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On certain theorems in Continued Fractions equivalent to
Riemann's and other Transformations of the P-function.

By E. LINDSAY INCE.

{Read 8th May 1914. Received '21st May 1914).

§ 1. Introduction.

The transformation of Continued Fractions into one another is a
subject in which very little work has so far been done. Beyond
the simple transformations given in works on elementary algebra, few
transformation-theorems are known ; the best known being those
connected with the " contraction " and " extension " of Continued
Fractions, and the transformations of Euler, Bauer and Muir.

The purpose of the following paper is to add to the number of
known transformations. The method used depends on the fact
that every linear differential equation of the second order leads to
a continued fraction, so that theorems involving the transformation
of one such differential equation into another would be expected to
lead to transformations of continued fractions hitherto unknown.

§ 2. The General Method.

be a linear differential equation of the second order; then if we
differentiate it with respect to the independent variable z we obtain
a linear differential equation of the third order. We may
eliminate y between equation (1) and this new equation, and thus
obtain an equation of the form

2k*wg-*w£-o „,
From this equation we obtain by differentiating with respect to

dy
z and eliminating — a third equation
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We may continue this process indefinitely; after n successive
differentiations and the corresponding eliminations we obtain the
equation

Now, denoting ~ by y'; —j^- by y", and so on, we obtain
€CZ CtZ

from equation (1) the relation

But ~- may be obtained from equation (2) in a similar form,

viz.
y" _ - g ,

y' y""

and thus we get the relation
j / = -q

•P \f'

Continuing this process, and making use of the ratios of
successive differential coefficients of y deduced from the equation

v'already obtained, we finally get the ratio — expressed in terms of

a continued fraction, viz.

tf_ = __£_ Si Si
y P - Pi - V'i- (3)

Next suppose that we apply the transformation
y = vd>(

to the differential equation (1), and that it is changed thereby
into the new equation

p
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From this new equation (5), by applying the process above
v

described, we obtain — in terms of a continued fraction, thus:
v

1. = _ .9. Si 3?
v P - P, - P , - (6)

when the Q's correspond to the q's of the original, equation and
those derived from it by the process of differentiation and elimina-
tion, and the P's in like manner to the p's.

Thus the transformation (4) converts the continued fraction of
equation (3) into that of equation (6), always provided, however,
that v is the same solution of equation (5) as y is of equation (1).
Thus if we denote the first continued fraction by F, we have,
applying the transformation (4),

1 dy _
y dz v<f>\

+• vd>'\

V~)

dashes denoting differentiation with respect to the new independent
variable x.

Now — is the continued fraction obtained frond the transformed
v

differential equation (5) and may be denoted by Gr.
Then we have the relation

or G = F f — (7)

The question as to whether v and y are oir are not the same
solution of the transformed and the original differential equation
will be discussed subsequently in the different cases.

§ 3. Application to equations of hypergeometric type.
In general, however, the successive differential equations become

more and more involved, so that it becomes extremely difficult to
obtain a general expression for the ntb derived equation.

Nevertheless-in certain simple cases we may proceed without
difficulty to the n01 derived equation and obtaiia the corresponding
continued fraction.
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Such a case arises in connection with the differential equation

^ ^ 0, (8)

where a, b, c, e,/and g are constants.
If we differentiate this with respect to the independent variable

z we obtain the equation

(az* + bz + c)^-+{(2a + e)z + (b +/)} ̂  + (e + g)d£ = 0,

in which the dependent variable y does not appear and no elimina-
tion is necessary.

By differentiating equation (8) n times we finally arrive at the
equation

(9)

These equations lead directly to the relation

g e + g 2a + 2e + g n(n-l)a + ne+g

y' d d d d
y ez+f _ (2a + e)z + (b+f) _ (4a + 3)z+(26+/) _ _ (2wa + e)z + (nb+f)

_ _
d d d •" d

-9 (e+g)d (2a + 2e + g)d {n(n -
- . . . - (2na + e)z + (nb + / ) - (10

where d s az1 + bz + c.

In order that this continued fraction may converge and thus
be of any practical utility, it is necessary that in the equation

d'v dv
(az2 + bz + c) -^ + (ez +/)-£ + 9V = 0

the first term az2 + bz + c = d should be of less importance than the
other two, so that a good approximation is obtained by discarding
it, in which case a first approximation to its value is

J<fy= 9
y dz ez+f

Thus in the case of the ordinary hypergeometric equation

(11)
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where 2 is small (i.e. near the singularity 0), the two last terms are
non-zero, but the first term tends to zero when z tends to zero, so
that here the condition is satisfied.

§4. Nature 0/the solution y in the preceding section.

In order to determine which solution of the differential equa-
tion (8) y happens to be, we may regard the matter from the point
of view of the Riemann P-function, which is defined as being any
solution of the generalised hypergeometric equation

dry [ (1-0.-0.' | 1-/3-/3' | \-y-y- \dy
dz* \ z-a z-b z-c / dz

+ (oM.\a-b)(a-c) + PP'(b-c)(b-a) + yy'jc - a)(c - b) \
\ z—a z-b z-c )

= 0 (12)
(z-a)(z-b)(z-c)

and is denoted by
a b c
a. j3 y z
a.' /3' i

The generalised hypergeometric equation has three regular singular
points a, b, c, with exponents a. and a.' at a, /? and /?' at b, and
y and y at c, respectively.

The P-function corresponding to the differential equation (8)
is of the form

P \ o. /3 y 2

' «•' /? i
where A and /* are the roots of the equation

0 (13)

Near the value A. of z, there will be two distinct expansions
of y.

One, viz. ylt is

2/l = (z-A)a+-A(*-A)a+1 + ...

whence y,' = o.(z - X.)0-1 + (a. + 1) A(z -k)a+...

and ^ - = ^
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For the other, yt, we shall have

The other notable solutions are as follows :

At infinity,
_ J_ A B

y * ~ ~~p+ « 4 - i •*• RJ-9.•*• • • • •

For this

y3' /? K" L" M"and ?L = --£- + — - + — + — + .
y3 z z* z> z*

. yt' P' K'" L'" M'"
soalso — = - — + - 2 - + - T + —r+

3 4

Near a = /x, we have, in like manner,

and

Our purpose is now to find out which of these ratios, viz.,

yi' y2 "• y*'

is represented by the continued fraction we have obtained.

Now any equation of the form (8) may be reduced to the form
of the ordinary hypergeometric equation,

by moving the singularities to the points 8 = 0 and s = l , and
making zero one of the exponents a. and a.' and one of y and / .

The corresponding P-function is

( 0 oo 1 \
P \ 0 a. 0 z [

I 1-y $ y-<*--P 1
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and the six notable solutions and the corresponding ratios — are

1 A,
m. y,= + 1

za za+I

A,

t

y-a.~B

Of these six solutions, the solution 2/1 corresponds to the solution
y = F(a, B, y, z) of the hypergeometric equation, where F(<x, B, yt z) is

the hypergeometric series 1 + , zH ^—-—'~^-——Lz2+...
1. y 1.2. y(y + 1)

Now a continued fraction corresponding to the hypergeometric
equation (11) is

\)z - (y + n) - (14)

But when z is zero this reduces to —, and consequently this

continued fraction is no other than — where yl is the solution
2/i

corresponding to the exponent 0 at the singularity 0. When z—\,

it reduces to ^-75—;, and hence represents —, thus also cor-
y-a.-B-\ r y,

responding to the exponent 0 at the singularity 1.

§ 5. Possible Transformations.

The problem now arises as to what transformations are applic-
able, i.e. what transformation would change equation (8) into
another equation from which a continued fraction could be com-
pletely determined.
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Obviously any transformation
y = v<j>(x)

z = yp{x)

which changed equation (8) into an equation of the form

(Axr + Bx + C)3-, + (Ex + F)-^ + Gv = 0x ax* dx
would satisfy these conditions, provided always that the solution of

this latter equation involved in the continued fraction — is that
v

solution which corresponds to the solution of the former equation

(8) involved in the continued fraction —.
If

To obtain such a transformation, we again have recourse to
Riemann's P-function. The P-function corresponding to equation
(8) is

( X 00 fl. "I

0 fi 0 z \

*' P i J
where a.' = 1 -\— 4 T

0 „ e Ve2 + o2 - 2ae - 4ag
a a

e l

aa a
and A. and fi are as already denned.

Thus any such transformation which changes

P ] 0 f3 0 2 L
I a.' /3' i \

into

( A oo M |

0 B 0 x \
A' B' F )

is suited to our purpose. Several such transformations are known
to exist, and examples of their application are given in the
following sections.
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§6. Riemann's Transformation.

It is, of course, not necessary to know the transformation
itself, provided we are given a relation between two P-functions,
for we can construct directly the differential equation cor-
responding to each of them and at once proceed to the relation
between the corresponding continued fractions.

One such relation between two P-functions is given by Riemann,
viz.

O o o l \ / - 1 oo 1
o / 8 O z - l = P < ^ 0 2(i 0 z
} f* i > ' 7' 2/3' y'

The P-function on the left hand closely resembles that corre-
sponding to the ordinary hypergeometric equation

provided that for x we write s2 and for c we substitute the particular
value \.

Then if /3 = a, f¥ = 6, and y = | - a - b the relation becomes

( O o o 1 A ( ~ 1 °° *• 1

0 a O a : l = p | o 2a 0 z W15')
J 6 %-a-b J { %-a-b 26 \-a-b J

By comparing the right hand member of this equation with the
P-function of equation (8) we easily find that it corresponds to the
differential equation

(s2 - 1) ^ - + (2a + 26 + 1 ) ^ + iaby = 0.
From this we obtain the continued fraction

dy _ - iab (2a + - ... - (2a + 26 + 2n+ l)z - (16)
It appears from this expression, and from the differential

equation from which it is derived, that this C.F. is not convergent
near the origin. In fact, from the corresponding P-function we see
that the origin is not a singularity in the case, whereas in the left
hand P-function, the origin is a singular point.

Now the continued fraction we derived in a previous section
from the hypergeometric equation was shown to correspond to the
solution y = F(a, 6, c, z) which is an expansion in the domain of the
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singularity z = 0, and thus these two continued fractions may not
be equivalent in this particular region.

We must therefore find out which of the other five distinct
solutions of the hypergeometric equation really is equivalent to the
continued fraction (16). This continued fraction is obviously con-
vergent in the domains of the singularities z=\ and z = - 1, so
that the appropriate solution of the hypergeometric equation is one
which is convergent near one or other of these singular points.

The six distinct solutions of the hypergeometric equation may
be denoted by Y,, YS) ... Y6, which is the notation adopted by Forsyth
(Differential Equations, § 123). Of these Yj and Y2 are expansions
in the domain of z - 0 with exponents 0 and 1 - c respectively >
Y5 and Y6 are expansions at infinity with exponents a and b; all
these are to be excluded. The expansions near the singularity z = 1
are Y3 and Y4, the exponents being 0 and c-a-b respectively.

Our continued fraction (16) corresponds to an expansion with
exponent 0 at the singularity z = 1, so that of the solutions of the
hypergeometric equation Y3 is to be taken.

A typical member of the class Y3 is
y5 = F(o, b, a + b - c + 1, 1 - a;),

which gives

<fy5 -ab
dx ~ (a + b

(a + n)(b + n)(l -x)x
...+(a + b + 2

-ab
c-(a + b + l)x - (c+ 1) - (a + b + 3)x - . . .

{a + n)(b + n)x(x - 1)

... - (c + ra) - (a + b + 2n+ \)x- ...
where x = z2,

n)z-(z2-l)
) ^ ) - (a + b + 2

ys dz '2z
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Thus the required relation becomes
-ab

1 r -lab (2
= ~ 2«\ (2a+ 26+1)2 -

(17)
which is convergent in the domain of the singularity s2= 1.

§ 7. Another Transformation of the P-function.

We have seen (§5) that the P-function corresponding to the
equation

{az> + bz + cfjL + (ez+fyj!- + gy = O (8)
cLz dz

is
f X oo fi

I 0 j8 0

The transformation of the dependent variable from y to w by
the substitution

(z - k\S
y=[ — ) M

gives us the relation

(
k oo p 1

0 j8 0 z [
+ afr-k) P +«(X-ft) j

/ k 00 /X

Is ^ s
= P

 1 + ^ ± / + 8 ft- 1 +

This second P-function is of the same form as the first if

and
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and these conditions are satisfied if

When e and f have these particular values we are able to deduce a
continued fraction-relation equivalent to the relation between the
two P-functions.

The equation (8) becomes, on substituting for e and f their
values as given above,

(az- + bz + c)-~ + [2az -a(A + /t) + a8(\ - p))-^ + gy = Q (19)
dz- dz

from which we obtain the relation

y dz 2az + a8(k - fj.) - a(k + n) - iaz + aS(k - fi) - 2a(k + p) -

{n(n+ l)a + g}a(z - k)(z- /x)

The transformed P-function has the form

k oc fx

8 IS -S z
0 p 0

or
k oo /x

0 P' 0

«/*+/ « i | ek+f

the equation corresponding to which is

d?u du
(az2 + bz + c) + \2az — a(k + p) — aS(k — u)} ——Ygu = 0 (20)

dz dz
whence we derive the relation
1 du —g (2a + g)a(z — k)(z — fj.)
u dz 2az — a8(k — //.) — a(k + /J.) — iaz - aS(k — /x) — 2a

... - 2(n+ \)az -aS(k - p) - (n+l)a(k+n) -

Now y = I
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Hence
logy = 81og(z - p) - 81og(z - X) + logu,

and
1 dy _ 8 8 1 du
yd z — /x z — X u dz

8(/x - A.) \_du
(z-X)(z-/x) u dz'

Thus we obtain the following relation between two continued
fractions

Zi
2oz-a8(X-/*)-a(X + / i ) - 4oz - a8(X -/n) - 2a(A+ / * ) - . .

{n(n + l)a + y}a(z - X)(z - /J.)

-/x)-o(X + p) - 4a«+a8(X - /*)-
{n(n+ 1)« + g}a(z - X)(z - p)

For the particular case of the ordinary hypergeometric equation
a ( z " i ) 3 " + { " z + ( t t + ^ + i M ^ + o L ^ = o

we have a = l , X = 0, /*=1,

a. + j8 + l = e = 2,
and OLJ8 = g.

The relation between the continued fractions now becomes

-9 (g + 2)z(z-l) (g + 6)z(z-l) {n(n+
2 - 6z + 8-3 - . . . - 2(n+

-8 -g (g + 2)z(z-l) (g + 6)z(z-l) {n(n + 1) + g}z(z- I)
= z(«-l) 2z-8-l - 4z-8-2 - 6z-8-3 - ... - 2(n+ l)z-8- (n + 1) - ...

(9*0) ...(22)

The expansions of the two P-functions involved are the same in
the two cases, as they correspond to the expansions at the
singularity X (or p) with exponent zero, and thus the above
equation (21) is valid, except at the points z = X and z = p.
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§8. The Hypergeometric Function.

As is shown in text books on differential equations, e.g.
Forsyth, §117, the hypergeometric equation admits of 24 particular
solutions: we have seen that there are six distinct solutions at
various points in the z-plane, and consequently these 24 solutions
may be collected into six groups of 4, the four solutions in each
group being fundamentally the same.

Thus, for example, adopting the usual notation, we have

and these may be transformed into the corresponding members of
the other groups.

Now yl = F(a, b, c, z),

whence

dy-i -ab (a + 1)(6 + l)z(z - 1) (a + n)(b + n)z(z - 1) *
yx dz ~ (a + b + l)z-c -(a + H3)z- (c+ l ) - ... - (a + b + 2n+ \)z - (c + 2) - ... (23)

also yt = (1 - z)'—" F(e-a,e-b,e,z),

whence

I dys c-a-b ~(c-a)(c-b) (c - a+ l)(e - b+ l)z(z - 1)
~ • + -dz 1-ss (2c-a-b+l)z~c - (2c - a - b + S)z - (c+ 1) -

(c - a + n)(c - b + n)z(z - 1)
. . . - ( 2c - a -6 + 2n+l)s-(c + «) - (24)

/ z \
Again, yn = {1 - z)~" F(a, c - b, c, —— J,

whence

-a(c-b) (a + l)(c - b + l)g

^ '

similarly from y18 = (1 - z)-"¥fb, c - a, c, - \ we obtain

1 dyw b I f -b(c-a)
d« = 1 - z-z- l\(b - a + l)« + c - (6 - 0 +2)z +(c +1) -

n)(c-
• •(26) ..
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Now these four solutions y» j / 2 , y17, yls are identical, and con-
sequently the four continued fractions (23)—(26) derived from them
by the same process in all cases are identical.

The hypergeometric series is, however, only convergent in the
region \z\ < 1, so that at the point z = 1 and outside the unit circle
enclosing the origin the continued fraction relations given above do
not hold. This limitation also applies in the cases of the relations
between continued fractions derived from the hypergeometric
equation in a later section of this paper.

§ 9. Other relations deduced from hypergeometric functions.

In addition to the identities between hypergeometric functions
utilised in the preceding section, several important relations are
known connecting different hypergeometric series, which would be
expected to give rise to relations involving continued fractions.
Thus from an equation given by Gauss, viz.

(1 + «)a"F(2o, 2a + 1 - c, c, 2) = F (a, a + J, c, ( 1 + ^ a ) .

is obtained the relation

a (l+z) / 2a(2a + l - c) (2a + l)(2a + 2 - c)z(z - 1)
2(l-z)~4(l-z)\X4a~+T-e)z-c - (4a + 4 - c)z - ( 1)

(2a + n)(2a + n- c)z(z - 1)
... - (4a + 2ra + 2 - c)z - (c + n) - ...

+ (27)

Another equation given by Gauss, viz.

(1 + z)*"F(a, o + J - 6, 6 + i, «?) = F(a, b, 26,

gives rise to the following continued fraction relation
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+ \ 2a -6 + f)z2-(6 + £) - (2a - 6 + £)«s - (6 + §)

116 }

v

(a + 6 + 1)4* - 26(1 + zf - (a + 4 + 3)4z- (26 + 1)(1 +z)2 -

- . . . ( 2 8 )

Another relation between two continued fractions arises out of an equation given
by Kummer, viz.

F(o, b, a + b + £, sin2e) = F^ 2a, 2b, a + b + \, sin2— J,

from which we derive the following:—

-(2a+26+l)cos0 + ~(2a+26 + 3)cos0+.. + - (2a + 26 + 2« +

(o+ 1 )(6+ 1 )sin30cos20 (a + n)
l;cos20 + i} - (a + b + 3)cos-'0 +. . .+2»i±-(a

(29)
or if cos# = z.

2a6

„ ( • ai (a+l)(6+l)sin30cos20 (a + n)(6 +ra)sin2^cos2^ \

_ I <* («+l)(6 + l)S
2(l-s2) (a + n)(b + n)z-(l-z*) \

\ %-(a + b+l)z*+ | _ ( a + 6 + 3)z2 + ... + *!±L - (a + b + 2 n + l)z2 + . . . / ( " '•... + '^±L - (a + 6 + 2n + 1 )z"

when | z \ < 1.

Kummer also gives the following relation

2 6 3 ; \ 2 ' 6 ' 3
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a+1 2a + 2
•, sin520 I, the continued fraction corre-.2 ' 6 ' 3

sponding to it is
-a(q+l)

J_ dy 12
V <*(sin«20W2« 7 \ t!>a_2a+2

12

1 dy

s2tf) 4(cos"0 - sins0)'

Also, if t> = F( —-, —^—, —-—, —- ) then the corresponding
\ 2 o 3 cos 0 J

continued fraction is

-a (a+ l ) (a + 2)(a
dV —- ——12 12 cos80

» /-4sin^\ _/2a 7 \4sin'fl 2a+ 2 _ /2a 19\4sin^ 2a+ 5
\ COS v / \ o O / COSC o \ o O / COS C/ o

(a + n)(a + 6n + 1)
12 ' cos'g

/2a 12n + 7\4sini!g
~\T+ 6 / " 4 y6 //"cos4y 3

Now 1 dy
y d(cos

1
4«<

> —a
W) cos'l

, 1
9+ v

cos'6
l)cossfl-2

dt.

d(cos^)

from which we may deduce another continued fraction relation, viz.
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- 4cos202*i _ - 12

(a + 2n)(a + 6n +

(a+2)(g +
o cos*0-2

COS v COS v

2a I (31)

All the relations between continued fractions which are
derived from equations between hypergeometric functions must be
identically true, since an equation between the hypergeometric
functions implies that they are the same solution of the same
differential equation.

In conclusion, I must thank Professor Whittaker, at whose
instigation this present research was begun, for encouragement and
advice given to me during its progress.

https://doi.org/10.1017/S0013091500035094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035094



