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Abstract

Estimating the coronavirus disease-2019 (COVID-19) infection fatality rate (IFR) has proven
to be particularly challenging –and rather controversial– due to the fact that both the data on
deaths and the data on the number of individuals infected are subject to many different biases.
We consider a Bayesian evidence synthesis approach which, while simple enough for research-
ers to understand and use, accounts for many important sources of uncertainty inherent in
both the seroprevalence and mortality data. With the understanding that the results of
one’s evidence synthesis analysis may be largely driven by which studies are included and
which are excluded, we conduct two separate parallel analyses based on two lists of
eligible studies obtained from two different research teams. The results from both analyses
are rather similar. With the first analysis, we estimate the COVID-19 IFR to be 0.31%
[95% credible interval (CrI) of (0.16%, 0.53%)] for a typical community-dwelling population
where 9% of the population is aged over 65 years and where the gross-domestic-product at
purchasing-power-parity (GDP at PPP) per capita is $17.8k (the approximate worldwide
average). With the second analysis, we obtain 0.32% [95% CrI of (0.19%, 0.47%)]. Our results
suggest that, as one might expect, lower IFRs are associated with younger populations (and
may also be associated with wealthier populations). For a typical community-dwelling
population with the age and wealth of the United States we obtain IFR estimates of 0.43%
and 0.41%; and with the age and wealth of the European Union, we obtain IFR estimates
of 0.67% and 0.51%.

Above all, what’s needed is humility in the face of an intricately evolving body of evidence. The pandemic
could well drift or shift into something that defies our best efforts to model and characterise it.
Siddhartha Mukherjee, The New Yorker
22 February 2021

Introduction

The infection fatality ratio (IFR), defined as the proportion of individuals infected who will go
on to die as a result of their infection, is a crucial statistic for understanding severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ongoing coronavirus disease-2019
(COVID-19) pandemic. Estimating the COVID-19 IFR has proven to be particularly challen-
ging –and rather controversial– due to the fact that both the data on deaths and the data on the
number of individuals infected are subject to many different biases.

SARS-CoV-2 seroprevalence studies can help provide a better understanding of the true
number of infections in a given population and for this reason, several researchers have sought
to leverage seroprevalence study data to infer the COVID-19 IFR [1]. In particular, Ioannidis
[2], Levin et al. [3], Brazeau et al. [4] and O’Driscoll et al. [5] have all undertaken analyses, of
varying degrees of complexity, in which they combine data from multiple seroprevalence stud-
ies with available mortality statistics to derive IFR estimates.

The analyses of both Brazeau et al. [4] and O’Driscoll et al. [5] are done using rather com-
plex Bayesian models which rely on numerous detailed assumptions. For instance, Brazeau
et al. [4] use a Bayesian ‘statistical age-based model that incorporates delays from onset of
infection to seroconversion and onset of infection to death, differences in IFR and infection
rates by age and the uncertainty in the serosample collection time and the sensitivity and spe-
cificity of serological tests.’ O’Driscoll et al. [5] employ a Bayesian ensemble model which
assumes ‘a gamma-distributed delay between onset [of infection] and death’ and assumes dif-
ferent risks of infection for ‘individuals aged 65 years and older, relative to those under 65.’
While these analyses go to great lengths to account for the various sources of uncertainty
in the data, the complexity of the models will no doubt make it challenging for other research-
ers to fit these models to different data in a constantly evolving pandemic.
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In contrast, the analyses of Ioannidis [2] and Levin et al. [3]
are decidedly more simple. For each seroprevalence study under
consideration, Ioannidis [2] counts the cumulative number of
deaths (from the beginning of the pandemic) until 7 days after
the study mid-point (or until the date the study authors suggest)
and divides this number of deaths by the estimated number of
(previous or current) infections to obtain a study-specific IFR esti-
mate. A ‘location specific’ IFR estimate is then obtained by taking
a weighted (by the study’s sample size) average of the study-
specific IFR estimates for a given location (i.e. for a given country
or state). Ioannidis [2] then calculates the median of all the
location-specific IFR estimates. No uncertainty interval for this
estimate is provided. As such, it is impossible to determine what
level of confidence one should place in Ioannidis [2]’s estimates.

The analysis of Levin et al. [3] is based on a standard frequen-
tist random-effects meta-analysis model. For each age-group and
seroprevalence study under consideration, Levin et al. [3] calcu-
late a 95% confidence interval (CI) for a study-specific IFR by
counting the cumulative number of deaths up until 4 weeks
after the study mid-point and dividing this number of deaths
by the estimated upper and lower bounds of the number of
infected individuals. The meta-analysis model then combines
each of these study-specific IFRs. While this analysis provides
standard confidence intervals and is relatively straightforward, it
does not take into account certain important sources of uncer-
tainty (to be discussed in Section ‘methods’).

The analysis method we propose is simple enough for
researchers to easily understand and use, while accounting for
important sources of uncertainty inherent in both the seropreva-
lence data and the mortality data. Similar Bayesian models have
been used previously for evidence synthesis of seroprevalence
data for other infectious diseases (e.g. Brody-Moore [6]). We
will apply the method in analysis with the objective of estimating
the average COVID-19 IFR in a community-dwelling population
with a certain approximate age composition and wealth.

A major part in any evidence synthesis is determining which
studies to consider within the analysis. Determining appropriate
inclusion and exclusion criteria for seroprevalence studies is a
rather complicated and delicate issue when it comes to estimating
the COVID-19 IFR [7, 8]. Reviewing and evaluating the merits of
the hundreds of available seroprevalence studies also involves a
tremendous amount of review work and time. Fortunately, both
Chen et al. [9] and Arora et al. [10] have done comprehensive
and thorough reviews to ascertain study quality (i.e. risk of
bias). We will work from these two lists to conduct two separate
parallel analyses. This approach –conducting two analyses based
on two distinct and independent literature reviews– will allow
us to better understand the impact of different inclusion and
exclusion criteria [11]. We will review the data and how it was
obtained following a review of the methods.

Methods

Bayesian Model for evidence synthesis

Suppose we have data from K different seroprevalence studies.
Then, for k = 1, …, K, let:

• Tk be the total number of individuals tested in the k-th study;
• CCk be the total number of confirmed cases (of past or current
infection) resulting from those tested in the k-th study;

• Pk be the number of individuals at risk of infection in the popu-
lation of interest for the k-th study; and

• Dk be the total number of observed deaths (cumulative since
pandemic onset) in the population of interest that are attributed
to infection.

We do not observe the following latent (i.e. unknown) variables;
for k = 1, …, K, let:

• Ck be the total number of infected people (cases) in the k-th
population;

• IRk be the true infection rate (proportion of the k-th population
which has been infected), which is the expected value of Ck/Pk;
and

• IFRk be the true underlying infection fatality rate (IFR), which
is the expected value of Dk/Ck (given Ck).

We will make a series of simple binomial assumptions such
that, for k = 1, …, K:

CCk � Binom Tk,
Ck

Pk

( )
, (1)

Ck � Binom(Pk, IRk), (2)

Dk|Ck � Binom (Ck, IFRk). (3)
We wish to emphasise the importance of the third ‘D|C’ binomial
distribution above. Failing to account for the conditional distribu-
tion of the deaths given the cases may lead to inappropriately pre-
cise estimates of the IFR. For example, Streeck et al. [12] (in their
original preprint (medRxiv, May 8, 2020)) calculate an uncer-
tainty interval for the IFR by dividing the number of deaths (D
= 7) by the upper and lower bounds of the 95% confidence inter-
val (CI) for the number of infections (95% CI for C = [1551,
2389]). Doing so, they obtain a relatively narrow 95% CI for the
IFR: [0.29%, 0.45%] (=[7/1,551, 7/2389]). In the published version
of their article (Nature Communications, November 17, 2020), an
alternative interval “accounting for uncertainty in the number of
recorded deaths” is provided. This alternative interval, which
essentially takes into account the D|C binomial distribution, is
substantially wider: [0.17%; 0.77%]. In a very similar way, Levin
et al. [3] also fail to take into account the D|C binomial distribu-
tion when estimating study-specific IFRs resulting in spuriously
precise study-specific IFR estimates.

Having established simple binomial distributions for the
study-specific IRs and IFRs, we define a simple random-effects
model such that, for k = 1, …, K:

g(IFRk) � Normal(u0 + u1Z1k + u2Z2k, t
2), (4)

and

g(IRk) � Normal(b, s2), (5)

where θ0 represents the mean g(IFR), τ2 represents between-group
IFR heterogeneity, β represents the mean g(infection rate), σ2

describes the variability in infection rates across the K groups,
Z1k and Z2k are covariates of interest that may be related to the
IFR by means of the θ1 and θ2 parameters and g() is a given
link function. In our analysis, we define g() as the complimentary
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log-log link function (cloglog), though there are other sensible
choices including the logit and probit functions. As for the two
covariates, Z1k and Z2k, we will define these as the centred and
scaled logarithm of the proportion of the population aged over
65 years (65 yok) and of the GDP [at purchasing power parity
(PPP)] per capita (GDPk), respectively.

The model is considered within a Bayesian framework requir-
ing the specification of priors for the unknown parameters. Our
strategy for priors is to assume weakly informative priors. Beta,
Normal and half-Normal priors (following the recommendations
of Gelman et al. [13] and Kümmerer et al. [14]) are set accordingly:
g−1(θ0)∼ Beta(0.3, 3); g−1(β)∼ Beta(1, 30); u1 � Normal(0, 10);
u2 � Normal(0, 10); s � half -Normal(0, 10); and t � half -
Normal(0, 10). Note that the performance of any Bayesian esti-
mator will depend on the choice of priors and that this choice
can substantially influence the posterior when few data are avail-
able [15, 16]. In the Supplementary Material, we show results
obtained with an alternative set of priors as a sensitivity analysis.

Uncertainty in infection rates

While some seroprevalence studies report the exact number of
individuals tested and the exact number of confirmed cases
amongst those tested, to obtain estimates for the infection rate
there are typically numerous adjustments made (e.g. adjusting
for imperfect diagnostic test accuracy, adjusting for clustering of
individuals within a household). For this reason, the sample
size of a given study might not be a reliable indicator of its preci-
sion and weighting a study’s contribution in an evidence synthesis
based solely on its sample size (as in e.g. Ioannidis [2]) may not be
appropriate.

Rather than work with the raw testing numbers published in
the seroprevalence studies, we calculate effective data values for
Tk and CCk based on a binomial distribution that corresponds
to the reported 95% CI for the IR. By ‘inverting uncertainty inter-
vals’ in this way, we are able to properly use the adjusted numbers
provided. (This is a similar approach to the strategy employed by
Kümmerer et al. [14].) Tables 1 and 2 list the 95% uncertainty
intervals obtained from each of the seroprevalence studies in
our two parallel analyses and Tables 3 and 4 list the correspond-
ing values for Tk and CCk.

It must be noted that, as Ioannidis [2] cautions, it is possible
that under our ‘inverting uncertainty intervals’ approach, poorly
conducted seroprevalence studies which fail to make proper
adjustments (and thereby have spuriously narrower uncertainty
intervals) receive more weight in our analysis, while high-quality
studies, which make proper adjustments, are unfairly penalised.
Ioannidis [2] notes that the strategy of ‘weighting the study-
specific IFRs by the sample size of each study’ avoids giving
more weight to studies ‘with seemingly narrower confidence inter-
vals because of poor or no adjustments, while still giving more
weight to larger studies.’ Since we are restricting our analysis to
only those supposedly high-quality seroprevalence studies, we
hope to largely avoid this issue. Weighting studies based on
their true precision is obviously the goal in any evidence synthesis
and we recognise that this is particularly difficult when so many
studies may misrepresent the precision of their estimates [53, 54].

Uncertainty in mortality

Matching prevalence estimates with a relevant number of fatalities
is a difficult task. Prevalence estimates obtained from a

seroprevalence study do not typically correspond to a specific
date. Instead, these estimates will correspond to a window of
time during which testing occurred. This period may be only a
few days for some studies (e.g. 4 days for Petersen et al. [24]),
but can also be several weeks or months for others (e.g. 135
days for Ward et al. [34]). Tables 1 and 2 list the sampling win-
dow start and end dates for each of the studies in our two parallel
analyses.

Evidently, a longer sampling window will lead to greater
uncertainty when it comes to establishing the relevant number
of deaths. It can be difficult to account for this uncertainty and
analyses will often simply select a specific date at which to
count deaths based on some simple rule of thumb. For example,
Ioannidis [2] considers the number of deaths at 7 days after the
mid-point of the sampling window (or as the relevant number
of deaths discussed by the seroprevalence study’s authors). As
another example, Meyerowitz-Katz and Merone [55] take the
number of deaths as recorded at 10 days after the end of the sam-
pling window. While these two particular analytical choices are
not all that different, each may lead to a substantially different
number of deaths for a given study if the study was conducted
during a period of time during which the number of deaths was
rapidly accelerating. Levin et al. [3], who consider the number
of deaths up until 4 weeks after the sampling window mid-point,
acknowledge this limitation noting that: ‘matching prevalence
estimates with subsequent fatalities is not feasible if a seropreva-
lence study was conducted in the midst of an accelerating
outbreak.’

In order to account for the uncertainty in selecting the relevant
number of deaths for a given seroprevalence study, we propose
considering the number of deaths as interval-censored data.
Tables 3 and 4 list numbers for an interval corresponding to
the number of deaths recorded 14 days after the start of the sam-
pling window and 14 days after the end of the sampling window
for each seroprevalence study. While we might not know exactly
what number of deaths is most appropriate, we can be fairly con-
fident that the appropriate number lies somewhere within this
interval. (Note that some intervals in Tables 3 and 4 have also
been widened to account for other sources of uncertainty in the
number of deaths; see details in the Supplementary Material.)
The 14-day offset allows for the known delay between the onset
of infection and death, taking into consideration the delay
between the onset of infection and the development of detectable
antibodies [56, 57].

The data

Seroprevalence data

As the COVID-19 pandemic has progressed, a rapidly increasing
number of SARS-CoV-2 seroprevalence studies have been con-
ducted worldwide [10]. However, many of these studies have pro-
duced biased estimates or are otherwise unreliable due to a variety
of different issues with study design and/or with data collection
and/or with inappropriate statistical analysis [53]. We seek to
restrict our analysis to high-quality studies which used
probability-based sampling methods. Such studies are less likely
to suffer from substantial biases [58]. Based on the reviews of
Chen et al. [9] and of Arora et al. [10], we compiled two separate
sets of studies for analysis (these are listed in Tables 1 and 2,
respectively). With the understanding that the results of an evi-
dence synthesis may be largely driven by which studies are
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included/excluded, we will use these two separate sets to conduct
two separate analyses. Note that the data collected for both ana-
lyses are relevant to the time before the widespread availability
of COVID-19 vaccinations.

Chen et al. [9] reviewed the literature for articles published
between 1 December 2019 and 22 December 2020 and identified
more than 400 unique seroprevalence studies. For each of these,
study quality was established using a scoring system developed on
the basis of a seroepidemiological protocol from the Consortium
for the Standardization of Influenza Seroepidemiology [59]. In
total, Chen et al. [9] identified 38 articles which considered a sample
based on a ‘general population’ and which obtained a study quality
grade of A or B (see the full list in Supplementary Table S8 of Chen
et al. [9]). We consider these 38 articles as a starting point for inclu-
sion for our analysis. After excluding those studies which are dupli-
cates (n = 2), those that used a ‘convenience’ or ‘non-probability’
based sampling method (according to the classification of Arora
et al. [10]) (n = 8), a study no longer considered accurate based
on new information about the accuracy of the antibody test used
(n = 1), a study that has a very narrowly defined target population
(n = 1), studies for which relevant death data could not be
found (n = 5) and studies which did not provide a 95% uncertainty
interval (n = 2), we were left with a set of K = 19 studies for analysis;
see Figure 1 and details in the Supplementary Material.

Arora et al. [10] conducted the Serotracker ‘living systematic
review’ of COVID-19 seroprevalence studies whereby the results
of the review are continuously updated on serotracker.com/data.
For each study reviewed, the risk of bias was evaluated based on
an assessment using the Joanna Briggs Institute Critical

Appraisal Guidelines for Prevalence studies [53, 60]. For analysis,
we consider the 45 studies listed on serotracker.com/data (as of 5
June 2021), that are categorised as having a ‘low risk of bias’ and
are categorised as targeting ‘household and community samples.’
After excluding those studies which are duplicates (n = 3), one
study that used a ‘convenience’ or ‘non-probability’ based sam-
pling method (according to the classification of Arora et al.
[10]) (n = 1), those studies no longer considered accurate based
on new information about the accuracy of the antibody test
used (n = 2), those that have very narrowly defined target popula-
tions (n = 2), those for which relevant death data could not be
found (n = 8) and those which did not provide a 95% uncertainty
interval for the estimated prevalence (n = 1), we are left with a set
of K = 28 studies for analysis; see Figure 2 and details in the
Supplementary Material.

For each of the seroprevalence studies included in each of the
two analysis sets, we recorded the 95% uncertainty interval for the
infection rate as reported in the study article. If an article reported
on multiple phases of a study (e.g. a longitudinal series of differ-
ent surveys), or reported different results for different areas
instead of an overall estimate (e.g. a series of different estimates
for different regions), we selected only the first set of estimates.
Furthermore, if a study reported more than one 95% uncertainty
interval (e.g. different intervals corresponding to different adjust-
ments and assumptions), we selected the lowest value amongst the
different lower bounds and the highest value amongst the differ-
ent upper bounds. These numbers are recorded in Tables 1 and 2
under IR interval. Based on these numbers, we calculated effective
data values for the number of tests (Tk) and the number of

Table 1. Seroprevalence studies selected for the analysis based on the list compiled by Chen et al. [9] (listed in alphabetical order of authors), with the geographic
location of sampling, sampling dates and 95% uncertainty interval for the infection rate (IR interval). Also noted, under ‘In both analyses’, is whether or not each
study is included in the Serotracker-based analysis (i.e. is also in Table 2). Studies with yes* are alternate versions of studies that are included in the Serotracker-
based analysis. Note that sampling for all studies took place during mid-2020, before the widespread availability of COVID-19 vaccinations.

Authors Location Sampling (mm/dd) IR interval (%) In both analyses

Barchuk et al. [17] Saint Petersburg, Russia 05/27–06/26 (5.60, 12.90) yes

Biggs et al. [18] DeKalb and Fulton, GA, USA (A) 04/28–05/03 (1.40, 4.50) yes*

Bruckner et al. [19] Orange County, CA, USA 07/10–08/16 (8.10, 15.50) yes

Carrat et al. [20] Ile-de-France, France 05/04–06/14 (8.90, 11.30)

Mahajan et al. [21] Connecticut, USA 06/10–07/29 (1.70, 6.30)

Murhekar et al. (A) [22] India 05/11–06/04 (0.34, 1.13) yes

Office of National Stat [23] England, UK (A) 04/26–09/08 (5.40, 7.10)

Petersen et al. [24] Faroe Islands, Denmark 04/27–05/01 (0.10, 1.20) yes

Pollan et al. [25] Spain 04/27–05/11 (3.30, 6.60) yes

Samore et al. [26] Four counties in UT, USA 05/04–06/30 (0.10, 1.60)

Santos-Hovener et al. [27] Kupferzell, Germany 05/20–06/09 (10.40, 14.00) yes

Sharma et al. [28] Delhi, India 08/01–08/07 (27.65, 29.14) yes

Snoeck et al. [29] Luxembourg 04/15–05/05 (1.23, 2.77)

Sood et al. [30] Los Angeles County, CA, USA 04/10–04/14 (2.52, 7.07)

Statistics Jersey (A) [31] Jersey, UK (A) 04/29–05/05 (1.80, 4.40) yes*

Streeck et al. [12] Gangelt, Germany 03/31–04/06 (12.31, 24.40) yes

Stringhini et al. (A) [32] Geneva, Switzerland (A) 04/06–05/09 (8.15, 13.95) yes*

Vos et al. [33] Netherlands 03/31–05/11 (2.10, 3.70) yes

Ward et al. [34] England, UK (B) 06/20–07/13 (5.78, 6.14) yes
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confirmed cases (CCk) which are listed in Tables 3 and 4 along-
side population numbers (Pk) and numbers corresponding to
the proportion of the population over 65 years old (65 yok) and
the GDP (PPP) per capita (GDPk); see Supplemental Material
for details and data sources.

Mortality Data

Mortality data were obtained from various sources (e.g. academic,
government, health authority); see details in Supplementary
Material. If a seroprevalence study referenced a specific source
for mortality data, we used the referenced source for our numbers
whenever possible. If no source was referenced or suggested, we
considered publicly available data sources.

For many populations, there were concerns that cause of death
information may be very inaccurate and lead to biased COVID-19

mortality statistics. To overcome this issue, many have suggested
looking to ‘excess deaths’ by comparing aggregate data for all-
cause deaths from the time during the pandemic to the years
prior [61]. For populations with a large discrepancy between
the ‘official’ number of deaths attributed to COVID-19 and the
number of excess deaths –as suggested, when possible, by a
large undercount ratio (UCR) derived by Karlinsky and Kobak
[62]– we used the ‘official’ number of deaths attributed to
COVID-19 for the lower bound of the Dk interval and used num-
bers based on excess deaths for the upper bound of the Dk

interval.
India, Pakistan, Palestine, Ethiopia and China are the only

countries represented in the studies that we assessed for data
availability that were not included in Karlinsky and Kobak
[62]’s analysis. There was evidence of substantial under-reporting
of COVID-19 deaths in India [63, 64] while little could be

Table 2. Seroprevalence studies selected for the analysis based on the list compiled by Serotracker (listed in alphabetical order of authors), with the geographic
location of sampling, sampling dates and 95% uncertainty interval for the infection rate (IR interval). Also noted, under ‘In both analyses’, is whether or not each
study is included in the Serotracker-based analysis (i.e. is also in Table 2). Studies with yes* are alternate versions of studies that are included in the Serotracker-
based analysis. Note that sampling for all studies took place during mid-2020, before the widespread availability of COVID-19 vaccinations.

Authors Location Sampling (mm/dd) IR interval (%) In both analyses

Álvarez-Antonio et al. [35] Iquitos, Peru 07/13–07/18 (67.00, 73.00)

Bajema et al. [36] DeKalb and Fulton, GA, USA (B) 04/28–05/03 (1.49, 6.67) yes*

Barchuk et al. [17] Saint Petersburg, Russia 05/27–06/26 (5.60, 12.90) yes

Bruckner et al. [19] Orange County, CA, USA 07/10–08/16 (8.10, 15.50) yes

Chan et al. [37] Rhode Island, USA 05/05–05/22 (1.00, 6.20)

Gov. of Andorra [38] Andorra 05/04–05/28 (10.50, 11.50)

Kar et al. [39] Puducherry District, India 08/11–08/16 (3.50, 6.40)

Khalagi et al. [40] Iran 08/03–10/31 (13.30, 15.20)

Malani et al. [41] Tamil Nadu, India 10/19–11/30 (30.40, 32.80)

Melotti et al. [42] Gardena Valley, Italy 05/26–06/08 (25.20, 28.60)

MoHoI [43] Israel 06/28–09/17 (5.30, 5.60)

Murhekar et al. (A) [22] India 05/11–06/04 (0.34, 1.13) yes

Nawa et al. [44] Utsunomiya City, Japan 06/14–07/05 (0.08, 2.28)

Pagani et al. [45] Castiglione d’Adda, Italy 05/18–06/07 (17.20, 29.10)

Petersen et al. [24] Faroe Islands, Denmark 04/27–05/01 (0.10, 1.20) yes

Pollan et al. [25] Spain 04/27–05/11 (3.30, 6.60) yes

Radon et al. [46] Munich, Germany 11/02–01/31 (2.90, 4.30)

Reyes-Vega et al. [47] Lima, Peru 06/28–07/09 (22.50, 28.20)

Richard et al. [48] Geneva, Switzerland (B) 04/06–06/30 (6.80, 8.90) yes*

Santos-Hovener et al. [27] Kupferzell, Germany 05/20–06/09 (10.40, 14.00) yes

Selvaraju et al. [49] Chennai, Tamil Nadu, India 07/01–07/31 (14.80, 22.60)

Sharma et al. [28] Delhi, India 08/01–08/07 (27.65, 29.14) yes

Statistics Jersey (B) [50] Jersey, UK (B) 06/21–06/27 (2.80, 5.20) yes*

Streeck et al. [12] Gangelt, Germany 03/31–04/06 (12.31, 24.40) yes

Vos et al. [33] Netherlands 03/31–05/11 (2.10, 3.70) yes

Ward et al. [34] England, UK (B) 06/20–07/13 (5.78, 6.14) yes

Warszawski et al. [51] Metropolitan France 05/02–06/02 (3.90, 5.00)

Yoshiyama et al. [52] Tokyo, Japan 06/01–06/07 (0.01, 0.37)
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gathered about the reliability of official mortality data for
Pakistan, Palestine,1 Ethiopia,2 and China (but do see [65] and
[66]). As such, we excluded the Qutob et al. [67] (‘Palestinian
population residing in the West Bank’) and He et al. [68]
(‘Wuhan, China’) studies from the Serotracker-based analysis
and excluded the Alemu et al. [69] (‘Addis Ababa, Ethiopia’)
and the Nisar et al. [70] (‘Two neighborhoods of Karachi,
Pakistan’) studies from the Chen et al.-based analysis. For India,
Mukherjee et al. [71] and Purkayastha et al. [72] estimate UCRs
for the entire country as well as for each individual Indian state
and union territory. We used these UCRs to adjust the upper
bound of the Dk interval for each of the Indian seroprevalence
studies (see Supplementary Material for details).

There are two countries represented within our data that were
identified by Karlinsky and Kobak [62] as having large discrepan-
cies between the official number of deaths attributed to
COVID-19 and the number of excess deaths: Iran (with UCR =
2.4) and Russia (with UCR = 4.5). As such, for Barchuk et al.
[17] (‘Saint Petersburg, Russia’) and for the Khalagi et al. [40]
(‘Iran’), we used numbers based on excess deaths for the upper
bound of the Dk interval (see Dk numbers in Tables 3 and 4
and see Supplementary Material for details).

Finally, our target of inference is the IFR for the
community-dwelling population and does not apply to people liv-
ing in long-term care (LTC) facilities [also known as ‘nursing
homes’ or, in France as ‘Établissement d’hébergement pour per-
sonnes âgées dépendantes’ (EHPAD)]. The spread of
COVID-19 is substantially different in LTC facilities than in the
general population and residents of LTC facilities are particularly
vulnerable to severe illness and death from infection; see Danis
et al. [73]. With this in mind, we made adjustments (when appro-
priate/possible) to the mortality numbers used in our analysis in
order to exclude deaths of LTC residents; see Supplementary
Material for details. Modelling the spread and mortality of
COVID-19 within LTC facilities will require unique approaches
and should be considered in a separate analysis; see the recom-
mendations of Pillemer et al. [74].

Results

The Model as described in the Methods Section, was fit to the two
datasets described above. We fit the model using JAGS ( just
another Gibbs sampler) [75], with five independent chains, each
with two million draws (20% burn-in, thinning of 100); see
Supplementary Material for details and JAGS code.

We report posterior median estimates and 95% highest prob-
ability density (HPD) credible intervals (CrI). Figure 3 (for the
Chen et al.-based analysis) and Figure 4 (for the Serotracker-
based analysis) plot the point estimates and CrIs obtained for
IFRk, for k in 1, …, K, respectively; see Supplementary Figures
S1 and S2 for IRk in the Supplementary Material. In these figures,
the seroprevalence studies are listed in order of their ‘fitted’ IFR

Table 3. The Chen et al. based dataset required for the Bayesian evidence synthesis model

Dk Dk 65yok GDPk

Location Pk lower upper Tk CCk (%) ($)

Saint Petersburg, Russia 5 351 935 1596 5128 233 21 18 30 144

DeKalb and Fulton, GA, USA (A) 1 823 234 122 136 419 11 12 58 933

Orange County, CA, USA 3 010 232 512 839 285 33 15 79 287

Ile-de-France, France 12 213 447 6816 7427 2414 243 14 82 574

Connecticut, USA 2 837 877 1136 1179 251 9 22 80 729

India 1 366 417 750 4172 45 766 1632 11 6 4735

England, UK (A) 56 550 000 25 975 30 709 3100 193 18 43 310

Faroe Islands, Denmark 52 154 0 0 592 3 17 60 421

Spain 47 351 567 17 710 17 767 643 31 20 42 362

Four counties in UT, USA 2 194 298 40 97 393 2 10 60 050

Kupferzell, Germany 6247 1 3 1263 153 16 63 885

Delhi, India 19 800 000 4188 26 901 13 966 3965 4 12 817

Luxembourg 632 275 47 58 1214 23 14 122 166

Los Angeles County, CA, USA 10 039 107 529 606 316 14 14 79 287

Jersey, UK (A) 107 800 17 18 648 19 17 48 365

Gangelt, Germany 12 597 8 8 153 27 18 53 751

Geneva, Switzerland (A) 504 128 122 155 442 48 16 68 964

Netherlands 17 344 874 2621 4186 1652 47 20 59 685

England, UK (B) 56 550 000 29 526 30 038 10 635 634 18 43 310

1Official regional death numbers for Palestine are available from the Palestinian gov-
ernment dashboard (see https://corona.ps/details; accessed July 28, 2021).

2Official regional death numbers for Ethiopia have been made available previously
(e.g., http://web.archive.org/web/2020*/https://www.covid19.et/covid-19/ and the Twitter
account: https://twitter.com/Harun_Asefa/status/1259069832877793280; accessed
August 4, 2021).
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values (the posterior median of g−1(θ0 + θ1Z1k + θ2Z2k), for k in 1,
…, K, marked on the plot by the × symbols). Results obtained for
the other model parameters are listed in Table 5.

In general, the Chen et al.-based analysis and the Serotracker-
based analysis provide mostly similar results. Notably, the
Serotracker-based analysis considers a much more geographically
diverse set of seroprevalence studies and several studies that
appear to be prominent outliers (e.g. ‘Tamil Nadu’, ‘Castiglione
d’Adda, Italy’ and ‘Utsunomiya City, Japan’), see Figure 4.
These outliers could be due to infection rates in these populations
being markedly different for the elderly relative to the general
population.3 With regards to heterogeneity, fitting the model

without any covariates, one obtains t̂ = 0.62 (Chen et al.-based
analysis) and t̂ = 0.90 (Serotracker-based analysis). This suggests
that the two covariates, 65 yok and GDPk, account for approxi-
mately 45% (=(0.622− 0.462)/(0.622); Chen et al.-based analysis)
and 13% (=(0.902− 0.842)/(0.902); Serotracker-based analysis) of
the heterogeneity in the IFR.4

Table 4. The Serotracker-based dataset required for the Bayesian evidence synthesis model

Dk Dk 65yok GDPk

Location Pk lower upper Tk CCk (%) ($)

Iquitos, Peru 467 000 1581 1942 895 626 4 5896

DeKalb and Fulton, GA, USA (B) 1 823 234 122 136 196 7 12 58 933

Saint Petersburg, Russia 5 351 935 1596 5128 233 21 18 30 144

Orange County, CA, USA 3 010 232 512 839 285 33 15 79 287

Rhode Island, USA 1 059 361 147 189 163 5 18 58 416

Andorra 77 543 35 35 11 236 1235 17 49 900

Puducherry District, India 1 250 000 145 393 840 41 6 9152

Iran 82 913 906 19 804 98 071 5197 740 6 12 937

Tamil Nadu, India 83 697 770 11 183 29 773 5765 1821 7 7191

Gardena Valley, Italy 10 700 15 15 2612 702 20 71 853

Israel 9 216 900 187 995 10 578 577 11 40 747

India 1 366 417 750 4172 45 766 1632 11 6 4735

Utsunomiya City, Japan 517 527 0 0 228 2 26 42 931

Castiglione d’Adda, Italy 4605 39 40 190 43 26 59 291

Faroe Islands, Denmark 52 154 0 0 592 3 17 60 421

Spain 47 351 567 17 710 17 767 643 31 20 42 362

Munich, Germany 1 563 090 219 780 2692 96 17 65 345

Lima, Peru 10 804 609 21 109 28 846 893 226 9 19 313

Geneva, Switzerland (B) 504 128 122 156 2509 196 16 68 964

Kupferzell, Germany 6247 1 3 1263 153 16 63 885

Chennai, Tamil Nadu, India 10 900 000 1295 5960 380 70 7 7191

Delhi, India 19 800 000 4188 26 901 13 966 3965 4 12 817

Jersey, UK (B) 107 800 20 20 998 39 17 48 365

Gangelt, Germany 12 597 8 8 153 27 18 53 751

Netherlands 17 344 874 2621 4186 1652 47 20 59 685

England, UK (B) 56 550 000 29 526 30 038 10 635 634 18 43 310

Metropolitan France 64 897 954 17 396 19 038 5377 238 21 49 551

Tokyo, Japan 13 960 236 270 275 1314 2 20 45 796

3Malani et al. [41] (‘Tamil Nadu’) note that: ‘Seroprevalence among the elderly (70+:
25.8%) is significantly lower than among the working age populations (age 40-49: 31.6%;
p < 0.001) or the young (18-29: 30.7%; p < 0.001).’ Pagani et al. [45] (‘Castiglione d’Adda,
Italy’) also report that the elderly are more likely to have been infected (‘strong association

observed between IgG seroprevalence and age’). On the other hand, note that among the
181 participants in the Nawa et al. [44] study (‘Utsunomiya City, Japan’) who were aged
65 years or older, none were positive. This suggests that infection in the elderly may be
lower than in the general population. However, since the Nawa et al. [44] found only 3
positive cases out of a total of 742 individuals tested, inference on this is limited.

4For reference, Levin et al. [3] conclude that 87% of the heterogeneity in the IFR (of
advanced economies) can be explained by variations in age composition and age-specific
prevalence of COVID-19. However, note that the linear regression analysis used to obtain
this 87% result is done without an intercept term (see Levin et al. [3] - Figure 6). A linear
regression with intercept results in a value of 43%. The intraclass correlation coefficient
(ICC) [76] between Levin et al. [3]’s predicted IFRs and the observed IFRs is 0.65
(after removing one outlier, ‘Portugal’), suggesting that the extent of agreement is reason-
ably high but nowhere near perfect.
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Our estimates of û1 = 0.61 (Chen et al.-based analysis) and
û1 = 0.42 (Serotracker-based analysis) suggest that older popula-
tions are more likely to have higher IFRs. This is as expected since
age is known to be a very important risk factor [77, 78]. Our esti-
mate of û2 = −0.28 (Chen et al.-based analysis) and û2 = −0.11
(Serotracker-based analysis) suggest that wealthier populations
may be more likely to have lower IFRs. However, the wide CrIs
obtained for the θ2 parameter (in both analyses) suggest a
much less definitive conclusion. There are several reasons which
might explain this result. As with any observational data analysis,
the estimate of θ2 may suffer from bias due to unobserved con-
founding and statistical power may be compromised by the pres-
ence of outliers and insufficient heterogeneity in the GDP per
capita metric across the different populations included in our
analyses.

We can infer (by determining the posterior median of g−1(θ0
+ θ1z1* + θ2z2*), for selected values of z1* and z2*) the typical IFR
amongst populations (be they included in our study or not) hav-
ing a given proportion of the populace aged over 65 and a given
GDP per capita. Thus we calculate posterior point and interval
estimates corresponding to age and wealth values that match
the population of the entire world (World), the United States
(USA) and the European Union (EU) [as listed by the World
Bank’s World Development Indicators (WDI)]; see ‘World’,
‘USA’ and ‘EU’ rows in Figures 3 and 4. For 65yo = 9% and
GDP = $ 17 811, the approximate worldwide values, we obtain,
from the Chen et al.-based analysis, an across-population average
IFR estimate of 0.31%, with a 95% CrI of (0.16%, 0.53%). With
the Serotracker-based analysis, we obtain a similar estimate of
0.32%, with a 95% CrI of (0.19%, 0.47%). For 65yo = 16% and
GDP = $ 65 298, the USA values, we obtain across-population
average IFR estimates of 0.43%, with a 95% CrI of (0.31%,
0.56%) (Chen et al.-based analysis) and of 0.41%, with a 95%
CrI of (0.22%, 0.67%) (Serotracker-based analysis). Finally, for
65yo = 20% and GDP = $ 47 828, the EU values, we obtain across-
population average IFR estimates 0.67%, with a 95% CrI of
(0.41%, 0.96%) (Chen et al.-based analysis) and of 0.51%, with
a 95% CrI of (0.27%, 0.79%) (Serotracker-based analysis). Note
that for the ‘World’ predictions, the Serotracker-based analysis
has the more precise estimates, while the Chen et al.-based esti-
mates are more precise for the ‘USA’ predictions. This is likely

due to the fact that the Serotracker-based analysis considers sev-
eral younger and less wealthy populations, whereas the Chen
et al.-based analysis considers fewer outliers.

While the infection-rate estimates obtained from the seropreva-
lence studies should be relatively reliable (due to having satisfied
the risk of bias assessments of either Chen et al. [9] or Arora
et al. [10]), the mortality data we collected may be less reliable
depending on the target population and source. The data which
were not obtained from official and reliable sources may be par-
ticularly suspect. With this in mind, as a sensitivity analysis, we
repeated both analyses with these data excluded; see results in
Supplementary Figures S3 and S4 in the Supplementary
Material. Without the excluded studies, we are unable to provide
a reasonable ‘World’ estimate (see the extremely wide CrIs).
However, the ‘USA’ and ‘EU’ estimates are relatively similar. We
also repeated the two analyses using a different set of priors to ver-
ify that our results were not overly sensitive to our particular
choice of priors. The results of this alternative analysis are very
similar to the results of our original analyses; see Supplementary
Figures S5 and S6 in the Supplementary Material.

Our estimates are somewhat similar to those obtained in other
analyses. Brazeau et al. [4], using data from 10 representative sero-
prevalence studies (identified after screening 175 studies), infer
‘the overall IFR in a typical low-income country, with a popula-
tion structure, skewed towards younger individuals, to be 0.23%
(0.14–0.42% 95% prediction interval range).’ For a ‘typical
high-income country, with a greater concentration of elderly
individuals,’ Brazeau et al. [4] obtain an estimate of 1.15% (95%
prediction interval of 0.78–1.79%). Ioannidis [2], using data
from seroprevalence studies with sample sizes greater than 500
(and including deaths of LTC residents), obtains a ‘median IFR
across all 51 locations’ of 0.27% and (and of 0.23% following an
ad-hoc correction to take into account ‘that only one or two
types of antibodies’ may have been tested in some seroprevalence
studies). Levin et al. [3], who restricted their analysis to popula-
tions in ‘advanced economies’ (and included deaths of LTC resi-
dents) provide age-group specific estimates and country-specific
estimates. For instance, for the 45–54 year old age group, Levin
et al. [3] estimate the IFR to be 0.23% (95% CI of 0.20–0.26%)
and for the 55–64 year old age group, 0.75% (95% CI of 0.66–
0.87%). For Spain, Levin et al. [3] estimate an IFR of 1.90%.

Fig. 1. Flowchart of seroprevalence studies considered for Chen et al. based analysis. Fig. 2. Flowchart of seroprevalence studies considered for Serotracker-based
analysis.
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For comparison, we estimate the IFR for the community-dwelling
population (i.e. excluding deaths of LTC residents) of Spain to be
0.77% (in both analyses). This is similar to the 0.83% estimate
obtained by Pastor-Barriuso et al. [79] and the 0.75% estimate
obtained by Brazeau et al. [4] (both of these excluding deaths
of LTC residents).

Specifically, with regards to the United States, Sullivan et al.
[80] estimate the IFR for adults to be 0.85% (95% CrI of 0.76–
0.97%) based on a US nationwide seroprevalence survey con-
ducted between August and December, 2020.5 Pei et al. [81]
using a rather complex Bayesian ‘metapopulation’model conclude
that, for the United States during 2020, the IFR likely ‘decreased
from around 1% in March to about 0.25% in December.’ For

comparison, our ‘USA’ predictions of 0.43% and of 0.41% are
based on data obtained mostly between April, 2020 and August,
2020 (see dates in Tables 1 and 2).

Conclusion

Estimation of the IFR can be incredibly challenging due to the fact
that it is a ratio of numbers where both the numerator and the
denominator are subject to a wide range of biases. Our proposed
method seeks to address some of these biases in a straightforward
manner. In our analysis, proper handling of the various sources of
uncertainty was a primary focus [82].

With regards to the numerator, we considered the number of
deaths as interval-censored data so as to account for the uncer-
tainty in selecting the most relevant number of deaths. While
we consider this an improvement over other methods that use a

Fig. 3. Results from the Chen et al.-based analysis: posterior median estimates (black circles) for the IFRk variables (for k = 1, …, 19) with 95% HPD CrIs. Studies are
listed from top to bottom in order of increasing fitted values (these values are indicated by ×). Also plotted, under the labels ‘World (65 yo = 9%, GDP = 17.8k)’, ‘USA
(65 yo = 16%, GDP = 65.3k)’, ‘EU (65 yo = 20%, GDP = 47.8k)’, are the posterior median estimate and 95% HPD CrIs for the typical IFR corresponding to values for the
proportion of the population aged 65 years and older of 9% and for GDP per capita of $ 17 811 (the worldwide values), of 16% and of $ 65 298 (the USA values) and
of 20% and of $ 47 828 (the EU values).

5While Sullivan et al. [80] used a nationwide representative sampling frame, the results
may be subject to sizable selection bias given the low response rate of 12.6%.
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single fixed number, we acknowledge that the specific choice of a
14-day offset is somewhat arbitrary and that the data for deaths
also suffer from other sources of bias. Ioannidis [8] notes that
the time between infection and death may vary substantially

‘and may be shorter in developing countries where fewer people
are long-sustained by medical support.’ In addition to official
numbers, we used mortality data based on ‘excess deaths’ statistics
for Russia and Iran, since official mortality statistics appeared to

Fig. 4. Results from the Serotracker-based analysis: posterior median estimates (black circles) for the IFRk variables (for k = 1,…, 28) with 95% HPD CrIs. Studies are
listed from the top to the bottom in order of increasing fitted values (these values are indicated by ×). Also plotted, under the labels ‘World (65 yo = 9%, GDP =
17.8k)’, ‘USA (65 yo = 16%, GDP = 65.3k)’, ‘EU (65 yo = 20%, GDP = 47.8k)’, are the posterior median estimate and 95% HPD CrIs for the typical IFR corresponding to
values for the proportion of the population aged 65 years and older of 9% and for GDP per capita of $ 17 811 (the worldwide values), of 16% and of $ 65 298 (the
USA values) and of 20% and of $ 47 828 (the EU values).

Table 5. Parameter estimates (posterior medians and 95% HPD CrIs) obtained from the Chen et al.-based analysis and the Serotracker-based analysis

Parameter Chen et al. analysis Serotracker analysis

θ0 −5.50, with 95% CrI of (−5.78, −5.22) −5.56, with 95% CrI of (−5.93, −5.19)

θ1 0.61, with 95% CrI of (0.21, 1.00) 0.42, with 95% CrI of (−0.40, 1.16)

θ2 −0.28 with 95% CrI of (−0.67, 0.14) −0.11, with 95% CrI of (−0.86, 0.69)

τ 0.46 with 95% CrI of (0.25, 0.75) 0.84, with 95% CrI of (0.55, 1.23)

σ 1.17 with 95% CrI of (0.80, 1.68) 1.53, with 95% CrI of (1.13, 2.05)
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be potentially highly inaccurate. We also used adjusted mortality
numbers for India based on the best available information. These
adjustments are certainly not perfect and we note that ‘excess
deaths’ statistics may also suffer from substantial inaccuracies
[83].

With regards to the denominator, we looked to data from
‘high-quality’ seroprevalence studies in an effort to avoid biased
estimates. However, these data are also not perfect.
Seroprevalence studies are severely limited by the representative-
ness of the individuals they test. Certain groups of individuals
who may have very high infection rates are unlikely to be tested
in a seroprevalence study (e.g. homeless people). On the other
hand, those individuals who have reason to believe they may
have been infected, may be more likely to volunteer to participate
in a seroprevalence study [58]. It is also likely that seroreversion
(loss of detectable antibodies over time) may lead to a seropreva-
lence study underestimating the true number of infections if the
time between the main outbreak and the subsequent antibody
testing is substantial [84]. Notably, Axfors and Ioannidis [85]
employ a ‘X-fold’-based correction factor to adjust seroprevalence
estimates for this type of bias.

The need to improve the quality and reporting of seropreva-
lence studies cannot be overemphasised.6 A major limitation of
evidence synthesis is often summarised by the expression ‘garbage
in, garbage out’ [86], meaning that if one includes biased studies
in one’s analysis, the analysis results will themselves be biased
[87]. In our two analyses, we only included data from 19 and
28 out of potentially hundreds of seroprevalence studies due pri-
marily to the fact that so few studies were considered reliable and
at low risk of bias. Excluding low-quality/biased studies from our
analysis was necessary, at least to a certain degree, in order to
obtain valid estimates. However, as a consequence of our strict
exclusion criteria, much of the world’s population is severely
under-represented in our data. In related work, Levin et al. [88]
review the available literature and ‘informally assess studies for
risk of bias’ in an attempt to estimate the COVID-19 IFR specif-
ically for developing countries. If the quality of studies were to be
correlated with unmeasured factors that impact the IFR, excluding
studies based on their perceived quality could lead to unmeasured
confounding at a meta-analytic level [89]. Novel methods which
allow evidence syntheses to appropriately incorporate biased
data are urgently needed. Recently, Campbell et al. [90] proposed
a partially identified model to combine seroprevalence study data
with biased data from official statistics.

Outside of biased data, perhaps the foremost challenge in evi-
dence synthesis using observational data is that necessarily one is
forced to make an array of design choices around inclusion/exclu-
sion criteria, statistical modelling approaches and prior specifica-
tions [11]. With the two separate analyses and the various
additional sensitivity analyses, we were quite encouraged by the
stability of our results to perturbations of these inputs.

Reducing the uncertainty around the severity of COVID-19
was of great importance to policy makers and the public during
the early stages of the pandemic [91–93] and immense efforts
have been made in the collection and analysis of data (e.g.
Williamson et al. [77]). And yet, even after more than a year,

there is still a large amount of uncertainty and unexplained het-
erogeneity surrounding the COVID-19 IFR, particularly with
respect to populations in less affluent countries. While a certain
amount of heterogeneity is to be expected [94], identifying factors
associated with higher IFRs is the ultimate goal and investigating
potential variables that can account for the observed heterogeneity
may lead to important insights [89, 95].

We prioritised simplicity in our modelling so as to promote
transparency in our findings and to facilitate adaptations to simi-
lar, but not identical, data structures. While ‘simple’ is a relative
term, note that the entire dataset used for our analyses fits on a
single page (in Tables 3 and 4) and that the entire JAGS
MCMC code fits on less than a single page (see Supplementary
Material). One model extension that could be pursued would
involve age stratification of IFR.

Including age-stratification in the model could represent a sub-
stantial improvement given that infection in some populations is
far from homogeneous (e.g. about 95% of Singapore’s COVID-19
infections were among young migrant workers (as of September
2020), which explains the incredibly low case fatality rate [96]).
If a factor, such as age, impacts both the risk of infection and
the risk of death given infection, then estimating the IFR as we
have done in our analysis could be subject to confounding [97].
Age-group specific seroprevalence/mortality data is available for
certain geographic areas [98] (although not always consistently
reported) and such data could inform an extended version of
our model, thereby offering an alternative to the approach
described by Levin et al. [3] for estimating age-group specific
IFRs.

Finally, we must emphasise that the IFR is a moving target. As
the pandemic changes, so to does the IFR. Our estimates are based
on data from 2020, most of which were obtained more than a year
ago. It is likely that, with continual viral mutation of
SARS-CoV-2, advances in treatment and the availability of vac-
cines, the current IFR in many places is now markedly different
than it was earlier in 2020 [81, 99, 100].

Key messages
• The COVID-19 IFR is estimated to be about 0.32% for a typical
community-dwelling population where 9% of individuals are
over 65 years old and where the GDP per capita is $17.8k
(the approximate worldwide averages). For a typical
community-dwelling population with the age and wealth of
the United States we estimate the IFR to be approximately
0.42%.

• Any estimation of the COVID-19 IFR should take into account
the various uncertainties and potential biases in both the mor-
tality data and the seroprevalence data.

• Bayesian methods with interval censoring are well suited for
complex evidence synthesis tasks such as estimating the
COVID-19 IFR.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821002405.
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