ON EXPONENTIAL SUMS OVER AN ALGEBRAIC NUMBER FIELD

LOO-KENG HUA

1. Introduction

LET K be an algebraic field of degree n over the rational field, and let δ be the ground ideal (differente) of the field. Let

$$f(x) = a_k x^k + \ldots + a_1 x + a_0$$

be a polynomial of the kth degree with coefficients in the field K, and let \mathfrak{a} be the fractional ideal generated by a_k, \ldots, a_1 , that is, $\mathfrak{a} = (a_k, \ldots, a_1)$. Suppose $\mathfrak{a}\mathfrak{b} = \mathfrak{r}/\mathfrak{g}$, where \mathfrak{r} and \mathfrak{g} are two relatively prime integral ideals, and

$$S(f(x), \mathfrak{q}) = S(f(x)) = S(\mathfrak{q}) = \sum_{x \mod \mathfrak{q}} e^{2\pi i \operatorname{tr}(f(x))},$$

where x runs over a complete residue system, mod q. It is the aim of the paper to prove the following:

THEOREM 1. For any given $\epsilon > 0$, we have

$$S(f(x), \mathfrak{q}) = O(N(\mathfrak{q})^{1-1/k+\epsilon})$$

where the constant implied by the symbol O depends only on k, n and ϵ .

As usual, we use tr(a) and N(q) to denote the trace of a number a and the norm of an ideal q of K respectively.

This is a generalization of a theorem of the author's [1] over the rational field. The method used here is simpler and quite different from the original one.

1. A theorem on congruences

THEOREM 2. Let \mathfrak{p} be a prime ideal and let s(x) be a polynomial with integral coefficients, mod \mathfrak{p} . Let \mathfrak{a} be a root of multiplicity m of the congruence

$$s(x) \equiv 0 \pmod{\mathfrak{p}}.$$

Let λ be an integer, divisible by \mathfrak{p} but not by \mathfrak{p}^2 , and let u be the greatest integer such that \mathfrak{p}^u divides all the coefficients of $s(\lambda x + a) - s(a)$. Let

$$t(x) \equiv \lambda^{-u}(s(\lambda x + a) - s(a)) \pmod{\mathfrak{p}}$$

be a polynomial with integral coefficients. Then $u \leq m$, and the congruence

 $t(x) \equiv 0 \pmod{\mathfrak{p}}$

has at most m solutions.

Received September 14, 1949.

Proof. Without loss of generality, we may assume that a = 0. Then

$$s(x) = x^m s_1(x) + s_2(x), s_1(0) \not\equiv 0 \pmod{\mathfrak{p}}$$

where $s_2(x)$ is a polynomial of degree less than m and all its coefficients are divisible by \mathfrak{p} . Now we have

$$s(\lambda x) = \lambda^m x^m s_1(\lambda x) + s_2(\lambda x).$$

Since the coefficient of x^m is equal to $\lambda^m s_1(0)$ which is not divisible by \mathfrak{p}^{m+1} , we have $u \leq m$.

Since $\lambda^{-u}s(\lambda x)$ is congruent to a polynomial of degree not exceeding m, mod \mathfrak{p} , the theorem follows.

Remark. u is independent of the choice of λ . In fact, let λ' be another integer having the same property, then we have an integer τ such that

$$\lambda \equiv \lambda' \tau \pmod{\mathfrak{p}^{u+1}}, \mathfrak{p} + \tau.$$

Then

$$s(\lambda x + a) - s(a) \equiv s(\lambda'(\tau x) + a) - s(a) \pmod{\mathfrak{p}^{u+1}}$$

3. Several lemmas concerning algebraic numbers

Let g be an ideal, fractional or integral, and a be an integral ideal. It is clear that g|ga.

Now we divide the elements of \mathfrak{g} into residue classes according to the modulus \mathfrak{ga} . The number of different classes is known to be $N(\mathfrak{a})$. We take an element from each class; the set so formed is called a complete residue system of \mathfrak{g} , mod \mathfrak{ga} .

The definition of the ground ideal δ can be stated in the following way:

 δ^{-1} is the aggregate of all numbers ξ of K

such that

$$e^{2\pi i \operatorname{tr}(\xi a)} = 1$$

for all integers a of K. Consequently, if β belongs to $(qb)^{-1}$ and $a_1 \equiv a_2 \pmod{q}$, then

$$e^{2\pi i \operatorname{tr} (\beta a_1)} = e^{2\pi i \operatorname{tr} (\beta a_2)}.$$

This asserts that the sum S(f(x), q), which was defined at the beginning of the paper, is independent of the choice of the residue system, mod q.

THEOREM 3. Let q be an integral ideal. As ξ runs over a complete residue system of $(q\delta)^{-1}$, mod δ^{-1} , we have, for integral a,

$$\sum_{\boldsymbol{\xi}} e^{2\pi i \operatorname{tr}(\boldsymbol{\xi} \boldsymbol{\alpha})} = \begin{cases} N(\boldsymbol{\mathfrak{q}}) & \text{if } \boldsymbol{\mathfrak{q}} \mid \boldsymbol{\alpha}, \\ 0 & \text{if } \boldsymbol{\mathfrak{q}} + \boldsymbol{\alpha}. \end{cases}$$

Proof. If $\mathfrak{q} \mid \mathfrak{a}$, then $\xi \mathfrak{a}$ belongs to \mathfrak{d}^{-1} . Then $e^{2\pi i \operatorname{tr} (\xi \mathfrak{a})} = 1$ for all ξ . Hence, we have the first conclusion.

If $\mathfrak{q}+\mathfrak{a}$, there is an element ξ_0 , which belongs to $(\mathfrak{d}\mathfrak{q})^{-1}$, but $\xi_0\mathfrak{a}$ does not belong to \mathfrak{d}^{-1} . In fact, if for all ξ_0 belonging to $(\mathfrak{d}\mathfrak{q})^{-1}$ we have $\xi_0\mathfrak{a}$ belonging to \mathfrak{d}^{-1} , then we have

$$\mathfrak{d}^{-1} \mid \mathfrak{a}(\mathfrak{d}\mathfrak{q})^{-1}.$$

Consequently $q \mid a$. This is impossible. By the definition of b^{-1} there is an integer γ such that

$$e^{2\pi i \operatorname{tr}(\gamma \xi_0 a)} \neq 1.$$

Since $\gamma \xi_0$ belongs to $(\mathfrak{dq})^{-1}$, we can write $\gamma \xi_0 = \xi_1$. Then

$$\sum_{\xi} e^{2\pi i \operatorname{tr} (\xi a)} = \sum_{\xi} e^{2\pi i \operatorname{tr} ((\xi + \xi_1)a)}$$
$$= e^{2\pi i \operatorname{tr} (\xi_1 a)} \cdot \sum_{\xi} e^{2\pi i \operatorname{tr} (\xi a)}.$$

Thus we have the second conclusion of our theorem.

4. Proof of the theorem for q = p

In case q is a prime ideal \mathfrak{p} , the exponential sum considered here reduces to a type of exponential sum over a finite field which has been discussed before [2]. But the author could not find an easy way to establish an explicit relationship between the exponential sums considered here and those over a finite field. Also, for the sake of completeness, the following proof is included here. The method is an adaptation of one due to Mordell [3].

THEOREM 4. We have

$$|S(f(x), \mathfrak{p})| \leq k^n N(\mathfrak{p})^{1-1/k}.$$

Proof. Without loss of generality, we may assume that a_k does not belong to b^{-1} , for otherwise

$$S(f(x), \mathfrak{p}) = S(f(x) - a_k x^k, \mathfrak{p}),$$

since $e^{2\pi i \operatorname{tr} (a_k x^k)} = 1$ for all integral x. Thus we now assume that a_k belongs to $(\mathfrak{pb})^{-1}$ but not to \mathfrak{b}^{-1} . The theorem is trivial for $N(\mathfrak{p}) \leq k^n$, since

$$|S(f(x), \mathfrak{p})| \leq N(\mathfrak{p}) \leq k^n N(\mathfrak{p})^{1-1/k}$$

Now we assume $N(\mathfrak{p}) > k^n$ and consequently $\mathfrak{p} + k!$ We have

$$|S(f(x))|^{2k} = \frac{1}{N(\mathfrak{p})(N(\mathfrak{p}) - 1)} \sum_{\substack{\lambda \mod \mathfrak{p} \\ \mu \mod \mathfrak{p}}} |S(f(\lambda x + \mu))|^{2k},$$

where λ runs over a reduced residue system, mod \mathfrak{p} . Write

$$f(\lambda x + \mu) = \beta_k x^k + \ldots + \beta_0,$$

where

(1)
$$\beta_k \equiv a_k \lambda^k \pmod{\mathfrak{d}^{-1}}$$

(2)
$$\beta_{k-1} \equiv k a_k \lambda^{k-1} + a_{k-1} \lambda^{k-1} \pmod{\mathfrak{d}^{-1}},$$

and so on.

For fixed β_k , β_{k-1} , . . . belonging to $(\mathfrak{pb})^{-1}$, the number of integers λ and μ does not exceed k. In fact, (1) asserts that $\beta_k - a_k \lambda^k$ belongs to \mathfrak{b}^{-1} . (β_k and a_k belong to $(\mathfrak{pb})^{-1}$.) There is an integer τ belonging to \mathfrak{pb} but not to \mathfrak{p} . Consequently τa_k and $\tau \beta_k$ are integers and $\mathfrak{p} + \tau a_k$; the congruence $\tau \beta_k \equiv \tau a_k \lambda^k$ (mod \mathfrak{p}) has evidently at most k solutions. For a fixed λ , the same argument proves that μ is uniquely determined by (2), since $\mathfrak{p} + k$.

Therefore, we have

$$S(f(x), \mathfrak{p}) \Big|^{2k} \leq \frac{k}{N(\mathfrak{p}) \ (N(\mathfrak{p})-1)} \sum_{\beta_k} \cdots \sum_{\beta_1} \Big| S(\beta_k x^k + \ldots + \beta_1 x) \Big|^{2k},$$

where each β runs over a complete residue system of $(\mathfrak{pb})^{-1}$, mod \mathfrak{b}^{-1} .

We have

$$\sum_{\beta_k} \cdots \sum_{\beta_1} \left| S(\beta_k x^k + \ldots + \beta_1 x) \right|^{2k} = \sum_{\beta_k} \cdots \sum_{\beta_1} \sum_{x_1} \cdots \sum_{x_k} \sum_{y_1} \cdots \sum_{y_k} e^{2\pi i \operatorname{tr}(\psi)}$$
$$= N(\mathfrak{p})^k M,$$

where

$$\Psi = \beta_k (x_1^k + \ldots + x_k^k - y_1^k - \ldots - y_k^k) + \beta_{k-1} (x_1^{k-1} + \ldots + x_k^{k-1} - y_1^{k-1} - \ldots - y_k^{k-1}) + \ldots + \beta_1 (x_1 + \ldots + x_k - y_1 - \ldots - y_k),$$

and, by Theorem 3, M is equal to the number of solutions of the system of congruences

$$x_1^h + \ldots + x_k^h \equiv y_1^h + \ldots + y_k^h, \mod \mathfrak{p}, \qquad 1 \leq h \leq k.$$

By a theorem on symmetric functions, we deduce immediately

$$(X - x_1)...(X - x_k) \equiv (X - y_1)...(X - y_k), \mod \mathfrak{p},$$

since $\mathfrak{p} + k!$ Then we have that x_1, \ldots, x_k are a permutation of y_1, \ldots, y_k and then

$$M \leq k! N(\mathfrak{p})^k.$$

Consequently, we have

$$\left|\begin{array}{c}S(f(x), \mathfrak{p})\end{array}\right|^{2k} \leqslant \begin{array}{c} \frac{k \cdot k \,!}{N(\mathfrak{p})(N(\mathfrak{p})-1)} & N(\mathfrak{p})^{2k}\\ \leqslant \begin{array}{c}2k \cdot k \,! N(\mathfrak{p})^{2k-2}\\ \leqslant \begin{array}{c}k^{2k} N(\mathfrak{p})^{2k-2}\end{array}\end{array}$$

and the theorem follows.

5. Proof of the theorem for $q = p^{l}$

THEOREM 5. If
$$q = p^l$$
, and p is a prime ideal, then
(1) $|S(f(x), p^l)| \leq k^{2n+1}N(p^l)^{1-1/k}$.

Proof. Let

 $\mathfrak{b} = (k\mathfrak{a}_k, (k-1)\mathfrak{a}_{k-1}, \ldots, 2\mathfrak{a}_2, \mathfrak{a}_1).$

Evidently $\mathfrak{a} \mid \mathfrak{b}$. Let *t* be the highest exponent of \mathfrak{p} dividing $\mathfrak{b}\mathfrak{a}^{-1}$. Let *m* be the number of solutions, multiplicities being counted, of the congruence

(2) $f'(x) \equiv 0 \pmod{\mathfrak{p}^{t+1-l}}$

as x runs over a complete residue system, mod \mathfrak{p} . (We have $m \leq k - 1$.)

Evidently, (1) is a consequence of the sharper result

(3)
$$|S(f(x), \mathfrak{p}^l)| \leq k^{2n} \max(1, m) N(\mathfrak{p}^l)^{1-1/k}.$$

If $t \ge 1$, then \mathfrak{p}^t divides at least one of the integers $k, k = 1, \ldots, 1$. Then

 $N(\mathfrak{p}^t) \leqslant k^n$

(4) $N(\mathfrak{p}) \leqslant k^{n/t}.$

Suppose that l < 2(t + 1). For t = 0, we have l = 1 and (3) follows from Theorem 4. If $t \ge 1$, then, by (4)

$$\begin{split} \left| \begin{array}{l} S(f(x), \mathfrak{p}^{l}) \right| &\leq N(\mathfrak{p})^{l} \leq (N(\mathfrak{p}))^{l(1-1/k)} (N(\mathfrak{p}))^{(2l+1)/k} \\ &\leq N(\mathfrak{p})^{l(1-1/k)} k^{n(2+1/l)/k} \\ &\leq k^{2n} \cdot N(\mathfrak{p})^{l(1-1/k)}. \end{split}$$

Therefore (3) is true for $l \leq 2t + 1$. Now we assume that $l \geq 2(t + 1)$ and that (3) is true for smaller l.

Let μ_1, \ldots, μ_r be the distinct roots of (2) with multiplicities m_1, \ldots, m_r respectively. Then $m_1 + \ldots + m_r = m$. Evidently

$$S(f(x)) = \sum_{x} e^{2\pi i \operatorname{tr} (f(x))} = \sum_{\nu} \sum_{\substack{x \equiv \nu \pmod{\mathfrak{p}}}} e^{2\pi i \operatorname{tr} (f(x))} = \sum_{\nu} S_{\nu}$$

say, where ν runs over a complete residue system, mod \mathfrak{p} . If ν is not one of the μ 's then, letting

$$x = y + \lambda^{l-t-1}z,$$

where λ is an integer belonging to \mathfrak{p} but not to \mathfrak{p}^2 , we have

$$S_{\nu} = \sum_{\substack{y \mod \mathfrak{p}^{l-t-1} \\ y \equiv \nu \pmod{\mathfrak{p}}}} \sum_{z \mod \mathfrak{p}^{t+1}} e^{2\pi i \operatorname{tr} (f(y) + \lambda^{l-t-1} z f'(y))}$$
$$= \sum_{z \mod \mathfrak{p}^{t+1}} e^{2\pi i \operatorname{tr} (\lambda^{l-t-1} z f'(y))}$$
$$= 0$$

by Theorem 3, since $\mathfrak{p}^{t+1-l} + f'(y)$.

https://doi.org/10.4153/CJM-1951-006-4 Published online by Cambridge University Press

48

Therefore

$$|S(f(x))| \leq \sum_{s=1}^{r} \left| \sum_{x \mod \mathfrak{p}^{l-1}} e^{2\pi i \operatorname{tr} \left(f(\mu_{s} + \lambda y)\right)} \right|$$
$$= \sum_{s=1}^{r} \left| \sum_{x \mod \mathfrak{p}^{l-1}} e^{2\pi i \operatorname{tr} \left(f(\mu_{s} + \lambda y) - f(\mu_{s})\right)} \right|$$
$$(5) \qquad = \sum_{s=1}^{r} N(\mathfrak{p})^{\sigma_{s}-1} S(f(\mu_{s} + \lambda y) - f(\mu_{s}), \mathfrak{p}^{l-\sigma_{s}}),$$

where σ_s is defined in the following way: Let \mathfrak{c} be the ideal generated by the coefficients of

$$f_s(y) = f(\mu_s + y) - f(\mu_s).$$

Evidently a divides c, and σ_s is the highest power of \mathfrak{p} dividing \mathfrak{ca}^{-1} . Also, if $l \leq \sigma_s$, we use the conventional meaning

$$S(f(\mu_s + y) - f(\mu_s), \mathfrak{p}^{l-\sigma_s}) = \mathfrak{p}^{l-\sigma_s}.$$

Now we are going to prove that

(6)
$$1 \leq \sigma_s \leq k$$

If (6) is not true, then \mathfrak{p}^{-l+k+1} divides all the coefficients of $f(\sigma_s + y) - f(\sigma_s)$; that is

$$\mathfrak{p}^{-l+k+1} \mid \frac{f^{(r)}(\mu_s)}{r!} \quad \lambda^r, \qquad 1 \leq r \leq k.$$

Consequently

$$\mathfrak{p}^{-l+1} \left| \frac{f^{(r)}(\mu_s)}{r!} \right|$$

which is equal to a_r plus a linear combination of a_k, \ldots, a_{r-1} with integral coefficients. Thus we deduce successively $\mathfrak{p}^{-l+1}|a_k, \mathfrak{p}^{-l+1}|a_{k-1}, \ldots, \mathfrak{p}^{-l+1}|a_1$. This contradicts $\mathfrak{q} = \mathfrak{p}^l$.

From (5) and (6), we have, for $l \ge \max(\sigma_1, \ldots, \sigma_r)$,

$$| S(f(x), \mathfrak{p}^l) | \leq \sum_{s=1}^r N(\mathfrak{p})^{\sigma_s(1-1/k)} | S(f_s(y), \mathfrak{p}^{l-\sigma_s}) |.$$

By the hypothesis of induction, we have

$$\left| S(f(x), \mathfrak{p}^{l}) \right| \leq k^{2n} \sum_{s=1}^{r} N(\mathfrak{p})^{\sigma_{s}(1-1/k)} m_{s} N(\mathfrak{p})^{(l-\sigma_{s})} (1-1/k)$$
$$= k^{2n} m N(\mathfrak{p})^{l(1-1/k)} .$$

In case $l \leq \max(\sigma_1, \ldots, \sigma_r)$, we have $l \leq k$ and, by (5)

$$|S(f(x))| \leq r \mathfrak{p}^{l-1} \leq m \mathfrak{p}^{l(1-1/k)}.$$

We have (3) and consequently (1). (Notice that if $\sum_{s=1}^{r} m_s = 0$, the method shows that S(f(x)) = 0, if $l \ge 2(t + 1)$.)

THEOREM 6. If $(q_1, q_2) = 1$ and f(0) = 0, then there are polynomials $f_1(x)$ and $f_2(x)$ each of degree k such that

$$S(f(x), q_1q_2) = S(f_1(x), q_1) S(f_2(x), q_2).$$

Proof. We can find two integers λ_1 and λ_2 such that

$$(\lambda_1, q_1q_2) = q_2, (\lambda_2, q_1q_2) = q_1$$

Putting

$$x = \lambda_1 y_2 + \lambda_2 y_1,$$

then, as y_1 and y_2 run over complete residue systems mod q_1 and mod q_2 respectively, x runs over a complete residue system, mod q_1q_2 . Then

$$\begin{split} S(f(x), \, \mathfrak{q}_1 \mathfrak{q}_2) &= \sum_{y_1 \, \mathrm{mod} \, \mathfrak{q}_1} \sum_{y_2 \, \mathrm{mod} \, \mathfrak{q}_2} e^{2\pi i \, \mathrm{tr} \, (f(\lambda_1 y_2 + \lambda_2 y_1))} \\ &= \sum_{y_1 \, \mathrm{mod} \, \mathfrak{q}_1} e^{2\pi i \, \mathrm{tr} \, (f(\lambda_2 y_1))} \sum_{y_2 \, \mathrm{mod} \, \mathfrak{q}_2} e^{2\pi i \, \mathrm{tr} \, (f(\lambda_1 y_2))} \\ &= S(f_1(x), \, \mathfrak{q}_1)) \quad S(f_2(x), \, \mathfrak{q}_2) \,, \end{split}$$

where $f_1(x) = f(\lambda_2 x)$ and $f_2(x) = f(\lambda_1 x)$. Now we have to verify that the ideal generated by the coefficients of $f_1(x)$ can be expressed as $r(\mathfrak{dq}_1)^{-1}$, where \mathfrak{r} , \mathfrak{q} are relatively prime integral ideals, but this is quite evident.

6. Proof of Theorem 1

Let

 $q = p_1^{l_1} \dots p_s^{l_s}$.

Then we have, by repeated application of Theorem 6,

$$S(f(x), \mathfrak{q}) = \prod_{i=1}^{s} S(f_i(x), \mathfrak{p}_i^{l_i}).$$

By Theorem 5, we have

$$| S(f(x), q) | \leq \sum_{i=1}^{s} k^{2n+1} N(p_i^{l_i})^{1-1/k}$$

$$\leq \sum_{i=1}^{s} (1+l_i)^{(2n+1)\log k/\log 2} N(p_i^{l_i})^{(1-1/k)}$$

$$= d(q)^{(2n+1)\log k/\log 2} N(q)^{1-1/k}$$

$$= O(N(q)^{1-1/k+\epsilon})$$

where d(q) denotes the number of divisors of q.

50

Remarks. The previous method is practically an algorithm; more precisely, for a given polynomial, if we know the value of $S(f(x), \mathfrak{p}^l), l \leq 2t + 1$, then we can find the value of $S(f(x), \mathfrak{p}^l)$.

References

- [1] L. K. Hua, On an exponential sum, Jour. of Chinese Math. Soc., vol. 2 (1940), 301-312.
- [2] L. K. Hua and S. H. Min, On a double exponential sum, Acad. Sinica Sci. Record, vol. 1 (1942), 23-25.
- [3] L. J. Mordell, On a sum analogous to a Gauss's sum, Quart. J. Math. (Oxford), vol. 3 (1932), 161-167.

Tsing Hua University, Peking, China