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Abstract. We construct C1 symmetric maps of [—1,1] to itself, satisfying a condition
similar to Feigenbaum's: -<t>{x) = <j>(-x), <t>2(bx) = b<f>(x), 0<b<\. Under certain
conditions, the non-wandering set consists of the one-sided Morse minimal set
together with 2" points of period 2" for each n = 1, 2 , . . . The main significance of the
construction is its simplicity. Given a certain piece of the map </>, the rest is generated
by the required equation.

0. Introduction
Families of maps of an interval have received considerable attention recently,
especially with regard to bifurcation phenomena. A remarkable bifurcation picture
emerges in [4] and [10]; the first concerns the support of the natural invariant
measure and the second concerns spectral and Bernoulli properties for the two-
dimensional family of maps x->@x + a mod 1. In [11] we investigated a one-
dimensional sub-family of these maps, namely, the centrally symmetric ones. (A
related study appears in [8].)

If a is chosen so that Tpx = /3x + a mod 1 is symmetric about \ (a = 1 - /3/2) then,
as /3 decreases from -Jl to 1, periodic intervals and associated periodic points are
created with larger and larger (doubling) periods. In the range 21/2"+1</3 <21/2"
(n = 1, 2,...) there is an interval / such that TJJ = 1 (Tpl =J u / ' where /, /, / '
are pairwise disjoint) and T\\l is linearly isomorphic to Te*. Thus the family
{Tp\ 1 </? < v2} is re-normalizing in the jargon of physicists.

The question arises as to whether this phenomenon can occur with a single map,
and if so what properties would such a map enjoy?

This question has been studied extensively in [2] and [1], the former by computer
experiment and the latter rigorously and globally, for maps with a single (maximum)
critical point. The maps we shall concentrate on retain the general shape of the maps
Te in that they are maps associated with a Lorenz semi-flow (cf. [3], [12]). We shall
therefore call them Lorenz type maps since they occur as the Poincare section maps of
a Lorenz semi-flow.

t Address for correspondence: Professor William Parry, Mathematics Institute, University of Warwick,
Coventry CV4 7AL, England.
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FIGURE 1. Lorenz type.

We shall construct maps <j> of [—1,1] to itself which are centrally symmetric
(<t>(-x) = -<f>(x)) satisfying

<(>2(bx) = b<t>(x) where 0<b<l. (0.1)

<f> will be slightly improper in that <j> has two values at 0, namely <£(0) = ± l .
Otherwise <(> will be strictly increasing and continuous, with a graph such as figure 1.
Figure 2 represents the map & obtained by factoring the I2 symmetry x -» —x. Thus ij/
will satisfy the equation

FIGURE 2

Feigenbaum introduced the equation <f>2(bx) = -b<f>{x) appropriate to his class of
maps. The advantage of studying the Lorenz type maps is that they can be
constructed; indeed, if we prescribe a certain part of the map, the remainder is
self-generated by the equation (0.1).

In this paper there is no pretension to generality. The novelty and interest of our
results lie in the following:

(a) The maps we construct are self-generating.
(b) Conditions are given for the non-wandering set to consist of 2" periodic points

of period 2" for n = 1, 2 , . . . together with the limit set of these periodic points which
is, essentially, the Morse minimal set.

We conclude with some remarks concerning the map if/ of the unit interval and
with computations of the characteristic exponents of the map </» (and ifr).

For further literature to be consulted which relates closely to this paper cf. [9],
[8], [5].
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Self-generation of self-replicating maps 199

I would like to acknowledge several interesting conversations with Bob Williams
and David Rand concerning my constructions.

The reader may find the following quotation from Warning to Children by Robert
Graves, a suitable preparation for the phenomena discussed in this paper:

Children leave the string untied!
For who dares undo the parcel
Finds himself at once inside it,
On the island, in the fruit,
Blocks of slate about his head,
Finds himself enclosed by dappled
Green and red, enclosed by yellow
Tawny nets, enclosed by black
And white acres of dominoes,
But the same brown paper parcel
Still untied upon his knee.
And, if he then should dare to think
Of the fewness, muchness, rareness,
Greatness of this endless only
Precious world in which he says
He lives - he then unties the string.

1. Geometric behaviour
Before constructing <t> let us look at some of the properties of maps (see figure 1)
satisfying <f>2(bx) = b<f>(x).

The Lorentz semi-flow is pictured in figure 3. Thus 4> maps [-b, 0] to [a, 1] and
[0, b] to [-1, - a ] . Between -a and -b and between b and a are two points of period
2 (figure Ha)).

FIGURE 3. Lorenz semi-flow. Phase space a branched surface with branch line [—b, b]. The point 0
moves toward a saddle point singularity, -b moves clockwise and over the picture to meet [-1,1] in a. b

moves anti-clockwise and behind the picture to meet [-1,1] in —a.

Such pictures can be repeated ad infinitum (figure 4(6)). Except for the two
periodic points, (-a, -b)<u(b, a) consists of wandering points. The self-replicating
behaviour of <f> is further illustrated by the period doubling pictured in figure 5.
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-a -b

FIGURE 4(a). The interval [-b, b] together with its <t> image.

FIGURE 4(b). The behaviour of <t> described in figure 4(a) is copied in [-6, b] with respect to <t>2

2. The construction
Let <f> be a map defined on [ - 1 , -d] u \—e, e] u [d, 1] with range a subset of [ -1 ,1] ,
where 0 < e < d < 1, satisfying:

(i) <£ is single-valued everywhere except at 0 (<£(0)= ±1)-
(ii) (j> is strictly increasing and continuous on [ - 1 , —d] u [—e, 0] (choosing <f>(0) =

1) with range a subset of [-b, 1].
(iii) <f>(x) = -<f>(-x).

Such a map will be called partially Lorenz.
If 4> satisfies
(iv) <f>(x) = (l/b)4>2(bx) (where 0 < b < 1), when both sides are denned, then <j> is

called self-replicating.
If 4> is denned on the entire interval [ -1 ,1] and satisfies (i), (ii), (iii), then <f> is called

a Lorenz map. Our aim is to construct self-replicating Lorenz maps.
Let 0<b<a<l and let <(>(-l) = -b, <f>{\) = b, <f>{-b) = a, <l>{b) = -a, <t>{-a) =

b2, 4>(a) = —b2. Moreover, let 4> be a strictly increasing continuous function defined
on [-a, 0] with <£(0) = l . Define <f> on [0, a ] by 4>{x) = -<f>{-x). Then <f> is a
self-replicating partial Lorenz map with domain {-1} u {1} u [-a, a ] , (iv) is satisfied
since x = ± 1 are the only points where both sides of this equation are defined and the
equation is satisfied for these points.

If xe[-a, 0] then <f>(x) is well defined and <f>(bx)e[<t>(-ba), 1]. (Note that
a =<f>(—b)<<f>(—ba).) Hence we can define <f>(y) = b<j>{x) for y = <f>(bx), x e [ - a , 0]

so that (iv) is satisfied. (If x = 0, then y = 1 and </>(l) = b, which agrees with the way
we defined </> initially.)

Similarly, or by symmetry, we can define <f> on [—l,<f>(ba)]. We now have <£
defined on

and -b2

so that <f> continues to satisfy (i), (ii), (iii).
Let the map x-*bx also be denoted by b then 4> (—ba) = (<f>b)2(l) and the domain of

4> is

[ - 1 , (4>b)\-\)] u [<t>b(l), 4>b{-m u [<^)2(D, 1].

Suppose we have extended <̂  to a self-replicating partially Lorenz map with domain

[ - 1 , (4>b)2n(-l)lv[(<t>b)2n-\l), (<f,b)2n-\-l)]u[(cf,b)2n(l), 1]

where these three intervals are pairwise disjoint.
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202 W. Parry

ltxe[(<t>b)2i"-1X-l)A<t>b)2n(-l)]then4>bxe
define <p{<j>bx) = b</>(x) and note that <j> so defined assigns the value

to

which is the correct value for consistency.
Again <f> can be defined on [(<#>)2ri+1(l), {<j>b)2n~'L{\)'\ by symmetry.
We should also note that <j>((<t>b)2n(-l))<<t>((<(>b)2n+\l)) since -b2n<b2n+l.

Hence (f> has been extended to a self-replicating partially Lorenz map denned on

[-1, (<t>b)2n(-l)]u[(<f>b)2n+1(l), ( ^ ) 2 n + 1 ( - l ) ]u [ (^ ) 2 " ( l ) , 1].

Note that (<f>b)2n(l) and (4>b)2n+1(-l) are decreasing and increasing sequences,
respectively.

Leta = lim (<#>)2"(l)and/3 = Iim(<£6)2"+1(-1), Q3<a), then we can define <£ on
n-»oo n-»oo

by cont inui ty, not ing tha t <£(a) = <£(/3) = 0 ( = lim b").
n-»oo

By the definition of a, /3 we have <f>b(a) = -/3, <t>b(fi) = -a.
At this point we make the following hypothesis:
The initial map 4> has the property that (<f>b)2 has no fixed point in [-1, -a].

(H.I)

This is satisfied in particular if

d>(x)-d>{x)
x-y b

for then

1
- v/hen-b<y<x<-ba, (H ' . l )

when-l<y<jc<-a.
x-y

Assuming (H.I) it is clear that a = (3 for otherwise (<j>b)2 would have a fixed point.
We have proved:

THEOREM 1. Let 0<b<a<l and let</> be a map defined on [~a, a] satisfying (H.I)
such that(f> is single-valued everywhere except at 0 (<£(0) = ± 1), <f>(-a) = b2,4>(-b) =
+a, 4> is strictly increasing and continuous in [-a, 0] (taking<j>{0) = 1), 4>(—x) = —<f>(x)
for all x € [-a, a ], then <f> can be uniquely extended to a self-replicating Ljorenz map on
[-1,1].

3. C1 conditions
Now let <f> be C 1 on [-a, 0], <f>(-b) = a, <f>(0) = 1, <f>{-a) = b2, <f> strictly increasing and
define cf>(x) = -<£(-*) for x e [0, a].

THEOREM 2. If the initial map <t> satisfies l/b><f>'(x)>l in (-b,O),<f>'(x)*O in
(-a, 0) and<t>'(-a)<f>'(-b) = 1, then the extended map 4>{cf. theorem 1) isC1 in [-1, 0]
and in [0,1].
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Self-generation of self-replicating maps 203

Proof. Since <£(*) = btf>((l/b)tff~l(x)) in a left neighbourhood of 1, we have

b I /

and, similarly, <£'(-l) = 1.
To prove that <f> is C 1 evidently we have to ensure the continuity of derivatives at

'junctions' {<f>b)n{\), {<j>b)"{-\) and at the limits a, f). This means that we need
<f>'(x) = </>'({!/b)4>~1(x))/<f>'(<f>~lx) at these junctions. In particular, we need

= 4>'(l • b)4>'(b) = l/4>'(-

which is one of our hypotheses.
For x between 1 and <f>(b)

)"-\x))...<f,'{bx)

so that

<t>'{b{4>b)n{l))---<t>Xb4>bl)

from one side and

from the other side.
These quantities are equal since

Hence <f> is C 1 at junctions (4>b)"(l) and, similarly, at junctions (<f>b)n(-l).
If y is close to a then y = (</>b)2nx for large n and some x. Hence

4>'{y)-<t>'((<t>b) "x)= \ 2 n - i / %-, T77Z~T-
<f>'(b(<t>b) (x)) • • • <f>'(bx)

Since <£ is C 1 on [-a, 0] and a < (<f>b)2x <<(>(—ab), the denominator grows exponen-
tially, so that <£'(y)-»0 as y^a+. Similarly, <f>'(y)^O as y -*/3_ = a_. The proof is
complete. •

4. Periodic repellors
Suppose <£ is a self-replicating map of [ -1 ,1] onto itself satisfying 4>(-x) = — 4>(x),
4>2(bx) = b<t>(x)v/heTe0<b<a < 1 and <f>(—b) = a. As we have noted, 4>(-a) = b2 so
that <t>2 maps [—a, —b] homeomorphically to an interval containing [-a, —b\ Hence
there is at least one point P2 e (-a, -b) such that 4>2(P2) = P2- We shall impose the
hypothesis

4>2 has only one fixed point in [-a, -*b] (H.2)

or

<t>'(x) > 1 in ( -a , -b) (H'.2)
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204 W. Parry

to ensure the uniqueness of P2 in (-a, —b). By symmetry we shall then also have
4>2(—P2) — ~Pi and hence <t>{Pz) = —Pi- Moreover, P2 and —P2 are repellors and, in
fact, if x 6 (-a, -b) and x *P2, then for some N, <f>n{x)£ (-a, -b)u (b, a) for all
n >JV. We therefore have:

LEMMA. Assuming (H.2), the non-wandering set of <f> is disjoint from

{-a,-b)Kj{b,a)-{±P2}.

5. The non-wandering set
Throughout this section we assume <f> is a self-replicating Lorenz map satisfying
(H.2).

We shall make use of the following (perhaps unecessarily strong) hypothesis:
The initial map (denned on [—a, a]) satisfies

*c*)z*(y)A (H,,1}

x-y b

when -b<y<x<0, where 0<A<l.

THEOREM 3. If <f> satisfies (H".l) and (H.2), then the non-wandering set is a Cantor
set, which is essentially the Morse minimal set, together with 2" points of period 2" for
each n = 1, 2 , . . . .
Proof. It is convenient to consider the map if/:[0, l]-»[0,1] obtained from <f> by
factoring the symmetry x -» -x. iff then satisfies: ip2{bx) = btf>(x), ip has only one fixed
point in (b, a) and \(if/(x) - <My ))/(* -y)\<\/b when ba < y < x < b, where 0 < A < 1.
We also note that i/KO) = 1, <lf(b) = a, i/»(a) = b2, ij/{a) = 0 and </f(l) = b. Moreover, i{/
is decreasing on [0, a ] and increasing on [a, 1]. i/> maps [0, b] onto [a, 1].

Let W denote the wandering set together with periodic points. W contains (b, a)
and, since <(/ is self-replicating, W contains b(b, a) = (b2, ba) and therefore ij/b(b, a)
(figure 6). Repeating this argument W contains

b\b, a), b(b, a), bil,b(b, a), (b, a), i(,b2(b, a), i(,b(b, a), (*b)2(b, a).

( ) f ) ( )
0 b(b, a) b a <lib(b,a) 1

FIGURE 6

This process can be continued indefinitely so that W contains the countable
collection *£ of open intervals generated by applying the maps b, & to the interval
(b, a) successively.

Suppose at any stage the maximum diameter of the complementary intervals is d.
Then all neighbouring intervals in ̂  are at most d apart. Applying b we then have
that neighbouring % intervals in [0, b] are at most bd apart and, applying if/,
neighbouring ^ intervals in [a, 1] are at most \d apart. Thus maximum diameters of
complementary intervals decrease to zero with the process. In other words, the union
of %> intervals is everywhere dense, which shows that Wc is nowhere dense. A simple
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Self-generation of self-replicating maps 205

compactness argument shows that Wc is uncountable, i.e. Wc is a Cantor set. From
this we conclude that the non-wandering set N of 4> consists of the periodic points
together with a Cantor set.

Let 70 = JVn[—1,0], Ii = Nn[0,1]. To each l e JVwe associate the sequence
00

x0, xi,... {xi = 0,1) if x e P) </>"IXn, and note that each x has a unique sequence

associated with it, unless some iteration of x equals zero. Moreover, no two points of
N have the same sequence associated with them for this would mean an interval of
points are non-wandering. Thus if we associate two sequences to zero and to all
points which iterate to zero we can identify the non-wandering set with the
corresponding set of sequences of zeros and ones.

Now N contains the points of period 2, 0101 . . . , and 1010. . . . Using the
self-replicating property of <j>, N contains the point in

[ - b , b ] n l o n < t > ~ 2 ( [ - b , b ] n I i ) n 4 , - 4 ( [ - b , b ] n l o ) n •••

= 01101001.. . .

Similarly, N contains the point 10010110.... In fact, N contains the point
01100110... and its 4-point periodic orbit. Again we can continue this line of
reasoning indefinitely. It clearly amounts to the permissibility of making the substi-
tutions 01 for 0 and 10 for 1. At the next stage, for example, N contains the point
0110100110010110 . . . and its 8-point orbit.

Clearly, then, N contains, for each n > 1, a periodic orbit of period 2".
Consider the Morse sequences (cf. [6], [7]) obtained by the following process:

01, 0110, 01101001,.. . , s.

It is not difficult to see that the compact set obtained as the limit set of s together with
its shift iterations is exactly the same as the limit of the set of periodic sequences
obtained above. We shall call this limit set (together with the shift) the Morse minimal
set. (Strictly speaking the Morse minimal set, as it appears in the literature, is
obtained from a two-sided infinite sequence.)

Thus N contains, together with the above periodic points, the Morse minimal set.
(Note, however, that the zero point is associated with the Morse sequence and its
reflection 10010110 )

Finally, we contend that N contains no other points. This can best be seen by
noting that, for every e > 0, N is contained in a finite union of closed intervals of
diameter less than e, and in each of these intervals there is a periodic point. Thus the
periodic points are dense in N.

6. The map ip
We conclude with a brief description of the map <//. Evidently, if we specify a strictly
decreasing continuous map tfi of [0, a] into [0,1] with the property that i/r(0) = 1,
il/(a) = b , tlr(b) = a (0<b<a<l), then iff can be extended uniquely to a continuous
map iA:[0, l]-»[0,1] which is strictly decreasing to some point /3 and strictly
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increasing in [a, 1] (where /3 £ a and if/ is zero on [j8, a] , a < (2 < a < 1) and which is
self-replicating (i/^fcc) = bij/(x)). If the initial map iff has only one fixed point in
[b, a], and i//b has no fixed points in [a, 1], then the fixed point is a repellor which
renders the points of (b, a) wandering (except for the fixed point) and i// is zero at only
one point (a =/3).

If in addition i/t is C1 and tf/'(a)if/'(b) = 1, then the extended </> is also C1 (even at a,
since i//'(a) = 0.)

If we assume |̂ r'(jc)| < k/b (in (0, b)) where 0 < A < 1, then the non-wandering set
of the extended if/ consists of a Cantor set together with 2" periodic points of period
2" for n= 0 , 1 , . . . .

The restriction of t// to the Cantor set is precisely the so-called adding machine, i.e.
the 2-adic integers together with the transformation which adds (1, 0, 0 , . . . ) to each
point.

This last result is achieved by factoring the Morse minimal set by the symmetry
x -» x' where x' is obtained from the sequence x by interchanging zeros and ones (cf.
[6], [7]). However, it is worth remarking that the result may be obtained directly from
our representation of the Morse minimal set and the properties of <f> and ifr.

7. Characteristic exponents
We shall omit the general theory of characteristic exponents and simply define these
quantities for piecewise C1 maps of an interval preserving an ergodic probability
measure.

Let / be a piecewise C1 map preserving the ergodic probability ft. Then

- log \(f)'(x)\ = - "l1 log |/'(f (x))| •* f log \f'(x)\ dn
n n ,=o J

for almost all x[fi].
We denote this limit by x»- It is known as the characteristic exponent of / with

respect to /M.
It is clear that, if 0 is a self-replicating Lorenz map satisfying (H'.2), (H".l) and

4>'(a)4>'(b) = 1, then it preserves only the following ergodic measures:
mu m2,..., m, where mn is the atomic measure assigning 1/2" to each point of the
periodic orbit of period 2", and m is the unique invariant probability on M
obtainable as the weak* limit of the measures mn.

We shall compute %n = Xmn, n = l,2,... ,x<x> = Xm- Let P2 be the point of period 2
in (-a, -b), then <f>'(P2)> 1 and

Xi = §[log <f>'(P2) + \og 4>'((f>P2)] = log <t>'(P2)>0.

Evidently, b"P2 = P2"
+i is a point of period 2"+1 (« = 0 ,1 , . . . ) , since <f>2fl(bnx) =

bn4>{x) and hence <f>2n+1 (bnP2) = <t>2"^>2"{bnP2) = <t>2"bn<l>P2 = b"(f>2P2 = bnP2.

Thus [<t>2l(bnx) = <f>'(x) and

Xn+x = ^ log [4>2l(b"P2) = jw log * ' ( P 2 ) = ^xi-

Finally, we show that #oo = 0. (We cannot justify the equation lim Xn = X<*> directly,
n-*oo

as log <£'(*) is not continuous since <£'(a) = 0.) We shall need the fact that <f> is
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Self-generation of self-replicating maps 207

essentially one-one with respect to m, a fact easily deducible from properties of the
Morse minimal set or from properties of the 2-adic adding machine.

Since 4>2bx = b<)>x we have 4>2bE = b<t>E for all Borel sets E, and hence

m<j>2bE = mbE = mb<f>E.

Thus mb is a <j> invariant measure. By the uniqueness of m this means that
mbE = K • mE for some constant K and all Borel sets E. Hence m[—b,b] = K.
However, <f>[—b, &] = [—1, - a ] u [ a , 1], which is disjoint from [—b,b], and
4>2[-b, b] = [-a, a~\ = \—b, fc]u(null set). Therefore m[—b,b~\ = \ (i.e. K = \). In
other words m6B = \mE for all Borel sets E.

f°
Let Jo = log 4,'(x) dm,

J—a

/„=[ log <f,'(x) dm
J(<*6)n[-a, 0]

= | +i \og<t>\x)dm, it = 1,2, . . . .

Using the fact that mZ>£ = |m£; for all Borel sets E, we have

By (3.1) we know that

and hence

/- = i f f log *'(*) dm-"£ f log <f>'(b(<f,bYx) dm).
1 \J-a 1=0 J-a /

Consequently,

I /-=/o+ I iU-f V=0 n = l / L J-a i=0

= 2/o= I f ^ r log <f>'(b(d>b)nx) dm

J
.O - 1 (.(*(> )(1)

log </>'(^) dm - log <£'(**) dm - log <f>'(bx) dm - •
- a J(*fc)2(l) J(<*fc)3(l)

= 2/0-f log<£'(*>*) d m - [ lOg^ ' (^)dm-f \og<f>'(bx)dm
J-a J-a Ja

= 2/o- log 4>'(bx) dm - log «̂ '(fex) dm
J-a J - l

r°
= 2/o- logd>'(bx)dm

J-i

r°
= 2/o-2 log<A'U)^m = 0.

J-(.
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Hence
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