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Orthogonal invariance of CAR algebras

Let (Y, ν) be a real Hilbert space.
Recall that O(Y) denotes the group of orthogonal operators on Y and that

o(Y) denotes the Lie algebra of bounded anti-self-adjoint operators.
The main aim of this chapter is to discuss the invariance of CAR algebras

(mostly C∗- but also W ∗-CAR algebras) with respect to the orthogonal group.
We will restrict ourselves to the results that are independent of a representation.
In particular, they will not involve any Fock representation nor a distinguished
Kähler structure. Orthogonal invariance of CAR algebras on Fock spaces will be
studied separately in Chap. 16.

To some extent, this chapter can be viewed as an analog of Chap. 10 about
the symplectic invariance of CCR in finite dimensions. However, in this chapter
we consider the case of an arbitrary dimension, since for the CAR this does not
introduce any serious additional difficulties, unlike for the CCR.

14.1 Orthogonal groups

14.1.1 Group O1(Y)

Recall that if dimY is finite, besides the group O(Y) and the Lie algebra o(Y)
we have the group SO(Y) :=

{
r ∈ O(Y) : det r = 1

}
. If dimY is arbitrary, we

still have O(Y) and o(Y), but there seems to be no analog of SO(Y). However,
there exists a natural extension of the triple

(
O(Y), SO(Y), o(Y)

)
to infinite

dimensions described in the following definition:

Definition 14.1 Set

O1(Y) :=
{
r ∈ O(Y) : r − 1l ∈ B1(Y)

}
,

SO1(Y) :=
{
r ∈ O1(Y) : det r = 1

}
,

o1(Y) := o(Y) ∩B1(Y).

We equip all of them with the metric given by the trace-class norm.

Proposition 14.2 (1) O1(Y) is a group and SO1(Y) is its subgroup.
(2) We have an exact sequence of groups

1 → SO1(Y) → O1(Y) → Z2 → 1. (14.1)

(3) o1(Y) is a Lie algebra and if a ∈ o1(Y), then ea ∈ SO1(Y).
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352 Orthogonal invariance of CAR algebras

Proof We use the fact that the determinant is a homomorphism of O1(Y) onto
{1,−1}. �

We have the following characterization of elements of SO1(Y):
Theorem 14.3 Let r ∈ O1(Y). Then dim Ker(1l + r) is finite. Besides, the fol-
lowing conditions are equivalent:

(1) r ∈ SO1(Y).
(2) dim Ker(1l + r) is even.
(3) There exists a ∈ o1(Y) such that ea = r.

Proof Let us prove (2)⇒(3).
Case 1. Assume Ker(1l + r) = {0}. We complexify Y and consider rC ∈ U(CY).
Since Ker(1l + rC) = {0} and rC − 1l is compact, we see that

spec rC ⊂
{
eiφ : φ ∈]−π, π[

}
.

Take e.g. the principal branch of the logarithm (which maps C\]−∞, 0] onto
{−π < Im z < π}) and define b := log rC. b is an anti-self-adjoint operator, b ∈
B1(CY) and rC = eb . It is real, so there exists a ∈ o1(Y) such that b = aC.
Case 2. Assume that r = −1l and dimY is finite and even. We choose an o.n.
basis (e1 , . . . , e2n ), and set cei := en+i , cen+i := −ei . Then c2 = −1l, c ∈ o1(Y)
and etc = 1l cos t + c sin t. Thus eπc = −1l.

In the general case we set Ysg := Ker(1l + r) and Yreg := Y⊥
sg . These are invari-

ant subspaces of r, so that we can apply case 1 and case 2 to them respectively.
Using that the determinant is continuous in the trace norm topology, we see

that t �→ det eta is continuous for a ∈ o1(Y), which proves (3)⇒(1).
Let us prove (1)⇒(2). Assume that dim Ker(1l + r) is odd. Let y0 ∈ Ker(1l + r)

be a unit vector and r0 := 1l− 2|y0〉〈y0 |. Then rr0 ∈ O1(Y) and Ker(1l + rr0) =
Ker(1l + r)' Ry0 . Hence, dim Ker(1l + rr0) is even. Therefore, det rr0 = 1. Not-
ing that det r0 = −1, this implies det r = −1. �

14.1.2 Group Op(Y)

There exist other useful extensions of the triple
(
O(Y), SO(Y), o(Y)

)
to infinite

dimensions, which we consider in this subsection.
Throughout this subsection, 1 ≤ p ≤ ∞. Recall that Bp(Y) denotes the p-th

trace ideal, B∞(Y) the ideal of compact operators on Y.

Definition 14.4 Set

Op(Y) :=

{{
r ∈ O(Y) : r − 1l ∈ Bp(Y)

}
, 1 ≤ p <∞;{

r ∈ O(Y) : r − 1l ∈ B∞(Y)
}
, p = ∞;

op(Y) :=

{
o(Y) ∩Bp(Y), 1 ≤ p <∞;

o(Y) ∩B∞(Y), p = ∞.

We equip all of them with the topology of Bp(Y), resp. B∞(Y).

https://doi.org/10.1017/9781009290876.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.015


14.1 Orthogonal groups 353

Clearly, Op(Y) ⊂ Oq (Y) and op(Y) ⊂ oq (Y) for p ≤ q.
The determinant is not defined on the whole of Op(Y) for p > 1, which makes

the definition of SOp(Y) harder than that of SO1(Y). Nevertheless, the following
analog of Thm. 14.3 can be shown:

Theorem 14.5 Let r ∈ Op(Y). Set C(ε) := {z ∈ C : |z| = 1, |z − 1| > ε}. Then
for any ε > 0, dim 1lC (ε)(r) is finite. Besides, the following conditions are equiv-
alent:

(1) For ε > 0, dim 1lC (ε)(r) is even.
(2) dim Ker(1l + r) is even.
(3) There exists a ∈ op(Y) such that ea = r.

Proof r − 1l is compact, hence dim 1lC (ε)(r) is finite for ε > 0.
(1)⇒(2) is obvious. To prove (1)⇐(2) we note that for any λ ∈ spec r we have

dim 1l{λ}(r) = dim 1l{λ}(r).
To show (2)⇔(3) we repeat verbatim arguments of the proof of Thm. 14.3

(2)⇔(3). �

Definition 14.6 The set of r ∈ Op(Y) satisfying the conditions of Thm. 14.5
is denoted by SOp(Y). We will write det r = 1 for r ∈ SOp(Y) and det r = −1
for r ∈ Op(Y)\SOp(Y), even though, strictly speaking, the determinant is not
defined on SOp(Y).

Proposition 14.7 (1) Op(Y) is a group and SOp(Y) is its subgroup.
(2) We have an exact sequence of groups

1 → SOp(Y) → Op(Y) → Z2 → 1. (14.2)

(3) op(Y) is a Lie algebra, and if a ∈ op(Y), then ea ∈ SOp(Y).

Proof Clearly, SO1(Y) sits inside SOp(Y). Let us show that SO1(Y)cl =
SOp(Y).

First note that the condition (1) of Thm. 14.5 implies that SOp(Y) is closed
inside Op(Y).

Let r ∈ SOp(Y). Using Thm. 14.5 (3), we can write r = ea with a ∈ op(Y).
Using the spectral decomposition of a, we can approximate it with an ∈ o1(Y),
so that an → a. Hence, ean → r with ean ∈ SO1(Y). Hence, the closure of SO1(Y)
contains SOp(Y).

Similarly, we show that (O1\SO1(Y))cl = Op(Y)\SOp(Y). In fact, every r ∈
Op(Y)\SOp(Y) can be written as r = κr0 with κ = 1l− 2|e〉〈e| and r0 ∈ SOp(Y).
We approximate r0 with elements of SO1(Y) as above.

(2) follows then from the corresponding statement in Prop. 14.2. �
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354 Orthogonal invariance of CAR algebras

14.2 Quadratic fermionic Hamiltonians

Recall that Op(b) denotes the anti-symmetric quantization of an anti-symmetric
polynomial b ∈ CPola(Y# ). In this section we study quadratic fermionic
Hamiltonians, that is, quantizations of elements from CPol2a(Y# ). We will also
describe some situations where a quadratic fermionic Hamiltonian can be well
defined even though its symbol is not of finite rank.

14.2.1 Fermionic harmonic oscillator

Let e1 , e2 ∈ Y be an orthonormal pair of vectors in Y. Consider the following
operator in CARC ∗

(Y), which can be viewed as a fermionic analog of the har-
monic oscillator:

H := φ(e1)φ(e2).

Clearly, H = Op(ζ), where ζ = e1 ⊗a e2 . If we consider ζ as an element of
La(Y# ,Y), then ζ = 1

2

(|e1〉〈e2 | − |e2〉〈e1 |
)
. Straightforward computations yield

the following properties of the fermionic harmonic oscillator:

Proposition 14.8 (1) H2 = −1l, H = −H∗, spec (iH) = {−1, 1};
(2) etH = cos t1l + (sin t)H, in particular, e±

π
2 H = ±H;

(3) etH φ(y)e−tH = φ(e4tζ ν−1
y), y ∈ Y, in particular,

Hφ(y)H−1 = φ (y − 2e1〈e1 |y〉 − 2e2〈e2 |y〉) .

Let y1 , y2 ∈ Y be a pair of normalized vectors with 〈y1 |y2〉 = cos θ. Let e1 , e2

be any o.n. basis of Span(y1 , y2) with the same orientation as that of y1 , y2 . Then

φ(y1)φ(y2) = cos θ1l + sin θφ(e1)φ(e2)

= eθφ(e1 )φ(e2 ) = Op(cos θ + sin θe1 ·e2).

14.2.2 Commutation properties of quadratic fermionic

Hamiltonians

The following theorem can be viewed as the fermionic analog of Thm. 10.13 (1).

Theorem 14.9 Let χ ∈ CPol2a(Y# ) and b ∈ CPola(Y# ). Then

[Op(χ),Op(b)] = 2Op
(
(∇χ) · ν∇b

)
; (14.3)

1
2
(
Op(χ)Op(b) + Op(b)Op(χ)

)
= Op

(
χ · b +∇v ·ν(∇(2)χ)ν∇v b

)
. (14.4)

(In the above expression, ∇(2)χ is considered as an element of Ls(Y# ,Y) and
∇v ·ν(∇(2)χ)ν∇v is a differential operator acting on the anti-symmetric polyno-
mial b.)
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14.2 Quadratic fermionic Hamiltonians 355

Proof Let us use the “functional notation”for anti-symmetric polynomials. Thus
v1 , v2 are “generic variables” in Y.

If deg b1 or deg b2 is equal to 2, then

e∇v 2 ·ν∇v 1 b1(v1)b2(v2) = b1(v1)b2(v2) + ∇v2 ·ν∇v1 b1(v1)b2(v2)

+
1
2
(∇v2 ·ν∇v1 )

2b1(v1)b2(v2).

We insert v1 = v2 = v, switch to the coordinate notation as in the proof of
Prop. 12.42, and use the summation convention. We obtain that the symbol of
Op(b1)Op(b2) equals

b1b2 + (−1)deg b1 −1νij (∇v j b1)∇v i b2

−1
2
νi,i′νj,j ′ (∇v i ′∇v j ′ b1)∇v i∇v j b2 . (14.5)

The formula for Op(b2)Op(b1) coincides with (14.5), except that the second term
changes sign. Then we replace b1 , b2 with b, χ. �

In what follows it will be convenient to change slightly the parametrization of
quadratic fermionic Hamiltonians.

Definition 14.10 Bfd
a (Y# ,Y) will denote the space of finite rank anti-symmetric

operators, that is, Ba(Y# ,Y) ∩Bfd(Y# ,Y).

Every χ ∈ CPol2a(Y# ) (a complex homogeneous anti-symmetric quadratic
polynomial on Y# ) can be represented as

Y# × Y# � (v, w) �→ χ(v, w) = v·ζw, (14.6)

for ζ ∈ CBfd
a (Y# ,Y). Therefore, we have an identification CPol2a(Y# ) �

CBfd
a (Y# ,Y). Note that ∇χ(v) = 2ζv and ∇(2)χ = 2ζ.

Definition 14.11 We will write Op(ζ) for the anti-symmetric quantization of
(14.6).

Clearly, if we choose orthonormal coordinates in Y# , then (14.6) equals

v·ζw =
∑

1≤i,j≤m

ζij viwj ,

where [ζij ] is an anti-symmetric matrix and its quantization equals

Op(ζ) =
m∑

i,j=1

φiζijφj . (14.7)
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356 Orthogonal invariance of CAR algebras

14.2.3 Quadratic Hamiltonians in C∗-CAR algebras

It is natural to extend the definition of quadratic fermionic Hamiltonians to
symbols that are not finite rank. In this subsection, we will consider quadratic
Hamiltonians inside the algebra CARC ∗

(Y).

Definition 14.12 B1
a (Y# ,Y) will denote the space of trace-class anti-symmetric

operators, that is, Ba(Y# ,Y) ∩B1(Y# ,Y).

Theorem 14.13 (1) The map CBfd
a (Y# ,Y) � ζ �→ Op(ζ) ∈ CARC ∗

(Y)
extends by continuity to ζ ∈ CB1

a (Y# ,Y).
(2) Let ζ ∈ B1

a (Y# ,Y). Then Op(ζ) is self-adjoint,

‖Op(ζ)‖ = Tr|ζν|, inf Op(ζ) = −Tr|ζν|, sup Op(ζ) = Tr|ζν|. (14.8)

(3) If ζ1 , ζ2 ∈ CB1
a (Y# ,Y), then

[Op(ζ1),Op(ζ2)] = 4Op(ζ1νζ2 − ζ2νζ1). (14.9)

Thus

o1(Y) � a �→ 1
4
Op(aν−1) ∈ CARC ∗

(Y)

is a homomorphism of Lie algebras, where CARC ∗
(Y) is equipped with the

commutator.

Proof Assume first that Y is of finite dimension. Let ζ ∈ Ba(Y# ,Y). By Corol-
lary 2.85, we can find an orthonormal system {ei,±}i∈I and positive real numbers
{λi}i∈I such that

ζν =
m∑

i=1

λi

(|ei,−〉〈ei,+ | − |ei,+ 〉〈ei,−|
)
. (14.10)

Then

Op(ζ) :=
∑
i∈I

2λiφ(ei,−)φ(ei,+). (14.11)

Using the Jordan–Wigner representation adapted to the above o.n. basis, we see
that

spec Op(ζ) =
{∑

i∈I
λiεi , εi = ±1, i ∈ I

}
.

Note that

|ζν| =
∑
i∈I

λi

(|ei,−〉〈ei,−|+ |ei,+ 〉〈ei,+ |
)
.

Therefore, Tr|ζν| =∑i∈I λi . This implies (14.8) in the finite-dimensional case.
In the case of ζ ∈ B1(Y# ,Y) in arbitrary dimension, we can still use Corollary

2.85 to find an orthonormal system {ei,±}i∈I and positive real numbers {λi}i∈I
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14.2 Quadratic fermionic Hamiltonians 357

such that (14.10) is true. Note that the sum in (14.11) is convergent, which allows
us to define Op(ζ). An obvious approximation argument extends (14.8) to the
infinite-dimensional case.

Let us prove (14.9). By (14.3) applied to χi ∈ Pola(Y# ), i = 1, 2,

[Op(χ1),Op(χ2)] = 2Op
(
(∇χ1) · ν∇χ2

)
. (14.12)

Let us compute the symbol on the r.h.s. of (14.12):(
(∇χ1) · ν∇χ2

)
(v, w)

=
1
2
(∇χ1(v) · ν∇χ2(w)−∇χ2(v) · ν∇χ1(w)

)
, v, w ∈ Y# .

Then we use ∇χi(v) = 2ζiv, obtaining (14.9). �

14.2.4 Quadratic Hamiltonians in W ∗-CAR algebras

Let us now consider quadratic fermionic Hamiltonians in the setting given by
the algebra CARW ∗

(Y).

Definition 14.14 Let B2
a (Y# ,Y) denote the set of Hilbert–Schmidt anti-

symmetric operators from Y# to Y, that is, B2
a (Y# ,Y) := Ba(Y# ,Y) ∩

B2(Y# ,Y).

For simplicity, let us assume that Y is infinite-dimensional separable. Let ζ ∈
B2

a (Y# ,Y). By diagonalizing ζν, we can bring it to a diagonal form:

ζν =
∞∑

i=1

λi

(|ei,−〉〈ei,+ | − |ei,+ 〉〈ei,−|
)
. (14.13)

Set

Hn :=
n∑

i=1

2λiφ(ei,−)φ(ei,+).

Proposition 14.15 For any t ∈ R, there exists the strong limit

s − lim
n→∞ eitHn . (14.14)

The limit (14.14) defines a one-parameter strongly continuous unitary group.
It can be written as eitH , where H is a certain self-adjoint operator, possibly
unbounded. We denote H by Op(ζ).

If ζ ∈ B1
a (Y,Y# ), then the above defined Op(ζ) coincides with that defined in

Thm. 14.13. Furthermore, the definition does not depend on the choice of an
ordered o.n. basis diagonalizing ζ. Moreover, Op(ζ) is affiliated to CARW ∗

(Y).

Proof It is enough to suppose that (ei,−, ei,+ : i = 1, 2, . . . ) is an o.n. basis. We
use the inductive limit of the representation described in Subsect. 12.4.3. Thus
CARW ∗

(Y) is represented on the infinite tensor product of grounded Hilbert
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spaces

∞⊗
i=1

(
B2(C2),

1√
2
1l
)

.

The operator eitHn acts in this representation as the multiplication from the
right by

n⊗
i=1

[
eitλi 0
0 eitλi

]
⊗ ∞⊗

i=n+1

[
1 0
0 1

]
.

Set

Ω :=
∞⊗

i=1

1√
2

[
1 0
0 1

]
.

Clearly,

(Ω|eitHn Ω) =
n∏

i=1

cos tλi. (14.15)

(14.15) converges as n →∞ iff
∑∞

i=1 λ2
i < ∞. But by Thm. 3.16, the convergence

of (14.15) is equivalent to the ∗-strong convergence of eitHn . �

14.3 Pinc and Pin groups

We keep the same notation as in the rest of the chapter. In particular, (Y, ν) is
a real Hilbert space.

The groups Pinc(Y) and Pin(Y) are well known in finite dimensions. It is
convenient to consider them as subgroups of the ∗-algebra CAR(Y), resp. its
real sub-algebra Cliff(Y).

Recall that these algebras are equipped with the parity automorphism α. As
usual, the set of even, resp. odd elements of CAR(Y) is denoted CAR0(Y), resp.
CAR1(Y).

In this section we concentrate on generalizing the groups Pinc(Y) and Pin(Y)
to infinite dimensions. The first generalization will involve subgroups of the alge-
bra CARC ∗

(Y), and the second those of CARW ∗
(Y).

14.3.1 Pinc and Pin groups in finite dimensions

In this subsection we assume in addition that the dimension of Y is finite. Let us
describe the well-known results about Pinc and Pin groups in finite dimensions.
We do not give their proofs, which are well known. Besides, they will follow from
the more general results about the infinite-dimensional case to be described later
on.
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14.3 Pinc and Pin groups 359

Definition 14.16 We define Pinc(Y) as the set of all unitary elements U in
CAR(Y) such that {

Uφ(y)U∗ : y ∈ Y} =
{
φ(y) : y ∈ Y}.

We set

Spinc(Y) := Pinc(Y) ∩ CAR0(Y),

P in(Y) := Pinc(Y) ∩ Cliff(Y),

Spin(Y) := Spinc(Y) ∩ Cliff(Y).

The following theorem is immediate:

Theorem 14.17 Let U ∈ Pinc(Y). Then there exists a unique r ∈ O(Y) such
that

Uφ(y)U∗ = det(r)φ(ry), y ∈ Y. (14.16)

The map Pinc(Y) → O(Y) obtained this way is a homomorphism of groups.

Definition 14.18 If (14.16) is satisfied, we say that U det-implements r.

Note that in the context of CAR and Clifford algebras, the concept of det-
implementation turns out to be more natural than that of implementation.

Theorem 14.19 Let r ∈ O(Y).

(1) The set of elements of Pin(Y) det-implementing r consists of a pair of oper-
ators differing by sign, ±Ur = {Ur ,−Ur}.

(2) The set of elements of Pinc(Y) det-implementing r consists of operators of
the form μUr with |μ| = 1.

(3) r ∈ SO(Y) iff Ur is even; r ∈ O(Y)\SO(Y) iff Ur is odd.
(4) If r1 , r2 ∈ O(Y), then Ur1 Ur2 = ±Ur1 r2 .

The above statements can be summarized by the following commuting diagrams
of Lie groups and their continuous homomorphisms, where all vertical and hor-
izontal sequences are exact:

1 1
↓ ↓

1 → U(1) → U(1) → 1
↓ ↓ ↓

1 → Spinc(Y) → Pinc(Y) → Z2 → 1
↓ ↓ ↓

1 → SO(Y) → O(Y) → Z2 → 1
↓ ↓ ↓
1 1 1

(14.17)
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1 1
↓ ↓

1 → Z2 → Z2 → 1
↓ ↓ ↓

1 → Spin(Y) → Pin(Y) → Z2 → 1
↓ ↓ ↓

1 → SO(Y) → O(Y) → Z2 → 1
↓ ↓ ↓
1 1 1

(14.18)

1 1 1
↓ ↓ ↓

1 → Z2 → U(1) → U(1) → 1
↓ ↓ ↓

1 → Pin(Y) → Pinc(Y) → U(1) → 1
↓ ↓ ↓

1 → O(Y) → O(Y) → 1
↓ ↓
1 1

(14.19)

It is well known that SO(Y) is connected and its fundamental group
π1(SO(Y)) equals Z if dimY = 2 and Z2 if dimY > 2. Thus SO(Y) possesses a
unique two-fold covering group, equal to its universal covering if dimY > 2. This
two-fold covering is isomorphic to Spin(Y).

14.3.2 Pinc
1 and Pin1 groups

In this subsection we allow dimY to be arbitrary.

Definition 14.20 Define Pinc
1(Y) as the set of unitary operators U in

CARC ∗
(Y) such that{

Uφ(y)U∗ : y ∈ Y} =
{
φ(y) : y ∈ Y}.

Set

Spinc
1(Y) := Pinc

1(Y) ∩ CARC ∗
0 (Y),

P in1(Y) := Pinc
1(Y) ∩ CliffC ∗

(Y),

Spin1(Y) := Pin1(Y) ∩ CliffC ∗
0 (Y).

We equip all these groups with the metric given by the operator norm.

The concept of implementability has an obvious definition:

Definition 14.21 Let U ∈ CARC ∗
(Y) and r ∈ O(Y).

(1) We say that U intertwines r if

Uφ(y) = φ(ry)U, y ∈ Y. (14.20)
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(2) If in addition U is unitary, then we also say that U implements r.
(3) If there exists U ∈ CARC ∗

(Y) that implements r, then we say that r is imple-
mentable in CARC ∗

(Y).

A more useful concept is given in the definition below.

Definition 14.22 Let r ∈ O(Y).

(1) We say that A ∈ CARC ∗
(Y) α-intertwines r ∈ O(Y) if

α(A)φ(y) = φ(ry)A,

or, equivalently, Aφ(y) = φ(ry)α(A), y ∈ Y. (14.21)

(2) If in addition A is unitary, then we also say that A α-implements r.
(3) If there exists U ∈ CARC ∗

(Y) that α-implements r, then we say that r is
α-implementable in CARC ∗

(Y).

We will see later that if there exists an invertible A α-intertwining r, then
necessarily r ∈ O∞(Y) (actually, r ∈ O1(Y)). Therefore, det r is well defined by
Def. 14.6, and we can introduce the following definition, essentially equivalent to
α-implementability.

Definition 14.23 Let r ∈ O∞(Y).

(1) We say that A ∈ CARC ∗
(Y) det-intertwines r if

Aφ(y) = det r φ(ry)A, y ∈ Y. (14.22)

(2) If in addition A is unitary then we also say that A det-implements r.
(3) If there exists U ∈ CARC ∗

(Y) that det-implements r, then we say that r is
det-implementable in CARC ∗

(Y).

The following two theorems are the main results of this subsection.

Theorem 14.24 (1) Let r ∈ O(Y). Then r is det-implementable in CARC ∗
(Y)

iff r is α-implementable in CARC ∗
(Y) iff r ∈ O1(Y).

(2) Let U ∈ Pinc
1(Y). Then there exists a unique r ∈ O1(Y) such that r is det-

implemented and α-implemented by U in CARC ∗
(Y). The map Pinc

1(Y) →
O1(Y) obtained this way is a homomorphism of groups.

Theorem 14.25 All the statements of Thm. 14.19 are true if we replace O(Y),
SO(Y), Pinc(Y), Spinc(Y), Pin(Y), Spin(Y) with O1(Y), SO1(Y), Pinc

1(Y),
Spinc

1(Y), Pin1(Y), Spin1(Y).

Before we prove Thms. 14.24 and 14.25, let us show the following lemma.

Lemma 14.26 Let r ∈ O(Y). Then the following is true:

(1) If A α-intertwines r, then A is either even or odd.
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362 Orthogonal invariance of CAR algebras

(2) If there exists an invertible A α-intertwining r, then r ∈ O∞(Y).
(3) If A ∈ CARC ∗

(Y) α-intertwines r, then A det-intertwines r.

Proof Let U = U0 + U1 ∈ CARC ∗
(Y) α-intertwine r with U0 even and U1 odd.

Then

(U0 + U1)φ(y) = φ(ry)(U0 − U1), y ∈ Y. (14.23)

Comparing even and odd terms in (14.23), we obtain

U0φ(y) = φ(ry)U0 , U1φ(y) = −φ(ry)U1 , y ∈ Y. (14.24)

Hence, U∗
0 U0 and U∗

1 U1 commute with φ(y), y ∈ Y. Clearly, they are even. Hence,
by Prop. 12.61, they are proportional to identity. Hence, the operators Ui are
proportional to a unitary operator.

(14.24) implies also that U∗
1 U0 anti-commutes with φ(y), y ∈ Y. By Prop. 12.61

this implies that U∗
1 U0 is even. But U∗

1 U0 is odd. Hence, U∗
1 U0 = 0. Thus one of

the Ui is zero. This proves (1).
Let us now prove (2). Let an invertible U ∈ CARC ∗

(Y) α-intertwine r. Assume
that r �∈ O∞(Y). Then there exists a sequence yn ∈ Y with w − lim yn = 0 and
yn − ryn �→ 0. It follows that Uφ(yn )∓ φ(yn )U → 0 in norm, if U is even, resp.
odd. Hence, φ(ryn − yn )U , and consequently φ(ryn − yn ) tend to 0 in norm,
which is a contradiction.

Now set Ysg = Ker(1l + r). Let Esg be the associated conditional expectation.
Then for y ∈ Ysg we have

Usgφ(y) = ∓φ(y)Usg ,

if U is even, resp. odd and Usg = Esg (U) ∈ CAR(Ysg ). By Prop. 12.36, this
implies that dim Ker(1l + r) is even, resp. odd, i.e. det r = ±1. Therefore, U also
det-intertwines r. �

The following proposition gives another possible equivalent definition of the
Spin group. It follows easily from the commutation properties of quadratic Hamil-
tonians.

Proposition 14.27 Spin1(Y) consists of operators of the form eOp(ζ ) where
ζ ∈ B1(Y# ,Y). More precisely, let r ∈ SO1(Y). By Thm. 14.3, there exists a ∈
o1(Y) such that r = ea . Then

±Ur = ±e
1
4 Op(aν−1 ) ∈ CliffC ∗

0 (Y) (14.25)

intertwines r.

Proof of Thm. 14.24. Let r ∈ SO1(Y). Then r is det-implementable by Prop.
14.27. Since Ur in (14.25) is even, r is also α-implementable. Thus Spin1(Y) →
SO1(Y) is onto.

If r ∈ O1(Y)\SO1(Y), choose any e ∈ Y of norm 1. Set κe := 1l− 2|e〉〈e|.
Clearly, φ(e) implements −κe . Hence, κer ∈ SO1(Y) and r is det-implemented by
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14.3 Pinc and Pin groups 363

±φ(e)Uκe r . Since φ(e)Uκe r is odd, r is also α-implementable. Thus Pin1(Y) →
O1(Y) is onto.

Now let r ∈ O(Y) be α-implementable. By Prop. 14.26, r ∈ O∞(Y) and r is
also det-implementable. It remains to prove that r ∈ O1(Y). Without loss of
generality we may assume that Y is separable.

Assume first that r ∈ SO∞(Y). By Thm. 14.5, there exists a ∈ o∞(Y) such
that r = ea . By Corollary 2.85, there exists an o.n. basis (ei±)i∈N and real num-
bers λi ≥ 0 such that

a =
∑
i∈N

λi

(|ei−〉〈ei+ | − |ei+ 〉〈ei−|
)
.

We set Yn = Span{ei±, 1 ≤ i ≤ n}. Let En be the conditional expectation asso-
ciated with Yn . Set Un = En (U), where U ∈ CARC ∗

0 (Y) implements r. Also set

Vn = exp

(
n∑

i=1

λi

2
φ(ei+)φ(ei−)

)
.

Applying Prop. 14.8 and Prop. 6.83, we obtain

Vnφ(y) = φ(ry)Vn , Unφ(y) = φ(ry)Un, y ∈ Yn .

Hence, by Prop. 12.61, Un = λnVn , λn ∈ C. Clearly, En−1(Un ) = Un−1 , and com-
puting in the real-wave representation we see that En−1(Vn ) = Vn−1 , hence λn

does not depend on n.
Since by (12.34) Un → U in norm, it follows that Vn converges in norm.
Now set Ai = φ(ei+)φ(ei−), so that, by Prop. 14.8,

Vn =
n

Π
i=1

e
λ i
2 Ai =

n

Π
i=1

(
cos(λi/2)1l + sin(λi/2)Ai

)
.

Computing in the real-wave representation, we check that

(Ω|VnΩ) =
n

Π
i=1

cos(λi/2). (14.26)

Therefore, the infinite product Π
i∈N

cos(λi/2) converges, and hence

Π
i∈N

(1l + tan(λi/2)Ai) converges in norm. Since the Ai commute,

this implies that the product Π
i∈N

‖1l + tan(λi/2)Aj‖ converges. Since

‖1l + tan(λi/2)Ai‖ = 1 + tan(λi/2) for i large enough, this implies that
the series

∑
i∈N

λi is convergent. Hence, a ∈ o1(Y) and r ∈ SO1(Y).

Assume now that r ∈ O∞(Y)\SO∞(Y). Let U ∈ CARC ∗
1 (Y) α-intertwine r.

Then, as above, φ(e)U ∈ CARC ∗
0 (Y) implements rκe ∈ SO∞(Y). Hence, rκe ∈

SO1(Y) and r ∈ O1(Y). �

Proof of Thm. 14.25. We deduce the theorem from Thm. 14.19, reducing
ourselves to the finite-dimensional case by the same argument as in Prop.
12.61. �
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364 Orthogonal invariance of CAR algebras

The implementability of Bogoliubov rotations can be easily deduced from the
results about the det-implementability.

Corollary 14.28 r ∈ O(Y) is implementable in CARC ∗
(Y) iff

(1) r ∈ SO1(Y)
or

(2) −r ∈ O1(Y)\SO1(Y).

14.3.3 Pinc
2 and Pin2 groups

In this subsection we again allow dimY to be arbitrary.

Definition 14.29 Define Pinc
2(Y) as the set of unitary operators U in

CARW ∗
(Y) such that{

Uφ(y)U∗ : y ∈ Y} =
{
φ(y) : y ∈ Y}.

Set

Spinc
2(Y) := Pinc

2(Y) ∩ CARW ∗
0 (Y),

P in2(Y) := Pinc
2(Y) ∩ CliffW ∗

(Y),

Spin2(Y) := Pin2(Y) ∩ CliffW ∗
0 (Y).

We equip all these groups with the σ-weak topology.

We also have the obvious analogs of Defs. 14.21, 14.22 and 14.23, with
CARC ∗

(Y) replaced with CARW ∗
(Y).

Theorem 14.30 (1) Let r ∈ O(Y). Then r is det-implementable in CARW ∗
(Y)

iff r is α-implementable in CARW ∗
(Y) iff r ∈ O2(Y).

(2) Let U ∈ Pinc
2(Y). Then there exists a unique r ∈ O2(Y) such that r is det-

implemented by U . The map Pinc
2(Y) → O2(Y) obtained this way is a homo-

morphism of groups.

Proof We can follow closely the proofs in Subsect. 14.3.2, with some modifica-
tions. Instead of Prop. 12.61 we use Prop. 12.62.

First we show that if r ∈ O2(Y), then r is α-implementable and det-
implementable, following the proof of the C∗ case, using Prop. 14.15 instead
of Thm. 14.13.

It remains to prove that if r is α-implementable, then r ∈ O2(Y). r ∈ O∞(Y)
is proved as in the proof of Lemma 14.26, replacing the norm convergence by the
σ-weak convergence.

We then follow the proof of Thm. 14.24, and obtain that Vn converges in the
σ-weak topology. We are left to prove that

∑
λ2

i is convergent. But this follows
from (14.26). �
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Theorem 14.31 All the statements of Thm. 14.19 are true if we replace O(Y),
SO(Y), Pinc(Y), Spinc(Y), Pin(Y), Spin(Y) with O2(Y), SO2(Y), Pinc

2(Y),
Spinc

2(Y), Pin2(Y), Spin2(Y).

Again, the implementability of Bogoliubov rotations can easily be deduced
from the results about the det-implementability.

Corollary 14.32 r ∈ O(Y) is implementable in CARW ∗
(Y) iff

(1) r ∈ SO2(Y)
or

(2) −r ∈ O2(Y)\SO2(Y).

14.3.4 Symbol of elements of Spin(Y)

We again assume that Y is finite-dimensional, although the results of this sub-
section are easily generalized to an arbitrary dimension. In this subsection we
study the anti-symmetric symbol of elements of the Spin group.

Proposition 14.33 Let a ∈ o(Y). Then

e
1
4 Op(aν−1 ) = Op

(
(det cosh(2a))

1
2 e

1
2 tanh(2a)ν−1

)
. (14.27)

Proof By Corollary 2.85, there exists an orthonormal system (ei,±)i=1,...,n and
positive numbers (λi)i=1,...,n such that

a =
n∑

i=1

ai, ai =
λi

2
(|ei,−〉〈ei,+ | − λi |ei,+ 〉〈ei,−|

)
.

Note that [ai, aj ] = 0 and
[
Op(aiν

−1),Op(ajν
−1)
]

= 0.
Therefore,

ea =
n∏

i=1

eai , e
1
4 Op(aν−1 ) =

n∏
i=1

e
1
4 Op(ai ν

−1 ) ,

and we can assume without loss of generality that

dimY = 2, a =
λ

2
(|e1〉〈e2 | − |e2〉〈e1 |

)
, Op(aν−1) = λφ(e1)φ(e2).

By Prop. 14.8, we know that

eOp(aν−1 ) = cos λ + (sin λ)φ(e1)φ(e2)

= Op
(
cos λ

(
1l + λ−1(tan λ)aν−1)

))
.

Thus the anti-symmetric symbol of e
1
4 Op(aν−1 ) equals

cos λ
(
1l + λ−1(tan λ)aν−1) = (cos2 λ)

1
2 eλ−1 (tan λ)aν−1

=
(
det cosh(2a)

) 1
2 e

1
2 tanh(2a)ν−1

,

where we have used cos λ1l = cosh(2a) and λ−1(tan λ)a = 1
2 tanh(2a). �
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Definition 14.34 We say that r ∈ O(Y) is regular if Ker(r + 1l) = {0}.

Proposition 14.35 Let r ∈ O(Y) be regular. Let γ ∈ o(Y) be its Cayley trans-
form, that is, γ = 1l−r

1l+r (see Subsect. 1.4.6).
Then

Ur = ±Op
(
det(1l− γ)−

1
2 e

1
2 γν−1 )

. (14.28)

Proof We can assume that r = ea with a ∈ o(Y). Moreover, by Prop. 14.8 we
have

e
1
4 Op(aν−1 )φ(y)e−

1
4 Op(aν−1 ) = φ(eay).

Next we note that tanh(1
2 a) = r−1l

r+1l = γ, cosh( 1
2 a) = e−

1
2 a(1l− γ)−1 . Since

det e
1
2 a = 1, this proves (14.28). �

Let r1 , r2 ∈ SO(Y), r = r1r2 . We know that

Ur1 Ur2 = ±Ur . (14.29)

It is instructive to prove this fact for regular r1 , r2 , r by a direct calculation
involving the Berezin calculus.

Let γ1 , γ2 , γ be the Cayley transforms of r1 , r2 , r. By Prop. 12.42, Ur1 Ur2 has
the anti-symmetric symbol

det(1l− γ1)−
1
2 det(1l− γ2)−

1
2

×
ˆˆ

e(v−v1 )·ν−1 (v−v2 )e
1
2 v1 ·γ1 ν−1 v1 e

1
2 v2 ·γ2 ν−1 v2 dv2dv1

= det(1l− γ1)−
1
2 det(1l− γ2)−

1
2

×
ˆˆ

eθ ·(v1 ,v2 )+(v1 ,v2 )·σ (v1 ,v2 )dv2dv1 , (14.30)

where

θ := (−ν−1v, ν−1v), σ :=
[

γ1ν
−1 ν−1

−ν−1 γ2ν
−1

]
.

By Prop. 7.19, (14.30) equals

det(1l− γ1)−
1
2 det(1l− γ2)−

1
2 Pf(σ) exp(

1
2
θ·σ−1θ). (14.31)

Next Pf(σ) = ±det(σ)
1
2 . Since the Pfaffian and the determinant above are

computed w.r.t. a volume form compatible with the Euclidean structure ν, we
have

det(σ) = det
[

γ1 1l
−1l γ2

]
= det(1l + γ1γ2),
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using (1.4). By (1.49), we know that

(1l− γ) = (1l− γ2)(1l + γ1γ2)−1(1l− γ1). (14.32)

This implies that the first line of (14.31) equals det(1l− γ)−
1
2 .

By (1.3),

σ−1 =
[

νγ2(γ1γ2 + 1l)−1 −ν(γ2γ1 + 1l)−1

ν(γ1γ2 + 1l)−1 νγ1(γ2γ1 + 1l)−1

]
.

Therefore,

θ·σ−1θ

= v· (γ2(γ1γ2 + 1l)−1 + γ1(γ2γ1 + 1l)−1 + (γ2γ1 + 1l)−1 − (γ1γ2 + 1l)−1) ν−1v

= v· (1l− (1l− γ2)(1l + γ1γ2)−1(1l− γ1)
)
ν−1v

= v·γν−1v.

14.4 Notes

The so-called spinor representations of orthogonal groups were studied by Cartan
(1938) and Brauer–Weyl (1935).

The first famous non-trivial application of the orthogonal invariance to quan-
tum physics seems to be the version of the BCS theory due to Bogoliubov,
described e.g. in Fetter–Walecka (1971).

A very comprehensive article devoted to CAR C∗-algebras was written by
Araki (1987). More literature references to the subject of this chapter can be
found in the notes to Chap. 16.
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