2 RH then Ug is conjugate to Oðn; q0Þ unless n is

even and det Z 2 F0	 NF=F 0 ðF
	Þ, in which case Ug is conjugate to O0ðn; q0Þ. In

either of these cases, dimHomUg
ðr1; 1Þ ¼ 1. If g 2 G RH, then Ug is either

superunipotent or conjugate to Spðn; q0Þ, if n is even. In these cases,

HomUg
ðr1; 1Þ ¼ 0.

Proof. It follows from Lemma 6.2 that if F=F 0 is unramified n must be odd.

Combining this observation with Theorem 1 of [9] proves that dimHomHðp; 1Þ4 1.

Now suppose F=F 0 is unramified. To deduce (1) in this case as well as (2), one applies

Lemmas 4 and 5 of [9] together with Theorem 2.4 of [7]. In applying Gow’s Theorem

2.4, one first observes that the character of r1 is Galois invariant and thus, according
to Gow’s result, r1 embeds uniquely in the representation of GLðn; k0Þ induced from
the trivial representation of U1. Then Frobenius reciprocity implies that the

dimension of HomU1 ðr1; 1Þ is one. The remaining assertions regarding the case in
which F=F 0 is ramified follow from Theorems 1 and 2 of [8]. &

For the remainder of the section, assume r > 1 and fr ¼ 1. We need the following

analogue of Proposition 10.1:

PROPOSITION 12.3. Assume r > 1 and fr ¼ 1 and let Wr ¼
Qr1

i¼1 Wi, with Wi chosen as

in Proposition 10.1. Then the spaces HomR\Hðkr; WrÞ and HomB0;r1\Hðkr; 1Þ are

identical and have dimension one.

Proof.When Wr ¼ 1, the proof of our assertions is identical to the proof of (2) and
(3) of Proposition 12.2. Therefore, we may as well assume that Wr 6¼ 1. Hence, E=E 0

is ramified and nr1 is even. Recall from Section 9, that B ¼ ðR \HÞ=ðR \H \ B1Þ is

isomorphic to a certain orthogonal group Oð~Z; kr1Þ in G ¼ ðR \ BÞ=ðR \ B1Þ ffi

GLðnr1; kr1Þ. The character Wr may be regarded as a character of B. In fact, it must
be the character which is 1 on the special orthogonal group and 1 on its comple-

ment, since this is the unique nontrivial quadratic character of B. We have
HomR\Hðkr; WrÞ ¼ HomBðrr; WrÞ ¼ HomBðrr � Wr; 1Þ

and, since nr1 is even, Wrð1Þ ¼ 1. Now, the representation rr � Wr is an irreducible
cuspidal representation whose central character is trivial at 1. Therefore, Theorem

2 of [8] implies dimHomBðrr � Wr; 1Þ ¼ 1. &

Our next task is to recall from [9] the Jacobowitz/O’Meara description of the dou-

ble coset space B0;r1nGr1=Hr1. Actually, the double coset space Rr1nGr1=Hr1 is

more directly relevant to the problems we are studying, however, we save some effort

by being consistent with [16] and [9] and working with B0;r1nGr1=Hr1 instead. As

fr ¼ 1, both E=Er1 and E 0=E 0
r1 must be unramified according to Lemma 6.2 (ii)

and, therefore, we can apply Lemma 2.3 to arrange that the embedding of E

in gr1 is associated to an integral basis of E=Er1. It follows that B0;r1 ¼

GLðnr1;Or1Þ. This will allow us to describe the double coset space B0;r1nGr1=

Hr1 exactly as in [9].
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Let A be the set of sequences a ¼ ða1; . . . ; amÞ with ai ¼ ðai; bi; EiÞ satisfying the
following properties:

ðiÞ a1 > � � � > am is a decreasing sequence of integers.

ðiiÞ b1 þ � � � þ bm ¼ nr1 is a partition of nr1 by positive integers.

ðiiiÞ If E=E 0 is unramified then Ei ¼ 1.
ðivÞ If E=E 0 is ramified and ai is odd then bi must be even and Ei ¼ 1.
ðvÞ If E=E 0 is ramified and ai is even then Ei 2 f1; dg, where d is some fixed unit in

E 0
r1 whose image in the residue field of E

0
r1 is a nonsquare.

Assume $r1 2 E 0
r1, if E=E

0 is unramified, and $2
r1 2 E 0

r1, if E=E
0 is ramified.

Given a ¼ ða1; . . . ; amÞ 2 A, let ‘ðaÞ ¼ m, and for each index i define a Hermitian

matrix $ai 2 GLðbi;Er1Þ as follows:

ðaÞ If E=E 0 is unramified then $ai ¼ $ai
r11bi .

ðbÞ If E=E 0 is ramified and ai is odd then $ai ¼ $ai
r1

��
0 1
1 0

�
� � � � �

��
0 1
1 0

��
.

ðcÞ If E=E 0 is ramified and ai is even then $ai ¼ $ai
r1ð1� � � � � 1� EiÞ.

Here, if X and Y are square matrices, X� Y denotes the square matrix which, in

block form, is written as
�
X 0
0 Y

�
. Given a 2 A, define a Hermitian matrix by

$a ¼ $a1 � � � � �$am

and let

Ha ¼ fg 2 Gr1 : g$
ag� ¼ $ag:

The following result is due to Jacobowitz [16]. It describes the orbits of the action of

B0;r1 on the space X ¼ fx 2 Gr1 : x
� ¼ xg, where the action is given by

b � x ¼ bxb�.

LEMMA 12.4. Assume fr ¼ 1. The set f$
a : a 2 Ag is a set of representatives for the

B0;r1-orbits in X .

Consider now the action of Gr1 on X by g � x ¼ gxg�. For this action, there are

two orbits. The orbit of a given x 2 X is determined by the class of detr1ðxÞ in

E 0	
r1=NEr1=E 0

r1
ðE	r1Þ. Let XZ be the Gr1-orbit of Z and let AZ ¼ fa 2 A :

$a 2 X Zg. For each a 2 AZ, assume we have fixed ga 2 Gr1 such that gaZg�a ¼ $a.

COROLLARY 12.5. The set fga : a 2 AZg is a set of representatives for the double

coset space B0;r1nGr1=Hr1.

Proof. The map g 7! gZg� gives a bijection between Gr1=Hr1 and X Z. This map

is B0;r1-equivariant, where B0;r1 acts by left translations on Gr1=Hr1 and by

b � x ¼ bxb� on X Z. Therefore, we obtain a bijection between B0;r1nGr1=Hr1 and

the set of B0;r1-orbits in X Z. We see that the set fga : a 2 AZg is a set of repre-

sentatives for the double coset space B0;r1nGr1=Hr1. Applying Lemma 12.4 now

finishes the proof. &
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We return now to the proof of Proposition 12.1. We are reduced to considering the

case in which r5 2 and fr ¼ 1. Moreover, we only need to show that if g 2 Gr1

Rr1Hr1 then HomRr2\gHg1 ðk; 1Þ ¼ 0. Corollary 12.5 allows us to assume that
g ¼ ga, for some a 2 AZ.

LEMMA 12.6. If a 2 AZ, ga 2 Gr1  Rr1Hr1 and ‘ðaÞ ¼ 1, then E=E 0 is ramified,

nr1 is even and $a ¼ $a
r1

��
0 1
1 0

�
� � � � �

�
0 1
1 0

��
for some odd integer a.

Proof. Assume ‘ðaÞ ¼ 1. Suppose E=E 0 is unramified. Then, according to the

Assumption in Section 3, either Z ¼ 1 or Z ¼ $0
r1. On the other hand, $

a ¼ $a
r1,

for some integer a. Using the Rr1-equivariant bijection g 7! gZg� between

Gr1=Hr1 and X Z, we see that ga 2 Rr1Hr1 precisely when $a ¼ gaZg�a is in the
Rr1-orbit of Z. But we have $s

r1Zð$
s
r1Þ

�
¼ $a, where s is the least integer greater

than or equal to a=2. Therefore, if E=E 0 is unramified and ‘ðaÞ ¼ 1 then

Rr1gaHr1 ¼ Rr1Hr1.

Now suppose E=E 0 is ramified. Let say that $a is of symplectic type if it has the

form

$a
r1

0 1
1 0

� �
� � � � �

0 1
1 0

� �� �

for some odd integer a. According to the Assumption in Section 3, either Z ¼ 1 or Z
is a nonsquare root of unity. It follows from the odd parity of a in the definition of

symplectic type that Z cannot lie in the Rr1-orbit of a matrix of symplectic type.

Now assume we have fixed $a with ‘ðaÞ ¼ 1 which is not of symplectic type. We
must show that ga 2 Rr1Hr1 or, equivalently, $

a lies in the Rr1-orbit of Z.
According to Lemma 12.4, the B0;r1-orbits of Z and $a must contain either 1 or

1� � � � � 1� d. Since detr1 Z ¼ detr1$a, either both Z and $a lie in the B0;r1-

orbit of 1 or they both lie in the orbit of 1� � � � � 1� d. In either case, our assertion
follows. &

Assume a 2 AZ and ‘ðaÞ > 1. We will associate to a a group Na which is the uni-

potent radical of a maximal parabolic subgroup of G and then we expose an intimate

relationship between Na and Ha. This is used to correlate Ha-invariant linear forms

with Na-invariant linear forms. Arguing that the existence of nonzero Na-invariant

linear forms contradicts the supercuspidality of k, we are able to rule out the exis-
tence of nonzero Ha-invariant linear forms when ‘ðaÞ > 1.
The exact definition of Na is as follows. Let

n1 ¼ bm ½Er1 : F� and n2 ¼ ðnr1  bmÞ ½Er1 : F�:

Then Na consists of the matrices in G with block matrix form
�
1n2 0
u 1n1

�
, where u is a

n1 	 n2 matrix with entries in F. Let na be the Lie algebra of Na, that is,

Na ¼ 1þ na. Note that na � E?r1:

We associate to each y ¼
�
0 0
u 0

�
2 na an element ŷ ¼ y$ay�ð$aÞ

� in the Lie algebra
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ha ¼ gahg
1
a ¼ fz 2 g : $az�ð$aÞ

1
¼ zg

of Ha. The map y 2 na 7! ŷ 2 ha has a number of interesting properties which are
summarized in the following lemma:

LEMMA 12.7. Assume fr ¼ 1, a 2 AZ and ‘ðaÞ > 1.

ð1Þ If y 2 na then

y ŷ ¼ $ay�ð$aÞ
1
¼

0 $a0u�ð$am Þ
1

0 0

� �
2 n�a;

where a0 ¼ ða1; . . . ; am1Þ.
ð2Þ If y 2 na \ bj then ŷ 2 ha \ bj and y ŷ 2 n�a \ bjþ1.
ð3Þ If y 2 na \ g?i then ŷ 2 ha \ g?i .
ð4Þ If 14 i4 r 1 and 1þ y 2 Na \ Ji then 1þ ŷ 2 Ha \ Ji and ð1þ yÞ ð1þ ŷÞ1 2

J00i .

Proof. The verifications of all of the above assertions are straightforward, except

for (2) which follows from the identity y ŷ ¼ $am1am
r1 g1y

�g2, where

g1 ¼
$am1

r1 $a0 0

0 1bm

 !
;

g2 ¼
1b0m 0

0 $am
r1ð$

amÞ
1

 !
2 B0;r1 ¼ GLðnr1;Or1Þ: &

LEMMA 12.8. R \Na ¼ ðB0;r1 \NaÞðJr1 \NaÞ � � � ðJ1 \NaÞ.

Proof. If i 2 f1; . . . ; rg then the identity

gi1 ¼ glðni; glð½Ei : Ei1�;Ei1ÞÞ

allows us to view the elements of gi1 as block matrices. It is then evident that we
have the decomposition gi1 ¼ gi � ðgi1 \ g?i Þ. Applying this repeatedly, we obtain

g ¼ g?1 � ðg1 \ g?2 Þ � � � � � gr1: ð�Þ

We can express each x 2 g as x ¼ x0 þ � � � þ xr1 according to this decomposition.

Since na is defined in a way which respects the various block matrix decompositions,

we know that if x 2 na then all of the components x0; . . . ; xr1 will also lie in na.

Next, we observe that b‘iþ1;i ¼ b‘iþ1;iþ1 � ðb‘iþ1;i \ g?iþ1Þ, whenever i ¼ 0; . . . ; r 1,
and R \ B � b0;r1 þ b‘r1;r2 þ � � � þ b‘1;0. Combining these two facts, yields

R \ B � b0;r1 þ ðb‘r1;r2 \ g?r1Þ þ � � � þ ðb‘1;0 \ g?1 Þ: ð��Þ

Now suppose y ¼ 1þ x 2 Na \ R ¼ Na \ R \ B. Using Equation ð��Þ, we obtain

an expression y ¼ y0 þ � � � þ yr1, where yr1 2 b0;r1 and, otherwise, yi 2 b‘iþ1;i
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\g?iþ1. The element x has a similar decomposition x ¼ x0 þ � � � þ xr1, with

x0 ¼ y0  1 2 b0;r1 and, otherwise, xi ¼ yi 2 b‘iþ1;i \ g?iþ1. This decomposition of x
must be identical to the decomposition in Equation ð�Þ, according to the uniqueness

of the latter decomposition. Therefore, xr1 2 na \ b0;r1 and, for i 6¼ r 1, we have

xi 2 na \ b‘iþ1;i \ g?iþ1. This implies:

1þ x ¼ 1þ x0 þ � � � þ xr1 ¼ ð1þ x0Þ � � � ð1þ xr1Þ

2 ðNa \ J1Þ � � � ðNa \ Jr1ÞðNa \ B0;r1Þ

and our claim follows. (Note that if 1þ u; 1þ v 2 Na then we have ð1þ uÞ

ð1þ vÞ ¼ 1þ uþ v, using block matrix multiplication or the fact that Na is the uni-

potent radical of a maximal parabolic subgroup of G.) &

LEMMA 12.9. If i and j are distinct integers with 14 i4 r 1 and 14 j4 r then the

restricted representations kjjHa \ Ji and kjjNa \ Ji are multiples of the trivial repre-

sentations of Ha \ Ji and Na \ Ji.

Proof. If j ¼ r we have krjJi " 1, since Ji � B1. So let us assume j 6¼ r. Suppose

j > i. Then kjjJi is a multiple of the character of Ji defined by x 7! hcj; xi. Since

cj 2 E 0
r1 and na � E?r1, we have kjjNa \ Ji " 1. On the other hand, from Lemma

8.1 (v) we have cj 2 ðha þ bfjÞ
?
\ E and, since Ha \ Ji � Eiðha \ b‘i;i1Þ � 1þ ðha\

b‘i;i1Þ þ b2‘i;i1 � ha þ bfj , it follows that kjjHa \ Ji " 1. Suppose now that j < i.

Then kjjJi is a multiple of yj 
 detj. Since detjðNa \ JiÞ ¼ 1, we have kjjNa \ Ji " 1

and, since detjðHa \ JiÞ � Uð1;Ej=E
0
jÞ, we have kjjHa \ Ji " 1.

LEMMA 12.10. If ‘ðaÞ > 1 then HomHa\Rðk; 1Þ � HomNa\Rðk; 1Þ.
Proof. Suppose l 2 HomHa\Rðk; 1Þ. We need to show that l 2 HomNa\Rðk; 1Þ.

According to Lemma 12.8, it suffices to show that l is invariant under Na \ B0;r1
and Na \ Ji, for 14 i4 r 1. Fix x 2 Na \ B0;r1. Proposition 2 of [9] implies that:

Na \ B0;r1 � ðHa \ B0;r1ÞB1;r1:

Thus we may choose x0 2 Ha \ B0;r1 so that x 2 x0B1;r1. Since krjB1;r1 " 1, we
have krðxÞ ¼ krðx0Þ. On the other hand, if j 6¼ r then kjðxÞ ¼ r̂jðxjðxÞÞ ¼
r̂jðxjðx

0ÞÞ ¼ kjðx0Þ, where r̂j is the Weil representation defined in Section 8. Therefore,
kðxÞ ¼ kðx0Þ, from which it follows that if l is invariant under Ha \ B0;r1 it must

also be invariant under Na \ B0;r1. Now suppose 14 i4 r 1 and fix

x 2 Ha \ Ji. According to Lemma 12.7, we may choose x0 2 Ha \ Ji such that

x 2 x0J00i . We have kiðxÞ ¼ kiðx0Þ and, furthermore, Lemma 12.9 implies kjðxÞ ¼
kjðx0Þ ¼ 1, when j 6¼ i. Again, we have kðxÞ ¼ kðx0Þ. Thus l must be invariant under
Na \ Ji. &

LEMMA 12.11. If ‘ðaÞ > 1 then HomHa\Rðk; 1Þ ¼ 0.
Proof. Suppose HomHa\Rðk; 1Þ 6¼ 0. According to Lemma 12.10, this implies that

HomNa\Rðk; 1Þ 6¼ 0. Choose a nonzero linear form l 2 HomNa\Rðk; 1Þ. Define a
linear form on the space of p ¼ IndGRðkÞ by
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LðfÞ ¼
X

x2ðNa\RÞnNa

lð fðxÞÞ:

Then since L 2 HomNaðp; 1Þ it must factor through the Jacquet module of p associ-
ated to Na. Supercuspidality implies that the Jacquet module is zero and thus L ¼ 0.
On the other hand, we can show also that L is nonzero as follows. Choose v 2 V such

that lðvÞ 6¼ 0. Define f by fðgÞ ¼ kðgÞv, when g 2 R, and fðgÞ ¼ 0 when g 2 G R.

Then LðfÞ ¼ lðvÞ 6¼ 0. Our assertion follows from this contradiction. &

The following is a modification of Proposition 10.1:

LEMMA 12.12. Assume fr ¼ 1, E=E
0 is ramified and nr1 is even. Suppose a 2 AZ is

such that

$a ¼ $a
r1

0 1
1 0

� �
� � � � �

0 1
1 0

� �� �
2 Gr1;

ðwith nr1=2 summandsÞ for some odd integer a. If i 2 f1; . . . ; r 1g and ki ¼ kni for

some special isomorphism n thenHomJi\Haðki; 1Þ ¼ HomJi\Ha ðri; 1Þ has dimension one.

Proof. Under the stated hypotheses, let Wþ
ia and W

ia be defined by analogy

with Wþ
i and W

i , replacing h by ha ¼ gahg1a . It follows from Lemma 8.1(v)

that ci 2 E 0 ¼ Er1 \ ha. Using this fact and imitating the proof of Lemma 8.2,
we deduce that Wþ

ia and W
ia form a polarization of Wi. By definition,

HomJi\Haðki; 1Þ ¼ HomJi\Haðri; 1Þ. Using a Cayley transform, as in Lemma 10.3,
we see that HomJi\Haðri; 1Þ ¼ HomW

ia
ðri; 1Þ. Our claim now is a consequence of

Proposition 7.2. &

LEMMA 12.13. Under the hypotheses of Lemma 12.12, HomR\Haðk; 1Þ ¼ 0, regard-
less of which special isomorphisms are chosen to define k1; . . . ; kr1.

Proof. According to Lemma 12.12, we may fix for each i 2 f1; . . . ; r 1g a non-

zero linear form mi 2 HomJi\Haðki; 1Þ and, up to scalar multiples, these choices are
unique. Now define a representation rðrÞ of the group JðrÞ ¼ J1 � � � Jr1 on the space

VðrÞ ¼ V1 � � � � � Vr1 by restricting k1 � � � � � kr1 to JðrÞ. We claim that every

ðJðrÞ \HaÞ-invariant linear form on VðrÞ is a multiple of the linear form given on

elementary tensors by

mðrÞðv1 � � � � � vr1Þ ¼ m1ðv1Þ � � � mr1ðvr1Þ:

For r ¼ 2, this is obvious. For r > 2, we use induction on r and argue as follows. Let

m0 be a nonzero ðJðrÞ \HaÞ-invariant linear form on VðrÞ. For each v1 2 V1, define a

linear form m0v1 on V
ð1Þ
ðrÞ ¼ V2 � � � � � Vr1 by

m0v1ðv2 � � � � � vr1Þ ¼ m0ðv1 � � � � � vr1Þ:

Let J
ð1Þ
ðrÞ ¼ J2 � � � Jr1 and define a representation rð1Þ

ðrÞ of J
ð1Þ
ðrÞ on V

ð1Þ
ðrÞ by restricting

k2 � � � � � kr1 to J
ð1Þ
ðrÞ . Note that v1 is ðJ

ð1Þ
ðrÞ \HaÞ-fixed, since J

ð1Þ
ðrÞ \Ha � B1 and

y1 
 det1 is trivial on J
ð1Þ
ðrÞ \Ha. It follows that m0v1 2 HomJ

ð1Þ

ðrÞ
\Ha
ðrðrÞ; 1Þ. By induction,

there must exist a constant cðv1Þ such that
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m0v1ðv2 � � � � � vr1Þ ¼ cðv1Þ m2ðv2Þ � � � mr1ðvr1Þ:

In fact, as v1 varies cðv1Þ defines a linear form on V1.

Note that rð1Þ
ðrÞ is a multiple of the character 1þ x 7! hc

ð1Þ
ðrÞ ; xi on J1, where

c
ð1Þ
ðrÞ ¼ c2 þ � � � þ cr1. Lemma 8.1(v) implies c

ð1Þ
ðrÞ 2 E 0

r1 ¼ Er1 \ ha. Using a Cayley
transform, as in Lemma 10.3, one deduces that rð1Þ

ðrÞ jJ1 \Ha " 1. Therefore, if

x 2 J1 \Ha, then

cðr1ðxÞv1Þm2ðv2Þ � � � mr1ðvr1Þ ¼ m0ððr1ðxÞv1Þ � v2 � � � � � vr1Þ

¼ m0ððk1ðxÞv1Þ � � � � � ðkr1ðxÞvr1ÞÞ

¼ m0ðv1 � � � � � vr1Þ

¼ cðv1Þ m2ðv2Þ � � � mr1ðvr1Þ:

It follows that c 2 HomJ1\Haðr1; 1Þ and thus is a multiple of m1. We have now shown,
as we claimed above, that every ðJðrÞ \HaÞ-invariant linear form on VðrÞ is a multiple

of mðrÞ.
Now suppose m 2 HomR\Haðk; 1Þ is nonzero. For each vr 2 Vr, let mvr be the linear

form on VðrÞ given by mvr ðv1 � � � � � vr1Þ ¼ mðv1 � � � � � vrÞ. Since ðJðrÞ \HaÞ � B1,

the element vr is fixed by JðrÞ \Ha. Therefore, mvr is ðJðrÞ \HaÞ-invariant and there-

fore is a multiple of mðrÞ. Say mvr¼ mrðvrÞ mðrÞ, for some constant mrðvrÞ. Then mr is a
linear form on Vr. Since m is nonzero, we may choose v1 2 V1; . . . ; vr 2 Vr such that

miðviÞ 6¼ 0, for all indices i. Suppose x 2 B0;r1 \Ha. We have

m1ðv1Þ � � � mrðvrÞ ¼ mðv1 � � � � � vrÞ

¼ mððk1ðxÞv1Þ � � � � � ðkrðxÞvrÞÞ

¼ m1ðk1ðxÞv1Þ � � � mrðkrðxÞvrÞ:

Note that we must have miðkiðxÞviÞ 6¼ 0, for all i and thus we may define

wðxÞ ¼
m1ðv1Þ � � � mr1ðvr1Þ

m1ðk1ðxÞv1Þ � � �mr1ðkr1ðxÞvr1Þ
¼

mrðkrðxÞvrÞ
mrðvrÞ

:

As the notation suggests, wðxÞ depends on x, but does not depend on v1; . . . ; vr. The

relation mrðkrðxÞvrÞ ¼ wðxÞ mrðvrÞ implies that w is a character of B0;r1 \Ha. In fact,

since krjB1;r1 \Ha is a multiple of the trivial representation, w may be viewed as a
character of the finite symplectic group Ba ¼ ðB0;r1 \HaÞ=ðB1;r1 \HaÞ. Therefore,

w is trivial and so mr must be a nonzero element of HomB0;r1\Haðkr; 1Þ. The latter
space is identical to HomBa ðrr; 1Þ, where rr is the cuspidal representation of

G ¼ B0;r1=B1;r1 ffi GLðnr1; kr1Þ associated to kr. Since rr is cuspidal, it must have
a Gelfand–Graev model, that is, an embedding in IndGN ðcÞ, where N is the unipotent

radical of a Borel subgroup of G and c is a nondegenerate character. Theorem A of
[21] now implies that rr cannot have an embedding in Ind

G
Ba
ð1Þ. But Frobenius reci-

procity implies

HomGðrr; Ind
G
Ba
ð1ÞÞ ffi HomBa ðrr; 1Þ:
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Therefore, we deduce that HomBa ðrr; 1Þ ¼ 0, which contradicts the fact that

mr 2 HomBa ðrr; 1Þ is nonzero. &

Proof of Proposition 12:1: As observed in the remarks at the beginning of this

section, we are reduced to showing that if g 2 Gr1 and HomR\gHg1 ðk; 1Þ 6¼ 0 then g

must lie in RH. According to Lemma 12.4, we may assume g ¼ ga for some a 2 AZ.

But Lemma 12.6 says that if a 2 AZ and ga =2Rr1Hr1 then either ‘ðaÞ > 1 or
‘ðaÞ ¼ 1, E=E 0 is ramified, nr1 is even and $

a ¼ $a
r1

�
0 1
1 0

�
� � � � �

�
0 1
1 0

��
for some

odd integer a. In the former case, we apply Lemma 12.11 and in the latter case we

apply Lemma 12.13. &

13. Factorization of Linear Forms

At this point, the proof of Theorem 3.3 has been reduced to the task of proving that

HomR\Hðk; 1Þ has dimension one. In view of Propositions 10.1 and 12.2, we may
assume r > 1. Our argument involves an induction on the length of the Howe factor-

ization of y. In particular, we use the fact that yð1Þ ¼ yE1 � � � y
E
r1 is a quasicharacter of

E	 which is admissible over E1 and has a shorter Howe factorization than that of y.
Most of the main ideas used in this section are already evident in the proof of

Lemma 12.13. It should be understood in this section that we have fixed, once

and for all, our choices of special isomorphisms. None of the arguments will depend

on these choices. Note that the choice of special isomorphism used to define a given

ki does not affect the definition of the representation space Vi, viewed as a set and

not as an R-module. However, it may affect the character Wi occurring in Proposition
10.1. Nonetheless, it turns out that for all a 2 AZ the space HomR\Ha ðk; 1Þ does not
depend on the choices of special isomorphisms. When ga =2RH, this results from

Lemma 12.11 and Lemma 12.13 which establish that HomR\Ha ðk; 1Þ vanishes. When
ga 2 RH, we may as well assume ga ¼ 1 and thus Ha ¼ H. The main result of this

section, Proposition 13.1, gives a description of HomR\Hðk; 1Þ which is independent
of the choices of special isomorphisms.

Let us make the following definitions:

kð1Þ ¼ k2 � � � � � kr; Rð1Þ ¼ E	Bðyð1ÞÞ; Vð1Þ ¼ V2 � � � � � Vr:

For each i with fi > 1, we have defined a linear form li on Vi by liðjÞ ¼ jð1Þ and
we have shown that li generates the one-dimensional spaces HomR\Hðki; WiÞ ¼
HomBðyiÞ\Hðki; 1Þ. (See Proposition 7.2, Section 8 and Proposition 10.1.) When fi is

even then Vi ¼ C and li is just the identity map on C. When fi ¼ 1, and thus

i ¼ r, fix a nonzero element

lr 2 HomR\Hðkr; WrÞ ¼ HomB0;r1\Hðkr; 1Þ;

where Wr ¼
Qr1

i¼1 Wi, where Wi is chosen as in Proposition 10.1. According to Propo-
sition 12.3, such a linear form lr exists and is unique up to scalar multiples. Note
that, for general i 2 f1 . . . ; rg, if Wi is nontrivial then the identity HomR\Hðki; WiÞ ¼
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HomBðyiÞ\Hðki; 1Þ implies that HomR\Hðki; 1Þ ¼ 0, as HomR\Hðki; 1Þ �
HomBðyiÞ\Hðki; 1Þ and HomBðyiÞ\Hðki; 1Þ has dimension one.

PROPOSITION 13.1. The spaces HomR\Hðk; 1Þ and HomBðyÞ\Hðk; 1Þ are identical

and have dimension 1. Given l 2 HomBðyÞ\Hðk; 1Þ, there exists a constant c such that

lðv1 � � � � � vrÞ ¼ c l1ðv1Þ � � � lrðvrÞ;

for all v1 2 V1; . . . ; vr 2 Vr.

Proof. Fix l 2 HomBðyÞ\Hðk; 1Þ. It suffices to show that l has the desired

factorization, since it will then follow that l is ðR \HÞ-invariant. (Note that

li 2 HomR\Hðki; WiÞ implies that l 2 HomR\Hðk; 1Þ, since
Qr

i¼1 Wi ¼ 1.) We will prove
this by induction on r. The case of r ¼ 1 is established in Proposition 10.1 and

Proposition 12.2. Therefore, we assume r > 1. Assume, in addition, that l is nonzero.
Let us consider first the case in which fr > 1. Note that the characters Wi in Propo-

sition 10.11 are all trivial in this case. Given v1 2 V1, define a linear form lð1Þv1
on Vð1Þ

by the condition lð1Þv1
ðv2 � � � � � vrÞ ¼ lðv1 � � � � � vrÞ on elementary tensors. Since

Bðyð1ÞÞ � B1 and y1 
 det1 is trivial on B1 \H, it must be that v1 is ðBðy
ð1Þ
Þ \HÞ-fixed.

Consequently, the linear form lð1Þv1
must lie in HomBðyð1ÞÞ\Hðk

ð1Þ; 1Þ. From the induc-

tive assumption, there exists a constant cðv1Þ such that

lð1Þv1
ðv2 � � � � � vrÞ ¼ cðv1Þ l2ðv2Þ � � � lrðvrÞ:

Clearly, c is a linear form on V1. If x 2 B‘1 \H, then kð1ÞðxÞ acts trivially on Vð1Þ,

since cð1Þ ¼ c2 þ � � � þ cr 2 h? and kð1Þ is a multiple of the character 1þ x 7! hci; xi

on B‘1 . Hence,

cðk1ðxÞv1Þ l2ðv2Þ � � � lrðvrÞ ¼ lððk1ðxÞv1Þ � v2 � � � � � vrÞ

¼ lððk1ðxÞv1Þ � � � � � ðkrðxÞvrÞÞ

¼ lðv1 � � � � � vrÞ

¼ cðv1Þ l2ðv2Þ � � � lrðvrÞ:

Therefore, c 2 HomB‘1
\Hðk1; 1Þ and thus c is a multiple of l1. Our claim now follows

in the case fr > 1.

Now assume fr ¼ 1. Let kðrÞ ¼ k1 � � � � � kr1 be the representation of

BðrÞ ¼ Bðy1Þ � � �Bðyr1Þ on the space VðrÞ ¼ V1 � � � � � Vr1. According to an argu-

ment similar to the one just given above, every ðBðrÞ \HÞ-invariant linear form on

VðrÞ must be a multiple of the linear form lðrÞ defined by the condition

lðrÞðv1 � � � � � vr1Þ ¼ l1ðv1Þ � � � lr1ðvr1Þ:

Suppose vr 2 Vr. Since vr is ðR \ B1Þ-fixed and BðrÞ � R \ B1, it follows that vr must

be BðrÞ-fixed. We therefore obtain a ðBðrÞ \HÞ-invariant linear form lvr on VðrÞ by the

condition: lvr ðv1 � � � � � vr1Þ ¼ lðv1 � � � � � vrÞ. There must be a constant cðvrÞ such

that lvr ¼ cðvrÞ lðrÞ. In fact, c is a linear form on Vr. Now fix v1; . . . ; vr1 so that

l1ðv1Þ; . . . ; lr1ðvr1Þ are nonzero. Then since l 2 HomBðyÞ\Hðk; 1Þ and

li 2 HomR\Hðki; WiÞ, when 14 i4 r 1, and
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cðvrÞ ¼
lðv1 � � � � � vrÞ

l1ðv1Þ � � � lr1ðvr1Þ
;

we deduce that c 2 HomB0;r1\Hðkr; WrÞ. Therefore, according to Proposition 12.3, c is
a multiple of lr and our claim follows.

14. Final Remarks on the Proofs of Theorems 3.3 and 4.4

Suppose p is an irreducible, tame supercuspidal representation of G and suppose H is
a unitary group in G. To prove Theorem 4.4, according to the discussion after its

statement, it suffices to show that if p is Galois invariant then p is H-distinguished.
The representation p is induced from some representation k ¼ k0 � � � � � kr of a sub-
group R, where k and R are defined in Section 8. From Lemma 11.1, we see that we

may assume k0 ¼ 1. Then, according to Lemma 11.2 and Proposition 12.1, we have
HomHðp; 1Þ ffi HomR\Hðk; 1Þ. Next, Proposition 13.1 shows that HomR\Hðk; 1Þ
has dimension one. Thus, we have shown that if p is Galois invariant then

HomHðp; 1Þ has dimension one, which completes the proof of Theorem 4.4. More-

over, we have shown that if HomHðp; 1Þ is nonzero then it has dimension one. There-
fore, we have also demonstrated Theorem 3.3.

15. Existence of Distinguished Representations

As usual, we assume E=F is a tamely ramified extension of p-adic fields with p 6¼ 2.

The purpose of this section is to prove:

PROPOSITION 15.1 There exists a quasicharacter y of E	 which is admissible over F

and is trivial on Uð1;E=E 0Þ.

This result will be an immediate consequence of two lemmas proved below and

our approach is a rather straightforward generalization of the techniques used by

Jeff Adler in another setting (see [1]). By the results presented in previous sections

of this paper, the characters in Proposition 15.1 correspond to supercuspidal repre-

sentations p such that p � p 
 i and they are therefore distinguished.
Let L1; . . . ;Lr be the maximal proper intermediate fields of E=F (thus

F � Li �= E). Define closed subgroups C1; . . . ;Cr of E
	 by taking Ci to be the kernel

of the norm map from E	 to L	i , unless E=Li is ramified in which case Ci is the kernel

of the norm map from 1þPE to 1þPLi
. Then a quasicharacter y of E	 is admis-

sible precisely when it is nontrivial on all of these subgroups.

Now suppose we are given i as in the statement of Lemma 4.3 above. Assume we
are also given an automorphism s of E of order two which agrees with i on F. Let E 0

be the fixed field of s. (Then E 0 cannot contain F.)

LEMMA 15.2 ([1], Lemma 6.2). Let A be a topological Abelian group with closed

subgroups C1; . . . ;Cr and N, such that N does not contain any Ci. Then there exists a

character y of A which is trivial on N and nontrivial on every Ci.
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We will use this when A ¼ E	, Ci is defined as above and N ¼ Uð1;E=E 0Þ. This

requires the following lemma.

LEMMA 15.3. Uð1;E=E 0Þ does not contain any of the subgroups Ci.

Proof. Suppose that Uð1;E=E 0Þ  Ci, for some i. Let L0 ¼ Li \ E 0. We define

integers a; b; c5 2 by

a ¼ ½E : Li�; b ¼ ½E 0 : L0� and c ¼ ½Li : L0�:

Then 2b ¼ ac. As manifolds over L0, the dimensions of Uð1;E=E
0Þ and Ci are b and

ða 1Þc. Thus we have a=2 ¼ b=c5 a 1. It follows that a ¼ 2 and b ¼ c. Choose

u 2 PE 0 PL0 and let x ¼ ð1þ uÞ=ð1þ ~uÞ 2 Ci, where ~u is the image of u under

the nontrivial Galois automorphism of E=Li. Since Ci � Uð1;E=E
0Þ, we must have

1 ¼ NE=E 0 ðxÞ ¼ x2, and thus x ¼ �1. If x ¼ 1 then u ¼ ~u 2 Li \ E 0 ¼ L0, which is

false. On the other hand, if x ¼ 1 then it follows from the identity 1þ u ¼

1 ~u that j2j < 1. Hence, our claim follows. &
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