ON EXPONENTIAL SUMS OVER AN ALGEBRAIC NUMBER FIELD

LOO-KENG HUA

1. Introduction

LET K be an algebraic field of degree n over the rational field, and let b be the ground ideal (differente) of the field. Let

$$
f(x)=a_{k} x^{k}+\ldots+a_{1} x+a_{0}
$$

be a polynomial of the k th degree with coefficients in the field K, and let \mathfrak{a} be the fractional ideal generated by a_{k}, \ldots, a_{1}, that is, $\mathfrak{a}=\left(a_{k}, \ldots, a_{1}\right)$. Suppose $\mathfrak{a d}=\mathfrak{r} / \mathfrak{q}$, where \mathfrak{r} and \mathfrak{q} are two relatively prime integral ideals, and

$$
S(f(x), \mathfrak{q})=S(f(x))=S(\mathfrak{q})=\sum_{x \bmod \mathfrak{q}} e^{2 \pi \operatorname{tr}(f(x))},
$$

where x runs over a complete residue system, $\bmod \mathfrak{q}$. It is the aim of the paper to prove the following:

Theorem 1. For any given $\epsilon>0$, we have

$$
S(f(x), \mathfrak{q})=O\left(N(\mathfrak{q})^{1-1 / k+\epsilon}\right)
$$

where the constant implied by the symbol O depends only on k, n and ϵ.
As usual, we use $\operatorname{tr}(a)$ and $N(\mathfrak{q})$ to denote the trace of a number a and the norm of an ideal \mathfrak{q} of K respectively.

This is a generalization of a theorem of the author's [1] over the rational field. The method used here is simpler and quite different from the original one.

1. A theorem on congruences

Theorem 2. Let \mathfrak{p} be a prime ideal and let $s(x)$ be a polynomial with integral coefficients, mod \mathfrak{p}. Let a be a root of multiplicity m of the congruence

$$
s(x) \equiv 0(\bmod \mathfrak{p})
$$

Let λ be an integer, divisible by \mathfrak{p} but not by \mathfrak{p}^{2}, and let u be the greatest integer such that \mathfrak{p}^{u} divides all the coefficients of $s(\lambda x+a)-s(a)$. Let

$$
t(x) \equiv \lambda^{-u}(s(\lambda x+a)-s(a))(\bmod \mathfrak{p})
$$

be a polynomial with integral coefficients. Then $u \leqslant m$, and the congruence

$$
t(x) \equiv 0(\bmod \mathfrak{p})
$$

has at most m solutions.
Received September 14, 1949.

Proof. Without loss of generality, we may assume that $a=0$. Then

$$
s(x)=x^{m} s_{1}(x)+s_{2}(x), s_{1}(0) \not \equiv 0(\bmod \mathfrak{p})
$$

where $s_{2}(x)$ is a polynomial of degree less than m and all its coefficients are divisible by p. Now we have

$$
s(\lambda x)=\lambda^{m} x^{m} s_{1}(\lambda x)+s_{2}(\lambda x) .
$$

Since the coefficient of x^{m} is equal to $\lambda^{m} S_{1}(0)$ which is not divisible by \mathfrak{p}^{m+1}, we have $u \leqslant m$.

Since $\lambda^{-u} s(\lambda x)$ is congruent to a polynomial of degree not exceeding m, $\bmod \mathfrak{p}$, the theorem follows.

Remark. u is independent of the choice of λ. In fact, let λ^{\prime} be another integer having the same property, then we have an integer τ such that

$$
\lambda \equiv \lambda^{\prime} \tau\left(\bmod \mathfrak{p}^{u+1}\right), \mathfrak{p}+\tau
$$

Then

$$
s(\lambda x+a)-s(a) \equiv s\left(\lambda^{\prime}(\tau x)+a\right)-s(a) \quad\left(\bmod \mathfrak{p}^{u+1}\right)
$$

3. Several lemmas concerning algebraic numbers

Let \mathfrak{g} be an ideal, fractional or integral, and \mathfrak{a} be an integral ideal. It is clear that $\mathfrak{g} \mid \mathfrak{g a}$.

Now we divide the elements of \mathfrak{g} into residue classes according to the modulus $\mathfrak{g a}$. The number of different classes is known to be $N(\mathfrak{a})$. We take an element from each class; the set so formed is called a complete residue system of \mathfrak{g}, $\bmod g a$.

The definition of the ground ideal \mathfrak{b} can be stated in the following way:

$$
\mathfrak{d}^{-1} \text { is the aggregate of all numbers } \xi \text { of } K
$$

such that

$$
e^{2 \pi i \operatorname{tr}(\xi a)}=1
$$

for all integers a of K. Consequently, if β belongs to $(\mathfrak{q d})^{-1}$ and $a_{1} \equiv a_{2}(\bmod \mathfrak{q})$, then

$$
e^{2 \pi i \operatorname{tr}\left(\beta a_{1}\right)}=e^{2 \pi i \operatorname{tr}\left(\beta a_{2}\right)} .
$$

This asserts that the sum $S(f(x), \mathfrak{q})$, which was defined at the beginning of the paper, is independent of the choice of the residue system, $\bmod \mathfrak{q}$.

Theorem 3. Let \mathfrak{q} be an integral ideal. As ξ runs over a complete residue system of $(\mathfrak{q d})^{-1}, \bmod \mathfrak{b}^{-1}$, we have, for integral a,

$$
\sum_{\xi} e^{2 \pi i \operatorname{tr}(\xi a)}=\left\{\begin{array}{cl}
N(\mathfrak{q}) & \text { if } \mathfrak{q} \mid a, \\
0 & \text { if } \mathfrak{q}+\boldsymbol{a} .
\end{array}\right.
$$

Proof. If $\mathfrak{q} \mid a$, then ξa belongs to \mathfrak{b}^{-1}. Then $e^{2 \pi i \operatorname{tr}(\xi a)}=1$ for all ξ. Hence, we have the first conclusion.

If $\mathfrak{q}+a$, there is an element ξ_{0}, which belongs to ($(\mathfrak{q q})^{-1}$, but $\xi_{0} a$ does not belong to \mathfrak{b}^{-1}. In fact, if for all ξ_{0} belonging to ($(\mathrm{dq})^{-1}$ we have $\xi_{0} a$ belonging to \mathfrak{b}^{-1}, then we have

$$
\mathfrak{b}^{-1} \mid a(\mathfrak{d q})^{-1}
$$

Consequently $\mathfrak{q} \mid a$. This is impossible. By the definition of b^{-1} there is an integer γ such that

$$
e^{2 \pi i \operatorname{tr}\left(\gamma \xi_{0} a\right)} \neq 1 .
$$

Since $\gamma \xi_{0}$ belongs to $(\partial q)^{-1}$, we can write $\gamma \xi_{0}=\xi_{1}$. Then

$$
\begin{aligned}
\sum_{\xi} e^{2 \pi i \operatorname{tr}(\xi a)} & =\sum_{\xi} e^{2 \pi i \operatorname{tr}\left(\left(\xi+\xi_{1}\right) a\right)} \\
& =e^{2 \pi i \operatorname{tr}\left(\xi_{1} a\right)} \cdot \sum_{\xi} e^{2 \pi i \operatorname{tr}(\xi a)} .
\end{aligned}
$$

Thus we have the second conclusion of our theorem.

4. Proof of the theorem for $\mathfrak{q}=\mathfrak{p}$

In case \mathfrak{q} is a prime ideal \mathfrak{p}, the exponential sum considered here reduces to a type of exponential sum over a finite field which has been discussed before [2]. But the author could not find an easy way to establish an explicit relationship between the exponential sums considered here and those over a finite field. Also, for the sake of completeness, the following proof is included here. The method is an adaptation of one due to Mordell [3].

Theorem 4. We have

$$
|S(f(x), \mathfrak{p})| \leqslant k^{n} N(p)^{1-1 / k}
$$

Proof. Without loss of generality, we may assume that a_{k} does not belong to \mathfrak{b}^{-1}, for otherwise

$$
S(f(x), p)=S\left(f(x)-a_{k} x^{k}, p\right)
$$

since $e^{2 \pi i \operatorname{tr}\left(a_{k} x k\right)}=1$ for all integral x. Thus we now assume that a_{k} belongs to $(\mathfrak{p d})^{-1}$ but not to \mathfrak{D}^{-1}. The theorem is trivial for $N(\mathfrak{p}) \leqslant k^{n}$, since

$$
|S(f(x), \mathfrak{p})| \leqslant N(\mathfrak{p}) \leqslant k^{n} N(\mathfrak{p})^{1-1 / k} .
$$

Now we assume $N(\mathfrak{p})>k^{n}$ and consequently $\mathfrak{p}+k$! We have

$$
|S(f(x))|^{2 k}=\frac{1}{N(p)(N(p)-1)} \quad \sum_{\lambda \bmod \mathfrak{p}}^{\prime} \sum_{\mu \bmod \mathfrak{p}}|S(f(\lambda x+\mu))|^{2 k}
$$

where λ runs over a reduced residue system, $\bmod \mathfrak{p}$. Write

$$
f(\lambda x+\mu)=\beta_{k} x^{k}+\ldots+\beta_{0}
$$

where

$$
\begin{align*}
\beta_{k} & \equiv a_{k} \lambda^{k} & \left(\bmod \mathfrak{D}^{-1}\right) \\
\beta_{k-1} & \equiv k a_{k} \lambda^{k-1}+a_{k-1} \lambda^{k-1} & \left(\bmod \mathfrak{D}^{-1}\right) \tag{1}
\end{align*}
$$

and so on.

For fixed $\beta_{k}, \beta_{k-1}, \ldots$ belonging to $(\mathrm{pd})^{-1}$, the number of integers λ and μ does not exceed k. In fact, (1) asserts that $\beta_{k}-a_{k} \lambda^{k}$ belongs to \mathfrak{D}^{-1}. (β_{k} and a_{k} belong to (pb$)^{-1}$.) There is an integer τ belonging to $p \mathrm{~b}$ but not to \mathfrak{p}. Consequently τa_{k} and $\tau \beta_{k}$ are integers and $\mathfrak{p}+\tau a_{k}$; the congruence $\tau \beta_{k} \equiv \tau a_{k} \lambda^{k}$ $(\bmod \mathfrak{p})$ has evidently at most k solutions. For a fixed λ, the same argument proves that μ is uniquely determined by (2), since $p+k$.

Therefore, we have

$$
|S(f(x), \mathfrak{p})|^{2 k} \leqslant \frac{k}{N(\mathfrak{p})(N(\mathfrak{p})-1)} \sum_{\beta_{k}} \ldots \sum_{\beta_{1}}\left|S\left(\beta_{k} x^{k}+\ldots+\beta_{1} x\right)\right|^{2 k}
$$

where each β runs over a complete residue system of $(\mathfrak{p d})^{-1}, \bmod \mathfrak{b}^{-1}$.
We have

$$
\begin{aligned}
\sum_{\beta_{k}} \ldots \sum_{\beta_{1}}\left|S\left(\beta_{k} x^{k}+\ldots+\beta_{1} x\right)\right|^{2 k} & =\sum_{\beta_{k}} \ldots \sum_{\beta_{1}} \sum_{x_{1}} \ldots \sum_{x_{k}} \sum_{y_{1}} \ldots \sum_{y_{k}} e^{2 \pi i \operatorname{tr}(\psi)} \\
& =N(\mathfrak{p})^{k} M
\end{aligned}
$$

where

$$
\begin{aligned}
\psi= & \beta_{k}\left(x_{1}^{k}+\ldots+x_{k}^{k}-y_{1}^{k}-\ldots-y_{k}^{k}\right)+\beta_{k-1}\left(x_{1}^{k-1}+\ldots+x_{k}^{k-1}-y_{1}^{k-1}\right. \\
& \left.-\ldots-y_{k}^{k-1}\right)+\ldots+\beta_{1}\left(x_{1}+\ldots+x_{k}-y_{1}-\ldots-y_{k}\right),
\end{aligned}
$$

and, by Theorem 3, M is equal to the number of solutions of the system of congruences

$$
x_{1}^{h}+\ldots+x_{k}^{h} \equiv y_{1}^{h}+\ldots+y_{k}^{h}, \bmod \mathfrak{p}, \quad 1 \leqslant h \leqslant k
$$

By a theorem on symmetric functions, we deduce immediately

$$
\left(X-x_{1}\right) \ldots\left(X-x_{k}\right) \equiv\left(X-y_{1}\right) \ldots\left(X-y_{k}\right), \bmod \mathfrak{p}
$$

since $\mathfrak{p}+k$! Then we have that x_{1}, \ldots, x_{k} are a permutation of y_{1}, \ldots, y_{k} and then

$$
M \leqslant k!N(p)^{k}
$$

Consequently, we have

$$
\begin{aligned}
|S(f(x), \mathfrak{p})|^{2 k} & \leqslant \frac{k \cdot k!}{N(\mathfrak{p})(N(\mathfrak{p})-1)} N(\mathfrak{p})^{2 k} \\
& \leqslant 2 k \cdot k!N(\mathfrak{p})^{2 k-2} \\
& \leqslant k^{2 k} N(\mathfrak{p})^{2 k-2}
\end{aligned}
$$

and the theorem follows.

5. Proof of the theorem for $\mathfrak{q}=\mathfrak{p}^{l}$

Theorem 5. If $\mathfrak{q}=\mathfrak{p}^{l}$, and \mathfrak{p} is a prime ideal, then

$$
\begin{equation*}
\left|S\left(f(x), \mathfrak{p}^{l}\right)\right| \leqslant k^{2 n+1} N\left(\mathfrak{p}^{l}\right)^{1-1 / k} \tag{1}
\end{equation*}
$$

Proof. Let

$$
\mathfrak{b}=\left(k a_{k},(k-1) a_{k-1}, \ldots, 2 a_{2}, a_{1}\right) .
$$

Evidently $\mathfrak{a} \mid \mathfrak{b}$. Let t be the highest exponent of \mathfrak{p} dividing $\mathfrak{b a}$. Let m be the number of solutions, multiplicities being counted, of the congruence

$$
\begin{equation*}
f^{\prime}(x) \equiv 0\left(\bmod \mathfrak{p}^{t+1-l}\right) \tag{2}
\end{equation*}
$$

as x runs over a complete residue system, $\bmod \mathfrak{p}$. (We have $m \leqslant k-1$.)
Evidently, (1) is a conseqeunce of the sharper result

$$
\begin{equation*}
\left|S\left(f(x), \mathfrak{p}^{l}\right)\right| \leqslant k^{2 n} \max (1, m) N\left(\mathfrak{p}^{l}\right)^{1-1 / k} . \tag{3}
\end{equation*}
$$

If $t \geqslant 1$, then \mathfrak{p}^{t} divides at least one of the integers $k, k-1, \ldots, 1$. Then

$$
N\left(p^{t}\right) \leqslant k^{n}
$$

that is

$$
\begin{equation*}
N(p) \leqslant k^{n / t} . \tag{4}
\end{equation*}
$$

Suppose that $l<2(t+1)$. For $t=0$, we have $l=1$ and (3) follows from Theorem 4. If $t \geqslant 1$, then, by (4)

$$
\begin{aligned}
\left|S\left(f(x), \mathfrak{p}^{l}\right)\right| & \leqslant N(\mathfrak{p})^{l} \leqslant(N(\mathfrak{p}))^{l(1-1 / k)}(N(\mathfrak{p}))^{)^{2 t+1) / k}} \\
& \leqslant N(\mathfrak{p})^{l(1-1 / k)} k^{n(2+1 / t) / k} \\
& \leqslant k^{2 n} \cdot N(\mathfrak{p})^{l(1-1 / k)} .
\end{aligned}
$$

Therefore (3) is true for $l \leqslant 2 t+1$. Now we assume that $l \geqslant 2(t+1)$ and that (3) is true for smaller l.

Let μ_{1}, \ldots, μ_{r} be the distinct roots of (2) with multiplicities m_{1}, \ldots, m_{r} respectively. Then $m_{1}+\ldots+m_{r}=m$. Evidently

$$
S(f(x))=\sum_{x} e^{2 \pi i \operatorname{tr}(f(x))}=\sum_{\nu} \sum_{\substack{x \\ x \equiv \nu(\bmod \mathfrak{p})}} e^{2 \pi i \operatorname{tr}(f(x))}=\sum_{\nu} S_{\nu}
$$

say, where ν runs over a complete residue system, $\bmod \mathfrak{p}$. If ν is not one of the μ 's then, letting

$$
x=y+\lambda^{l-t-1} z,
$$

where λ is an integer belonging to p but not to p^{2}, we have

$$
\begin{aligned}
S_{\nu} & =\sum_{\substack{y \bmod \mathfrak{p}^{l-t-1} \\
y \equiv y^{t}\left(\bmod \mathfrak{p}^{2}\right.}} \sum_{z \bmod \mathfrak{p}^{t+1}} e^{2 \pi i \operatorname{tr}\left(f(y)+\lambda^{\left.l-t-1_{z} f^{\prime}(y)\right)}\right.} \\
& =\sum e^{2 \pi i \operatorname{tr}(f(y))} \sum_{z \bmod \mathfrak{p}^{t+1}} e^{2 \pi i \operatorname{tr}\left(\lambda^{\left.l-t-1_{z} f^{\prime}(y)\right)}\right.} \\
& =0
\end{aligned}
$$

by Theorem 3 , since $\mathfrak{p}^{t+1-l}+f^{\prime}(y)$.

Therefore

$$
\begin{align*}
|S(f(x))| & \leqslant \sum_{s=1}^{r}\left|\sum_{x \bmod \mathfrak{p}^{l}-1} e^{2 \pi i \operatorname{tr}\left(f\left(\mu_{s}+\lambda y\right)\right)}\right| \\
& =\sum_{s=1}^{r}\left|\sum_{x \bmod \mathfrak{p}^{l-1}} e^{2 \pi i \operatorname{tr}\left(f\left(\mu_{s}+\lambda y\right)-f\left(\mu_{s}\right)\right)}\right| \\
& =\sum_{s=1}^{r} N(\mathfrak{p})^{\sigma_{s}-1} S\left(f\left(\mu_{s}+\lambda y\right)-f\left(\mu_{s}\right), \mathfrak{p}^{\left.l-\sigma_{s}\right)},\right. \tag{5}
\end{align*}
$$

where σ_{s} is defined in the following way: Let c be the ideal generated by the coefficients of

$$
f_{s}(y)=f\left(\mu_{s}+y\right)-f\left(\mu_{s}\right)
$$

Evidently \mathfrak{a} divides \mathfrak{c}, and σ_{s} is the highest power of \mathfrak{p} dividing $\mathfrak{c a}^{-1}$. Also, if $l \leqslant \sigma_{s}$, we use the conventional meaning

$$
S\left(f\left(\mu_{s}+y\right)-f\left(\mu_{s}\right), \mathfrak{p}^{l-\sigma_{s}}\right)=\mathfrak{p}^{l-\sigma_{s}}
$$

Now we are going to prove that

$$
\begin{equation*}
1 \leqslant \sigma_{s} \leqslant k \tag{6}
\end{equation*}
$$

If (6) is not true, then \mathfrak{p}^{-l+k+1} divides all the coefficients of $f\left(\sigma_{s}+y\right)-f\left(\sigma_{s}\right)$; that is

$$
\mathfrak{p}^{-l+k+1} \left\lvert\, \frac{f^{(r)}\left(\mu_{s}\right)}{r!} \lambda^{r}\right., \quad 1 \leqslant r \leqslant k
$$

Consequently

$$
\mathfrak{p}^{-l+1} \left\lvert\, \frac{f^{(r)}\left(\mu_{s}\right)}{r!}\right.,
$$

which is equal to a_{r} plus a linear combination of a_{k}, \ldots, a_{r-1} with integral coefficients. Thus we deduce successively $\mathfrak{p}^{-l+1}\left|a_{k}, \mathfrak{p}^{-l+1}\right| a_{k-1}, \ldots, p^{-l+1} \mid a_{1}$. This contradicts $q=p^{l}$.

From (5) and (6), we have, for $l \geqslant \max \left(\sigma_{1}, \ldots, \sigma_{r}\right)$,

$$
\left|S\left(f(x), \mathfrak{p}^{l}\right)\right| \leqslant \sum_{s=1}^{r} N(\mathfrak{p})^{\sigma_{s}(1-1 / k)} \mid S\left(f_{s}(y), \mathfrak{p}^{\left.l-\sigma_{s}\right)} \mid .\right.
$$

By the hypothesis of induction, we have

$$
\begin{aligned}
\left|S\left(f(x), \mathfrak{p}^{l}\right)\right| & \leqslant k^{2 n} \sum_{s=1}^{r} N(\mathfrak{p})^{\sigma_{s}(1-1 / k)} m_{s} N(\mathfrak{p})^{\left(l-\sigma_{s}\right)(1-1 / k)} \\
& =k^{2 n} m N(\mathfrak{p})^{l(1-1 / k)} .
\end{aligned}
$$

In case $l \leqslant \max \left(\sigma_{1}, \ldots, \sigma_{r}\right)$, we have $l \leqslant k$ and, by (5)

$$
|S(f(x))| \leqslant r p^{l-1} \leqslant m p^{l(1-1 / k)} .
$$

We have (3) and consequently (1). (Notice that if $\sum_{s=1}^{r} m_{s}=0$, the method shows that $S(f(x))=0$, if $l \geqslant 2(t+1)$.)

Theorem 6. If $\left(\mathfrak{q}_{1}, \mathfrak{q}_{2}\right)=1$ and $f(0)=0$, then there are polynomials $f_{1}(x)$ and $f_{2}(x)$ each of degree k such that

$$
S\left(f(x), \mathfrak{q}_{1} \mathfrak{q}_{2}\right)=S\left(f_{1}(x), \mathfrak{q}_{1}\right) S\left(f_{2}(x), \mathfrak{q}_{2}\right)
$$

Proof. We can find two integers λ_{1} and λ_{2} such that

$$
\left(\lambda_{1}, \mathfrak{q}_{1} \mathfrak{q}_{2}\right)=\mathfrak{q}_{2},\left(\lambda_{2}, \mathfrak{q}_{1} \mathfrak{q}_{2}\right)=\mathfrak{q}_{1} .
$$

Putting

$$
x=\lambda_{1} y_{2}+\lambda_{2} y_{1}
$$

then, as y_{1} and y_{2} run over complete residue systems $\bmod \mathfrak{q}_{1}$ and $\bmod \mathfrak{q}_{2}$ respectively, x runs over a complete residue system, $\bmod \mathfrak{q}_{1} \mathfrak{q}_{2}$. Then

$$
\begin{aligned}
S\left(f(x), \mathfrak{q}_{1} \mathfrak{q}_{2}\right) & =\sum_{y_{1} \bmod \mathfrak{q}_{1}} \sum_{y_{2} \bmod \mathfrak{q}_{2}} e^{2 \pi i \operatorname{tr}\left(f\left(\lambda_{1} y_{2}+\lambda_{2} y_{1}\right)\right)} \\
& =\sum_{y_{1} \bmod \mathfrak{q}_{1}} e^{2 \pi i \operatorname{tr}\left(f\left(\lambda_{2} y_{1}\right)\right)} \sum_{y_{2} \bmod \mathfrak{q}_{2}} e^{2 \pi i \operatorname{tr}\left(f\left(\lambda_{1} y_{2}\right)\right)} \\
& \left.=S\left(f_{1}(x), \mathfrak{q}_{1}\right)\right) \quad S\left(f_{2}(x), \mathfrak{q}_{2}\right),
\end{aligned}
$$

where $f_{1}(x)=f\left(\lambda_{2} x\right)$ and $f_{2}(x)=f\left(\lambda_{1} x\right)$. Now we have to verify that the ideal generated by the coefficients of $f_{1}(x)$ can be expressed as $\mathfrak{r}\left(b \mathfrak{q}_{1}\right)^{-1}$, where $\mathfrak{r}, \mathfrak{q}$ are relatively prime integral ideals, but this is quite evident.

6. Proof of Theorem 1

Let

$$
\mathfrak{q}=\mathfrak{p}_{1}{ }^{l_{1}} \ldots \mathfrak{p}_{s}{ }^{l_{s}} .
$$

Then we have, by repeated application of Theorem 6,

$$
S(f(x), \mathfrak{q})=\prod_{i=1}^{s} S\left(f_{i}(x), \mathfrak{p}_{i}^{l}{ }^{l}\right)
$$

By Theorem 5, we have

$$
\begin{aligned}
|S(f(x), \mathfrak{q})| & \leqslant \sum_{i=1}^{s} k^{2 n+1} N\left(\mathfrak{p}_{i} l^{l}\right)^{1-1 / k} \\
& \leqslant \sum_{i=1}^{s}\left(1+l_{i}\right)^{(2 n+1) \log k / \log 2} N\left(\mathfrak{p}_{i}^{l}\right)^{(1-1 / k)} \\
& =d(\mathfrak{q})^{(2 n+1) \log k / \log 2} N(\mathfrak{q})^{1-1 / k} \\
& =O\left(N(\mathfrak{q})^{1-1 / k+\mathfrak{e}}\right)
\end{aligned}
$$

where $d(\mathfrak{q})$ denotes the number of divisors of \mathfrak{q}.

Remarks. The previous method is practically an algorithm; more precisely, for a given polynomial, if we know the value of $S\left(f(x), \mathfrak{p}^{l}\right), l \leqslant 2 t+1$, then we can find the value of $S\left(f(x), p^{l}\right)$.

References

[1] L. K. Hua, On an exponential sum, Jour. of Chinese Math. Soc., vol. 2 (1940), 301-312.
[2] L. K. Hua and S. H. Min, On a double exponential sum, Acad. Sinica Sci. Record, vol. 1 (1942), 23-25.
[3] L. J. Mordell, On a sum analogous to a Gauss's sum, Quart. J. Math. (Oxford), vol. 3 (1932), 161-167.

Tsing Hua University, Peking, China

