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GROMOV’S CONVERGENCE THEOREM
AND ITS APPLICATION

ATSUSHI KATSUDA

One of the basic questiohs of Riemannian geometry is that “If two
Riemannian manifolds are similar with respect to the Riemannian invari-
ants, for example, the curvature, the volume, the first eigenvalue of the
Laplacian, then are they topologically similar?”’. Initiated by H. Rauch,
many works are developed to the above question. Recently M. Gromov
showed a remarkable theorem ([7] 8.25, 8.28), which may be useful not
only for the above question but also beyond the above. But it seems to
the author that his proof is heuristic and it contains some gaps (for
these, see § 1), so we give a detailed proof of 8.25 in [7]. This is the
first purpose of this paper. Second purpose is to prove a differentiable
sphere theorem for manifolds of positive Ricei curvature, using the above
theorem as a main tool.

For a d-dimensional Riemannian manifold M, we denote by K, the
sectional curvature, by vol (M) the volume, by diam (M) the diameter, by
dy(m, n) the distance between m and n induced from Riemannian metric
g and by i, the injectivity radius.

A subset B is called J-dense when for any point m € M, there exists
a point n e B with d,(m, n) < 4. A subset B is called 5-discrete if n, n,e B
(n, # n,) implies dy(n,, n,) = d. Let M(d, 4,i,) (resp. M(d, 4, p, v)) be the
category of all complete Riemannian manifolds M with dimension = d,
Kyl £ 4 and i, = i, (resp. dimension = d, |Ky| < 4, diam (M) < p,
vol (M) = v).

The following theorem is seemingly different from 8.25 in [7] but the
inwardness is essentially same.

THEOREM 1 (Gromov’s convergence theorem). Given d, 4,i, > 0,0 < R
< min (1/2v/ 4, i,/2), for any & > 0, there exist a = a(d, 4, i,, R; ) > 0 and
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e=¢e(d, 4,1, R;0) >0 such that if M, M'e M, 4,i) have an e-dense,
¢/10-discrete subset N[e] = {m.,}}s,C M and N'[¢] = {m/}}*, C M’ containing
the same number of members with

1 — g < Gul(mi, m)

< <l4a for 0<d,(m,m)<R,
dM(mia m,)

then there exists a diffeomorphism F: M — M’ with ||dF,(§)| — 1| <d for
& e UM, where UM is the unit sphere bundle of M.

We can estimate constants a, ¢ > 0 explicitly, but we omit it to avoid
non-essential complexity. Here we call it Gromov’s convergence theorem
because he proved a convergence theorem (8.18 in [7]) with respect to the
Hausdorff distance using this theorem as a main tool.

An easy application of Theorem 1 and Dirichlet drawer principle is,

THEOREM 2 (Cheeger’s finiteness theorem). The number N of the dif-
feomorphism classes of the manifolds in M(d, 4, p, v) is finite.

This theorem was originally proved by dJ. Cheeger [2] except for
d = 4. After this, in Cheeger-Ebin’s book [3], it was stated in the above
form without proof. It was also given by M. Gromov [6]. S. Peters [12]
gave another (simple) proof.

The following is the differentiable sphere theorem mentioned above.
Let Ric, be the Ricei curvature of M.

THEOREM 3. Given d, 4 > 0, there exists §, = d,(d, 4) > 0 such that if
a compact d-dimensional Riemannian manifold M has the property that
Ricy, =d — 1, |Ky| £ 4, vol(M) = w, — 6,, wWhere w, is the volume of the
d-dimensional unit sphere, then M is diffeomorphic to S°.

In [16], T. Yamaguchi obtained the same conclusion under a stronger
assumption and in [9], Y. Itokawa showed that, under the essentially
same assumption except for the estimate of the constant, M has the same
homotopy type as S?% (He only assumes the upper bound of K, but
under the condition of Ric, = d — 1, the lower bound of K, is automati-
cally derived.) But it should be remarked that in [15], K. Shiohama
proved that M is homeomorphic to S¢ under a weaker assumption than
ours.

Finally we remark that for the diameter or the first eigenvalue of
the Laplacian 1,(M), the following pinching theorem is obtained by using
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the above one and the results of C.B. Croke [5] and A. Kasue [10].

CoroLLARY. Given d, 4, v > 0 there exist 6, = d(d, 4,v) > 0 and §, =
o(d, 4,v) > 0 such that if a d-dimensional Riemannian manifold M with
Ricy, =d—1, |Ky| <4, vol(M) = v has the property that diam (M) =
T — 08, or (M) < d + 0,. then M is diffeomorphic to S°.

ACKNOWLEDGEMENT. The author would like to thank T. Sakai, who
showed [13] and refined arguments of the first version, and T. Sunada who
gave valuable advices and continuous encouragements. He is also in-
debted to A. Morimoto, K. Shiohama, P. Pansu, K. Fukaya, T. Yamaguchi,
N. Innami and J. Itoh.

Remark. After the preparation of this paper the author learned that
D. L. Brittain also got the same result as Corollary independently.

[Donald L. Brittain, A diameter pinching theorem for positive Ricci
curvature. (preprint.)]

§1. Outline of the proof of Theorem 1

Firstly we observe the case when M, M’ < M(d, 4, i,) is compact. For
an e-dense, ¢/10-discrete subset N[e] = {m,;}¥,, we define a map f: M — R":
using the distance from m;. If ¢ is sufficiently small, then f is an em-
bedding (§ 2). We can estimate 6 > 0 such that the normal exponential
map Exp is a diffeomorphism on the d-tubular neighborhood of f(M);
Bi(f(M)) (§4). For M’'e M(d, 4,1, and for f’: M’ — R": which is defined
similarly to f, we see that f(M) C BJ(f'(M")) and f'(M’) C B{f(M)). From
this, the normal projection P:f(M) — f/(M’) can be defined (§ 5). Nextly,
we see that the tangent spaces T,f(M) and T, f(M’) are almost parallel,
where p’ = P(p) (§6). Using this, it can be shown that P: f(M) — f/(M’)
is a diffeomorphism (§7). For F = f'"'o Pof, we estimate dF(¢)| (§38).
In the case when M is non compact, the diffeomorphism is given by the
approximation arguments (§ 9).

Here the author would like to comment on Gromov’s proof in [7] 8.25.
Firstly he says that it suffices to estimate § > 0 so that Exp is locally
diffeomorphic but it really needs to estimate § > 0 so that it is globally
diffeomorphic. (We add Lemma 4.3.) Secondly P may cut the two points
of f(M), for this possibility, he says “good” one can be chosen without
detailed arguments. (We add Section 6.) Thirdly for the argument of the
estimate of |dF (&), it needs more arguments than that given there.
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Though almost all arguments owe to Gromov [7], we give a full proof
for the sake of completeness. It should be noted that the author also
referred to T. Sakai [13].

§2. Definition of the embedding f: M — R":

We firstly prove the Theorem 1 in the case when M is compact.
Take constants 0 <r < R and ¥ > 0. Let h: R — [0, 1] be a C~ func-
tion such that

Rt) =1 if t<0,h(t)=0 if t>r

—Aew <=2 w TapHT

r r 8 8

4 . 2r ar br or
—_ h'(t 0 if = < — — <t —

r< 1) < i 8< =3 or 3 = <8
k<K@ <O if 0<tg_28_’ or %’gtgr

Note that we may take x > 0 arbitrarily small, which is needed in

Section 8.
Put
1 4 1\»
k= h't<—— _> "z) A:( ___) .
max( (5 +5 ‘ \R"@)|) and 1- o

In the following, we remark that the constants ¢; >0, >0, --- which
appear in the proof, are depending only on d, 4,i,r, 6 > 0 and A(2).

Put
—min(. T 84(1) 1 — A2 (_1_ _ r )( A E)-l>
= (16’ 5 ¢ "\ " wmep Nt T) )
where s.(?) is the function
A sin @y, if £>0,
7172
t, if z=0,
1 Gnh(— oy, ifr<o0.
(= "

Using this A(f) and an e-dense, ¢/10-discrete subset N[e] = {m,}ls, with ¢ <e,
we define a C* map f = f.: M — R by
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fi(m) = (Mdy(m,, m)), - - -, h(dﬂl(m.\’,) m))) .
We show that f, is an embedding by the following two lemmas.
Lemma 2.1. f. has maximal rank at every point m e M.

Proof. Take an orthonormal basis {e;}{., of the tangent space T, M
to M at m and choose {m;}}_., C N[e] satisfying d,(exp.(r/2)e; m,;) < .
Put ¢, = |exp;'m;| and u; = t;' exp;'m,. Note that 3r/8 < dy(m,, m) <
5r/8. Then, from the Rauch’s comparison theorem (R. C.T.)(cf. [3] or [13]
(1.2.20)), we see

S| rf29e, — o] < dulm, expu(rDe) <o < S @ - A

and this implies g(e;, u;) > A = (1 — (1/3d%)".. From this, we see {u;}%,
are linearly independent. Since grad dyl,, = u;, we can get the conclu-
sion by

the rank of df at m = rank df|,
= rank (d-A(dxy(mi,, D, -+ -5 - WA u(myy, -))]n)
= rank (h/(dM(mip m))u, - - -, hl(dﬂ(mid’ m))u,)
=d. q.e.d.

LEmmMmA 2.2. f, is an embedding.

Proof. If not, then there exist m, n ¢ M with m # n such that f(m) =
f(n). Since d,(m;, m) = d,(m,, n) for all m, e N[e] N B,(m) = N[e] N B,(n), we
see d,(m, n) :=d < 2 <r/8. Let 7 be the minimal geodesic from m to n and
put z = 7((r/2) + d). Then ze B, ,(n) — B,,(m) and B,.(2) C B,(n) — B,,(m),
where B,(m) is the set of the point p with dy(p,m) <r and B is the
closure of B. Take a point p € N[e] N B,.(2) with d’ := d,(p, n) = r/2 — 2,
d’ < r/2 and the vector ue T,M that is the unit initial vector of the
minimal geodesic 4 from n to p. Now we estimate g(u, 7(d)). From R.C.T.,
we get

|(r/2)i(d) — d’u| = |exp;'z — exp;'p|

rj2
= 5r(2)

2

re r
+du(p, 2) < s(rf2) " 65,2

from which follows
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5 80@, ) = g((127(@d) ~ d'u, u) + d
>d —|(r2i@d) — d'u|> T —2—__ T
= |(r/2)7(d) u| > 5 T 6.072)
>T (1T ),
— 4 ( 434(r/2))
namely
203 1 r
(d), =l - ).
8@, w >3 ( 4sd(r/2)>
On the other hand, note that d,(p, 7(t)) < r for 0 <t < d and d,(p, 7(0))
= dyu(p, 1(d)), then from the Rolle’s theorem, there exists a point m, = 7(t,)

(0 < t, < d) with g(7(t), u,) = 0, where u, is the unit initial vector of the
minimal geodesic from 7(f) to p. Then we have

2@, w) = [ L g(it), e

— (* Hess dy, (7(®), 7())dt

k) J

< f (mjr—(t» + ng<p, 7@ )dt

8 rd
2el — + =) .
<E(r+2>

After all we get

e(ra+2)> (5~ ss’xr?/é)"> :

It contradicts the fact

= 4

Except for (x) we get the conclusion.

To show the inequality (x), we need following sublemma. Put d,, (-)
= dM(pr ')'

SuBLEMMA ([7] 8.23 or [13] (1.4.4), iii). If |K,| < 4, then the hessian
of dy, at x=Hessdy (x, %) <|x[(1/dy(p, m) + (4/2)d\(p, m)) for x |
grad dM,p]m and dM(p, m) < r. q.e.d.
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§3. Estimate of df

The contents of this section are detailed arguments developed by
Gromov’s hints.

(i) Estimate of the number of the elements in N[¢], which are nearly
orthonormal.
Firstly, we take ¢, > 0 with

b,(¢/20)b(e,/4)

¢, < inf ZAMTTTART
o<e<e/10 b_,(4r)-b_,(e)

where b.(f) is the volume of the ball with radius ¢ in the space of the
constant curvature z. Note that ¢, can taken as positive because
lim, ,, b,(t/20)/b_(t) = 20-°. Put N, = sup,, #(B,,(m) N N[e]), rit, = exp,((r/2)e,)
and Dj[e] = B.,(m,) N N[el.

LemMA 3.1, If e < ¢,/10, then ¢, < #(Di[e])/N. < 1.

Proof. From the fact
Bs(q) C Be;/z(mi)

¢ € Beyla(mi) NN [<]
B.(9)C B,,(m)

q€ Bar(m)NN[e]

and the volume comparison theorem ([7] or [13]), we have

’ b(e,/4)
Dife]) = 24522
#(Dile]) 0

N < b—74(4r)

T by(e/20)
Combining these, we get the conclusion.
(i) Estimate of df.
Lemma 3.2, For e < ¢, there exist c,, ¢, > 0 such that
NV < |df. (&) < e, N*  for any e UM .
Proof. From the definition of f., we see
dfon(8) = (@81, €), -+ -, Ay, 8(uy, ) ,

where a;, = h'(d,(m, m;)). We may put ¢; = supy,<,|h/(f)]. For the ex-
istence of c,, we take the representatives m,, € Dile] and put u,, =
exp;'m, /lexpy'my,|. Let £ = £y, ... pn: TwM — R® be a linear map defined by
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g(&) = (aklg(ulcu S)’ tt akdg(uk,p E)) .

Then we see that it satisfies the following estimate

min [£(€)| = S > 0.
le1=1 2r

In fact, if we put a;; = g(u,, e;) and & = 3, &e;, then from the proof of
Lemma 2.1 a,; = A, |a,| <1 — A)(E +j) and 4/r = |a,,| = 3/r. Thus,
we get

|£(§) '2 = i;e alzciéfélaijail
= Z a;,&lal; + (the other terms)

=(3)a-a(dYa-arz(2) >0

On the other hand, from Lemma 4.1, we see
#{(k,, - - -, k)| my, € Di[e]} = inf $(Di[e]) = ¢, N, .

Combining these, we get

A= X [lu. kd)<s>|2.z_cl(i) A..
(K1yeee, ka) 27‘

Therefore we may put

c, = c}”(%) . g.e.d.

Remark. We discuss here the dependence of r on ¢, ¢, ¢, when r is
sufficiently small, which is essential in Section 8. Since the function

f(®) = b(t/20)/b_,(t) is decreasing and we may assume ¢, = r/60d, we can
take

o= oay < (L. 1Yo b.(c,/200)b,(c,/4)
‘ =\40"1600d ) = b_(e/10)b_ (4r)

b(e[20)b,(e)
o<e<e10 b_(4r)b_,(e)

3 ) 3 _
=2 2.} = 2.(10°d)- 4" ,
=G (2r 2r( )

IA

4
C, = —.
r
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§4. The tubular neighborhood of f(3) and the normal exponential
mapping

Let Exp: Nf(M) — R" be the normal exponential map of the normal
bundle Nf(M). Put

By(Nf(M)) = {(p, u) e Nf(M)||u| < 3} .
We estimate 6 > 0 such that Exp |0, is a diffeomorphism.
(i) Local estimate.

The following Lemma 4.1 owe to [7] and [13].

LEMMA 4.1. There exists ¢, > 0 such that if ¢ < ¢, and 5 < ¢,NY?, then
EXD |p,wvsany 18 an immersion.

Proof. Suppose that n e RY: is a critical value of Exp. Namely there
exists a curve c¢(s) = f(m(s)) in f(M) and the normal vector field n(s) along
¢(s) such that n = ¢(0) + n(0), ¢(0) + 7(0) = 0. From g(n(s), ¢(s)) = 0, we
have

g(m(0), &(0)) = —g(n(0), ¢(0)) = [¢(O)[ .
Since c(s) (- - -, A(d,(m;, m(s))), ---), we have

e = (-, WAt mO)(- L] dulm, ms))

+ W dulmy mO)(-Ty | dilm, m(s) ).

Recall that

] < | do(m,, m(s» g(grad dy; .., m(0)| < |(0)],

I__ 1
ds* dy(m,, m(O))

Note that max (A/(£)(1/t - 4¢/2)], |K"(£))) = k. Then we see
16O < |n(0)]|&(0)] < 2|n(0)||(O0)RNY?,

do(m, m(s»\ < (- + 2 dulm,, m(0))

and this implies,

1 1c(0)[*
dy(n, f(M)) = |n(0)| = P T’;(_O_)F

2 g"‘ =_~ Nl/Z
ZlfeN”21 4Pz 55 2kN‘” N 2k
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Thus we get the conclusion by putting ¢, = c/2k.

Hereafter we denote by d, the distance on f(M) defined by the induced
Riemannian structure of f(M) from RY¢ and by d, the euclidean distance
of RY,

(ii) Relation between d, and d. ()
LemmA 4.2, Fix o« > 0. If ¢ < min (¢,/100, «/100c,), then there exists

& > 0 such that if d,(p, q) = a-N2, then d(p,q) = & N¥%. For the case
a = ¢,/10, we put @ = 3c,.

Proof. Since du(p, q) = «-N2, we see d (f(p), f'(q)) = afc,, Put
&, = min (r/10, «/10c,) and B = |A(%,) — h(e)| > 0.

Take the balls B,, B, of radius ¢, centered at f~'(p), f~'(g) respectively.
By the method similar to Section 3-(i), we find that there exists 5> 0
such that

#B.NN[ED/N. =23 (=12

Therefore we get
Ne ~
d(p, 9 = 2, {R(du(f(p), m)) — h(du(f(a), m))Y = N, .
We have done if we take & < 5'°8.
(ii1) Global estimate.

Lemma 4.3. If e <min (¢,/100, ¢,/1000¢,) and 6 < ¢, N2, then ExXp| s,
is a diffeomorphism.

Proof. Suppose that there exist (p, u), (q, v) € B;(Nf(M)) with (p, ©)
# (q,v) and Exp(p, v) = Exp(q,v) := x. Then from Lemma 4.2, we see
d(p, @) < ¢,/10- N¥* because

d(p, 9) =< d(Exp (p, u), Exp (g, v)) + d(Exp (p, u), p) + d(Exp (g, v), 9)
< lul+ v £ 282,
Now we define a smooth map
F(s, t): [0,1] x [0, 1] —> R™

by F(s, t) = (1 — £)7(s) + tx, where 7(s) is the minimal geodesic from p to
q in f(M).

Since
d(F(s, t), f[(M)) < d(F(s, 1), 7(s)) < d(x, 7(s)
< d(x, q) + d(g, 7(s) < d(x, q) + dul(q, 7(s))
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< d(x,q) + du(p, q) < ¢, NV + ~-1%- N2 < % N,

we observe
F(s, 0 B(c./z).ﬁy“(f(M)) = Exp (B(C4/2)-1\7}/2(Nf(M)) .

The following sublemma is crucial in the proof. Put B =
By svANF(M)).

SuBLEMMA. There exists a smooth map
G(s,t): [0,1] x [0,1] —> B
such that Exp (G(s, t)) = F(s, ).

Proof of the sublemma (cf. J. Schwartz [14] 1.23). Let I be the set of
te [0, 1] such that G(s, t) can be defined for all se[0,1]. Since G(s, 0) =
7(s), 0e I ¢. It is sufficient to prove that I is open and closed.

We see that I is open by the following argument. Take a e l. Since
Exp|; is an immersion and |_J, G(s, @) is compact, it can be covered by a
family of finite open sets {U,}, which are mapped by Exp diffeomorphically
to open neighborhoods {V,} of F(s, a,) and | J; V; D |, F(s, @¢). This implies
G(s, t) can be defined beyond a and I is open.

We show that I is closed. Since the closure of B C B, zi(Nf(M))
is compact, there exists A > 0 such that |d Exp| = A. Then for all (s, 1)
el0,1] x I,

IGt(s’ t)l = ldExp_IHFt(s’ t)l é A—liFL(s, t)l = As < S}

where G,, F, mean the derivative with respect to ¢
Integrating this we get

IG(S, tl) - G(S, to)] é As]tl - tOI .

It implies lim,_,,; G(s, t) exists and G(s, sup I) can be defined. It means
I is closed whence the conclusion.

From this sublemma, we see Exp (G(s, 1)) = x. But this contradicts
the fact that Exp|; is an immersion. Therefore Exp|sw,an is a diffeo-
morphism. q.e.d.

§5. Definition of the projection P
Take another M’ ¢ M(d, 4, i,), which has an e-dense ¢/10-discrete subset
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N'[e] = {m}} ¢ M’ such that

1—a_§_M”m/) <l4a for 0 < d,(m;, m;)) < R.
dy(m;, my)

We define f’ for M’ in the same way as f for M. From the definition of
f and ' we get

>

d(fm, £/m) = (33 1h(dum, m)) — h(donl, mi)F) "
(i (a- SUpIh’(t)l)2> < 4e g,
r

The last inequality follows from the fact |A/(f)] = 0 if ¢ = r. Therefore we
see

d(f(m), f'(M")) < d(f(m), f(my)) + d(f(m,), f'(m})

< 4050 gy,
r

where m, is the point of Nl[e] with dy(m, m,) <e If a, ¢ < c,r/10, then
f(M) C B, zv(f'(M")) and similarly f"(M’) C B, z(f(M)). From Lemma 4.3,
the normal projection P: B, zv(f'(M’) — f/(M’) is well defined. In the
later section, we show that for sufficiently small a, e > 0 P|,: f(M) —
f/(M’) is a diffeomorphism.

§6. T,f(M) and T, f'(M’) are almost paraliel

(i) Relation between d,, and d. (I)

Firstly we investigate the relation between d, and d. We have already
done in Lemma 4.2, but here, we need the estimate of d,/d in the case
when d,(x, y) is small, which is different from previous one.

LEMMA 6.1. There exists ¢, > 0 such that if ¢ < ¢,/10 and d,(m, n) <
,/10, then

= dulf(m), fm) _
= d(fom), fm) =

Proof. Let 7 be the minimal geodesic from m to n. Put d, = d,(m, n)
and z = 7((r/2) + d,). For pe B, (2)NN[e] with d,(n,p) < r/2 — (¢/10), if
P’ e B, 1,(p) NNe], then p’ e B, ()N N[e] and d,(n,p’) <r/2. Thus, by the
argument of the proof of Lemma 2.2, we see
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. 1 r
00> )
@) ) > 1= 4o
% 4 > — @ d v & 16
g((d), u) — g((®), u) = | —-g@®),u)dt < (= +rd),
¢ dt 10\ r
where u/, u, are the unit initial vector of the minimal geodesic from n,
7(t) to p’ respectively. This implies

: : 1 r e (16
f t,tz-(1—-_ﬁ)_~u(_ﬁ 4) = .
Jinf g(7(0), u) = o)~ 100 +r) >0

Since |A'(t)| > 3/r for te [3r/8, 5r/8], and 3r/8 < d,(p’, 7(t)) < 5r/8,

I dul®, m) = WP, )] = [ W(dulp, TO)& GO, )t

> min(L’ dl)‘Bli > _3.‘8_‘d~‘_
10 r 10r

Combining this with the fact that there exists ¢, > 0 such that
#(B.. (D) NN[D/N, = ¢, ,

which is obtained by the same method as Section 3-(i), we get, using the
method similar to Section 4-(ii),

d(f(m), f(n)) = cv*- 3B Rnd, .
10r

On the other hand, from Lemma 3.2, we get
&M(f(m)’ f(n) < Czﬁi/gdl .
These two estimates imply the conclusion.

For simplicity, we define some constants. For the later purpose, we
introduce a new parameter ¢ > 0. For fixed ¢ > 0, we put

4 = max (8¢-'c;%icta, 1000(4 + 1), g =S N
1004
- M = 9Cs | Ry-ie
™ = 710004 T e, T
04 =__027]3 _N:N:_v_l_, 775=E.N;'1/2‘
Cg 14 Gy

In the later parts, we denote by B/(p) the ball with radius ¢ and
centered p in R": and B9 p) is the z-neighborhood of p in @ with respect
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to the induced metric of a subset @ in R¥. Let P: R — T,f(M) be the
normal projection.

(i1) The position of f(M) and T,f(M).

For p, e f(M), put p, = P(p,).

Lemma 6.2, If d(p,p,) < n < 29, then d(p,, po) < 7/1000.

Proof. Let B(t, n) be the (d + 1)-dimensional ball centered at Exp (p, tn)
with the radius ¢ in the (d + 1)-dimensional subspace of Rc spanned by
a unit vector n normal to T,f(M) and the vectors in T,f(M). Then
B(t, n) is tangent to T,f(M) at p. Put B(t) = U, B(t, n).

Cramv: If t < ¢, NV, then BONFM) = {p).

Proof. Suppose that B()Nf(M) contains another point gq. Let n be
the unit vector normal to T,M such that 8B(t, n)Nf(M) — {p} # ¢. Put
x = Exp (p, tn). Then there exists ¢’ ¢ f(M) such that p + ¢/, d(x,q') =
d(x,f(M)) := ¢ <t. Note that the vector v = c;’—;c is perpendicular to
T, f(M). Since Exp(q/, t'v/|v]) = x, it contradicts that Exp|z,, is a diffeo-
morphism.

Then this lemma follows from the following elementary fact. In
general, let B be the ball in euclidean space with the radius a, tangent
to an affine subspace H at p. If we take a point g e H with d(p, ¢) < a/b
(b = 1000), then d(q, q@’) < a/b?, where ¢’ is a point of B which projects
normally on q. qg.e.d.

(iii) P(BIY"(p)) occupies a “large portion” in BT»70D(p).
Let (., -) be the standard inner product of R":.

LEmMMA 6.3. For any xe U,f(M), there exists p,e B! (p) such that

<ﬁ0, x> = /7

Proof. Put A, = {v=tx + y|ve BI?’(p), |t| < 7, {x,¥) = 0}. It suf-
fices to prove that P(B{f’”)(p)) 1s not contained in A%. From Lemma 3.2,
we see B/ (p) D f(BY(f~'(p))), where B;(-) is the ball with radius 5 in
M. Take a maximal y,-discrete subset {n;} in BX(f(p)). From the volume
comparison theorem, we have

Vs b)) S ()
Hng = z(%) ,

because
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s> T and s, < T

From Lemma 3.2, we observe that {f(n,)} is a ¢,N¥*,-discrete subset with
respect to d,; in f(BXE(f'(p)). From Lemma 6.1, it is an y,-discrete subset
with respect to d in B, (BI?»’“"(p)). On the other hand, we consider z,-
discrete set {nj} in B,,(A?). Since 7, < /1000, we easily see that {f’(nf)}
is 7,/2-discrete in A%, C Af,. Then,

74t N4

" = VOl (A;n4) 4771 o
#{ni} = H{P(n)H} < b)) T ( Ny ) '

(ﬂ)‘“ — (it < (fﬂ)d - <J7;>d,
74 CsCsy 70

there exists (n;) ¢ B,,(A?), whence the conclusion.

From

(iv) Estimate of the “‘angle” between T,f(M) and T, f(M’).
Put p’ = P(p) and take a <e¢<c,:=n5r/10- N;2. Hereafter we
assume this. Then, for y(c) := (10¢/r)N* < ,,

f(M) C B, (f(M') and f(M') < B,.(f(M)) .

For ve U, f(M) and v' e U,.f'(M’), let < (v, V) be the angle between v and
v, which is equal to cos™' (v, v').

LemMmA 6.4. For any ve U,f(M), there exists v € U, f(M’) such that
. 1 )
N < W)=y, .
F@v) sin (o) i=

Proof. If not, then there exists v, e U,f(M) such that
inf L (v,v)= max ( inf < (v, V) >y, .

W EUprf (M) vEUpf(M) v E€Upif'(M’)

Let H, be the plane through p’ parallel to T',f(M) and H= H, N T, f'(3’).
Then v, is perpendicular to H. In fact, let P": T,f(M)— T, f'(M’) be the
normal projection and decompose v, as v, = A,u, + A,v,, where 2} + 22 =1,
v, | H and v,e H Since |[P'Qu, + ,0)| = |P'Au) + 2,v,| = |P(v)| and
|P'(v,)| is minimal, we see 1, = 0 and therefore v, is perpendicular to H.
For x = v,, we take p,e B/“Y(p) satisfying {p,, v,» = 7,, by Lemma 6.3.
Translate p, to pie H, and decompose p; = p| + p} + pi, where p| is v,
component, p,e H and p; belongs to the orthogonal complement. Put
P'(p) = q.. Then,
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d(po, Ty f' (M) > d(Bo, T, f'(M")) — d(o, Do)
=Ip(/)“‘%[_ﬁz—ﬂzg‘p{”“Q1I"'2772
= 7 sin (g,) — 2, = 59, — 2, = 3y, .

On the other hand, from d(p, p) < d.(p, p,) < 7., we get

d(P(py), p") < d(P(py), po) + d(p,, p) + d(p, P) < 27, + 0 < 2, .
Therefore, since Lemma 6.2 can be applied,
d(py, T, f'(M") < d(po, P(py) + d(P(po), T, f' (M)
St np= 2772 .

It is a contradiction. q.e.d.

§7. The diffeomorphism from M to M’
(i) Pl;u is an injection.
LemmaA 7.1. Pj, . is injective.

Proof. Suppose P(p) = P(q) = p’ with p #+ q. Note that the vector p—c;
is perpendicular to T, f'(M’). From Lemma 6.4, there exists a unit normal
vector n, which is parallel to the orthogonal complement of T',.f'(M’) of

;):1, such that
(09 < g,
Now, put x = Exp(p, ¢,N¥?n). Since Exp|,,, 52 (Nf(M)) is diffeomorphic, we
see d(x, p) < d(x, q). Let r be the point of the through x and ¢ and 1;' 1 q_;c
Note that d(p,r) < d(p,q) and p:= < (n, pZ). Therefore,
d(p, @) Z d(p,r) Z ¢,N¥* cos (1) > 3, .
On the other hand, since f(M) C B,(f(M’)) and P(p) = P(q) =p/,
d(p,q) < d(p,p) = d(p, q) < 27,
This is a contradiction. g.e.d.
(i1) P),;un is an immersion.

It sufficies to show the following.

LeMMA 7.2.

1—sin(u) Pg)] < 1+ sin(z,) M
142 < |dP@®)| < 12 for ee UM,

where 2 = 27(e)r/ciNY2,
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Proof. Firstly, we estimate the principal curvature of f(M). For xe
U,f(M), let c(s) = f(m(s)) be the curve with ¢(0) = x, m(0) = m. From the
definition, the second fundamental form H(x, x) is the normal component
of d*/ds*|,_,c(s). Let vl be the normal component of the vector v.

o = (2] ) = (2 s

— ( ., h/(dM(mi’ m)) Hess dM,mi<'|’Zl(%))“)I“, IIZ((O(;)I>

+ 1/ (s, )i (grad [’;1(%)) )

By the argument similar to Lemma 4.1,

|H(x, x)| < 2k]\7§/2- ","@lz, < ~2—k—N;1/2 .
1¢(0) c

Nextly, let x(s) be the curve on f(M) with %(0) = & and put y(s) = P(x(s)).
Then it can be written as x(s) — y(s) = 4(s)n(s), where n(s) is the unit
normal vector field along y(s). Since & — dP(&) = %(0) — y(0) = £(0)n(0) +
£(0)7(0), we get
P'(§) = P'(dP(¢) + 4(0)n(0) + £(0)1(0))
= dP(®) + UOP'((0))
where P’ is the normal projection to T, f (M.

Note that P/((0)) is the tangential component of 7(0). The above estimate
implies,

|P'(&) — dP(&)| = |40)P'(n(0))| < —%l:wr/(e)ﬁs”zldP(&)l
= 1|dP(®)] .

On the other hand, from Lemma 6.4, if we denote by £ the parallel trans-
lation from p to p’ of & then

|§ — P(&)] < sin (u,) .
Therefore
|dP(&) — & < |dP(E) — P(®)| + |P(&) — &
< sin (g,) + 2|dP(§)].

From this, we get a conclusion.

Finally, we get the diffeomorphism F: M — M’ by F = f'"'c Pof.
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§8. Estimate of dF
We show that |dF| is close to 1, if we take sufficiently small r > 0,
a, ¢ > 0.

(i) Triangle comparison theorem.

Following lemma is an easy consequence of triangle comparison
theorem in [3] Chap. 2.

Let 4(a, b, c) © M be the geodesic triangle whose segments are a, b, ¢
and 4(a) be the length of ¢ and < (e, b) is the angle between a and b.

LemMmA 8.1. For any & > 0, there exist c,, ¢,, > 0 such that if 4(a, b, c)
C M and A(e', V', ) © M’ satisfy the following,
) ¢ = a), 4b), 4a), L) = c,/10,
i) [4(a) — £(a)l], [£(B) — £(b)], [4(c) — 4(c)] < ¢y,
then | <L (a,b) — L (@, 0)| < 9.
(ii) Estimate of |d,(m;, m) — d,.(m}, F(m))|.
LEMMA 8.2. There exist c,, ¢, > 0 such that if a < e <cy,, then
[dM(mi’ m) — d.(mj, F(m))l S ce.
Proof. Take m;e N[e] and mj e N’'[e] satisfying
dy(m,m;) <e¢ and dy(F(m),mp) <e.
From this,
a(f'(m), f'(my) < d(f'(m}), f(mp) + d(f(m)), f(m))
+ d(f(m), Pof(m)) 4+ d(Pof(m), ['(m}))
< BT 4 e 00 4 9(E) + o,
r

10
r

<(Lhe+ 204 o)mm o

r
We recall Lemma 4.2 and take a = ce,/10. For sufficiently small @, > 0,
we see c,e < & Thus we see JM,(f'(m;-), fi(my) < (ce,/1I0)NY? and from
Lemma 3.2, d,.(m), m;) < /10. So we can use Lemma 6.2, then,

dy (), mp) < {'}N;I/Zd«'(m;), f/(m2))

2

IN

Cs 7r_12f 40 N N
ENA(SERE + N 4 (0 + V)
Cs r

CCss ,

C,

IA
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From the above, we observe,

|d w(m, m;) — d,.(F(m), m))|
< ldM(mi’ mj) — dy.(m, m;)l + dy(m, mj) + dM'(F(m), m;)
< 2ra + dy(m, mj) + dy (F(m), mp) + d,.(mi, m;)

< 2re 4+ e+ ¢+ CeCis oo Cié . g.e.d.
C, .

(ii1) Definition of the isometry I: T, M — T,,,M’ .

Put u, = exp;! m,/|exp;' m,|
and
Uj = €XDr(m) Mi[|€XPrim M| .

Combining Lemma 8.1 and 8.2, we get for any &’ > 0, there exist ¢, ¢
> 0 such that if ¢, = d,/(m,;, m) = ¢,,/10 and ¢ < ¢;;, then

[{usy uyy — i wip] <07
We choose u,,, - - -, u,;, satisfying {u,, u,» =1 — (1/100d®) and [{u,, u, )| <

1/100d% (j #+ k). From these, we get the orthonormal basis {e;}?.; of T, M
by Schmidt’s orthogonalization. Namely e, = u,,

€, = (uim — kzijl Uiy ek>ek)/i Uiy — é}l (Uit ek>eki, N
We also get the orthonormal basis {e;}{.; of T, M’ from {u;}/_,. Puta, =
{e;, u;,y and a;/ = <e}, u;,y. Then by inductive arguments, we see
la;, — af] < (100d)7+*0” < (100d)*49” .
We define the isometry I: T, M — Ty, M’ by I(e;) = e,.

(iv) Estimate of dF.
From the definition, we know

dfm(&) = (' Ty h/(tl) Zj aijf]; i ')
for £ =3 ¢e,e U,M and t, = dy(m,m,). Put ¢, = d, (F(m), m{).

LemmA 8.3. For any 6 > 0, there exist ¢y, ¢, Cis > 0 such that if r < ¢y,
k£ < ¢y, (see §2), a, &€ < cy, then,

[dF(g) — I(§)] < 4.
Proof. Firstly, we estimate |df(¢) — df’(I(£))|. From the definition,

@) — df A@)F = 35 (W(t) T and, — W(E) T L)y
< ¥ o+ %

ti»ll elr/8,7r/8] otherwise
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From Lemma 8.2, there exists ¢, > 0 such that if a, ¢ < ¢, then |A/(¢) —
A(t)| < ¢,/10d. Thus, from |A/(t)| < 4/,

(first term) < ) > (@) (as; — aijE))
ti,t}€[2r/8,6r/8) i
+ (W'(t) — P'(t) }; a; &)

d® \’x
100d)*46"d* + - )N
= (Sa00dy a4 o 2
Note that if ¢, ¢[0, r/81U[7r/8, r], then ¢ [0, 2r/8] y[6r/8, r] := J. Since
¢, >k > |W(t)| on ted, we see

(second term) < ( 25 |A/(8) + RME)D( X aié,l + | 220 @il

titied
< 4c%-4d*N, .
Therefore,

\df(e) — dffA@)F < (((100d>2d + % + 4d2).§)2<a~ + 2,7,
< (100d)%¢ - r-*o"” + 2617)2N5 .

Secondly, from Lemma 7.2, we find

|dP o df(8) — df(e)] < 20(e) + Sl"l‘fj_) 2141,

For fixed r > 0, there exists ¢y, ¢,, > 0 such that if a, ¢ < ¢, 0 > ¢, then the
righthand side of the above inequality is smaller than (10°d)~%(6/10c,)|df(&)],
by the definition of 7(¢) and p, (§6, §7).

Therefore since ¢, = (10°d)-¢/3/2r, (§ 3 Remark),

1
= |dPodf(8) — df’'o1
mff[df'(s)ﬂ f(&) — df’ < I(8)]
< (czlvi/z)"((lood)”r"’(5” + 2¢,) N2 4 (105d)'d_——5 cszvyz)
10c,
< 10%d)3¢ (5" 2 " o
10°d)* (6” + 2¢y) + 10

For ¢ > 0 satisfying (10°d)*?6” < 6/10, take c,, >0 as ¢, < ¢, and ¢,;, > 0
as (10°d)**2c;; < 6/10 and ¢;; > 0 as ¢, < min (¢, ¢4, Cyp).
Finally we get,

|dF(§) — I(§)| = |df'~' o dPodf (&) — I(8)]
1
< — = _|dPod — df’o . .e.d.
= infeldf’(E)Il f(&) — df' - I(§)]| <o q.ed
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§9. In the case when M is noncompact

In the case when M is noncompact, let M, be the set of all points
m of M with dy(m, m;) < b for fixed mye M. In the above, we get the
map F,: M,_,, — M),. Note that the estimate of constants do not depend
on b, thus for fixed b, F,|y, = F, |y, for b, &' > b, Let F: M — M’ be
the inductive limit of F,.

We see that F is a diffeomorphism. The injectivity and immersivity
follows from those of F,. Surjectivity follows from Lemma 8.3 and the
implicit function theorem. g.e.d.

§10. Proof of Theorem 2

From the result of Heintze-Karcher [8] or Maeda [11], we get the
estimate of the injectivity radius i, in terms of d, 4, p, v, namely,

i,y = min (n/A‘/Z, ™ exp (—(d - 1),:41/2)) .
a

Therefore we can use Theorem 1. Take a, ¢ > 0 which satisfy the
assumption of Theorem 1. Let My, be the set of elements in M(d, 4, p, v),
which have a minimal e-dense subset {m,}”;. From the volume comparison
theorem, we see N, < b_,(0p)/b,(¢/2) := N,. Therefore it suffices to estimate
the number of the diffeomorphism classes in M, for N, < N,.

Now, take a function

(N1-

O: My,—>Q=""T11  [og (2, log (o]

defined by
O(M) = {log (dy(mf, mo)R2f-"

where @ is the direct product of the intervals [log (¢/2), log (0)] and £ is
a loxicographic order of (i,j). We define the distance d, on @ by,

do(x,y) = max [x, — ¥,
1SkSN1(N1-1)

where x = {x,}, ¥y = {¥:}.

Then, Theorem 1 says that if dy(d(M), d(M')) < —log(l — a) := b,,
then M and M’ are diffeomorphic. Therefore it is sufficient to estimate
the cardinality of maximal set P, in @, of which elements «, B (« # B)
satisfy d(a, ) > b,
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#PM < <—g§&)m(m+1> < (2—b2>N°<N°+1) ’

1 b,
where b, = log (o) — log (¢/2). After all we can estimate the number of the
diffeomorphism classes of M(d, 4, p, v), which is smaller than N(2b,/b,)¥o¥o+b,

q.e.d.

§11. Outline of the proof of Theorem 3

Let M be a compact d-dimensional Riemannian manifold with |K,| <
4 and Ric, =d — 1. Let m, n, m;, m,, ---, be the points of M and p, q,
Py D2 - - -, be the points of S? We denote by T'D(m) the interior of the
tangential cut locus i.e., TD(m) = the interior of {ve T, M|d,(m, exp, v)
= |v|]}. For the linear isometry I: T,S* — T,M, we define the map F =
exp, o Ioexp;': B,(p) > M. Put D' = exp,(I-'(TD(m)). From the theorem
of Myers, we see D’ C B.(p). Moreover if the closure of D’ is not contained

in B.(p), then diam, =, so M is isometric to S? by Cheng’s Theorem
[2]. We may argue the case when the closure of D’ is contained in

B.(p).

We give an outline of the proof of Theorem 3. From |K,|< 4, |dF|
can be estimated in D’. We see that vol(S¢ — D’) is small and |dF| is
close to 1 on much part in D’ —this is “good” part—, using the fact
vol (M) = vol (S?) — 6. Since the volume of the “bad” part is small, we
can choose ¢/2-dense, e[4-discrete subset {p,} of S¢ in D’ such that the
geodesic connecting the points of {p,} intersects small “bad” part. So we
see that dg(p;, q;) is not much smaller than d,(m,, m,), where m, = F(p,).
Therefore, if we see that

(1) {m,} is e-dense, ¢/10-discrete in M.

(2) dsip;, py) is not much larger than d,(m, m)),
then, from Theorem 1, we find that M is diffeomorphic to S¢. We show
(1) by the following arguments. If not, then there exists a point n ¢ M such
that min d,/(n, m,) is larger than 3¢/2. Since F does not much expand on
“good” part and so B,,(n) is intersect only “bad” part. But since “bad”
part is very small, it cannot cover B,,(n). This contradicts the fact F is
surjection. Assume that (2) does not hold, namely there exist p;, p, such
that dg.(p;, p;) is much larger than d,(m;, m;. Let B, B, be the ball
with the center p,, p,, of which radius is a half of ds(p;, p;). From the
assumption, we see that vol (B,U B,) is much larger than vol (F(B,U B,)).
It contradicts the fact vol (M) > vol (S¢) — 4.
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§12, Estimate of dF

LEMMmA 12.1. i) |detF| <1 on D.
1) For any 6, > 0, there exists L = L(d, 4: 6,) > 0 such that

|[dF|<L  on B, (p).

Proof. From Ric, = d — 1, i) follows from the volume comparison
theorem (cf. [7] or [13]). For ii), we quote from [1] 6.4.1, that is |(d exp,,),,w|
< |w|(s_«(8)/r) on M, where |v] =1, v_| w and this inequality holds as long
as Sqm4.0(r) =r is positive. Since |(d exp,),,w| = |w|(sin (r)/r) on S¢,
we may put L = s_,(z — 8,)/sin (x — §,). q.e.d.

Put A[5] ={geD'||dF,|> 1+ 4} and B[5] = {ge D’'||detdF,] <1
—4,}. Notice that A does not mean the closure of A here.

Lemma 12.2. For any d,, 8, > 0, there exists 6, = dd, 4;5,) > 0 such
that if vol (M) = vol (S% — d,, then vol(A[s,]) < d,, vol (B[3,]) < d, and
vol (8¢ — D) < 4.,

Since the proof of this lemma is elementary but complicated, so we
only give here an outline and the detailed proof is left over to Section 14.
It seems to be able to prove more easily.

From Lemma 12.1, F is volume decreasing. With F(D') = M and
vol (M) = vol (S?%) — 4, we see that the vol (B[4,]) < d, and vol (S¢ — D’)
< 8;. To show the first inequality, we observe that the arguments of the
equality case of the volume comparison theorem in [8] can be modified
to the near-equality case. So we find K, is close to 1 on much part.
From this, using Rauch’s comparison theorem, we see |dF| is close to 1
on much part.

§13. Proof of Theorem 3
(i) Construction of e-dense set {p;} on S°.
LemMmA 13.1. For any 6., 6, > 0, there exists 8, = 6,(d, 4; d,, 0;) > 0 and

a d-dense subset {p;} of S* in B, _;.,(p) such that if vol (M) = vol (S%) — d,,
then

dF ), Fo) — 1

for dsu(p, p;) < - .
dsd(pss D)) * 72

0

Proof. We may assume 0 < J, < §, < 1. Take a §,/2-dense, §,/2-discrete
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subset {q.}).; of S? in B,_; »(p). Put N = #{q,} and B, = B,,(q.). Note
that B, C B,_, .(p). Take

o (10 Y (Y
20N =« 100 1000

A[BB] = {q € Bn—ﬁm(p)Hqul = 14 58/2} = Brﬂ?m(p) - K[53/2] .
From Lemma 12.2, there exists d, > 0 such that if vol (M) = vol (S%) — §,,

then
v D 4 1 5 2 (64 a . i
1 B”A 68 Yo bl( 787_) ' .( ) 1‘(1( > ’
ol B-vulp) o) < 20N 100/ d \4 St 10

We define

where « = 6,0,/200L and L = L(6,)) = s_,(xr — d,))/sin(z — §,;) in Lemma
12.1.

Hereafter we denote by 7, , the minimal geodesic from p to g. Then,
we observe that for gq;e B, q;¢€ B,, if Tora; C B, _, . (p), then

duF@), F@) = [ 1dF|d

:J \dF| dt +j \dF| dt
AL8INT 42 o rq/_)q}—/l[ﬁs]

< (1 + 05/2)dse(q; @) + L-m(7 0, — Al5]) 1= A,

where m(.) is the canonical measure on T oy
If m(rq;,q; — A[8)) < a, then

duF@), F) — A

Sd(qu q_;) = dS'i(QU q_;)
(%) <1 + o L
Sd(qu qq)
<14+ % % +—_1+5B.

In the following, we prove that p, can be taken in A4[5]N B, For the
existence of p, € B,N 4[3,], we only note the inequality vol (B,_;, — A[5))

< vol (B)).
Nextly, suppose that there exist points p,, p., ---, p. (p; € B;) such
that
AulF(P), F(P) 1 5 for dy(pupy) < A<ij<k)
dsd(pv p ) 20
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Then, we show that there exists p,., € B,,, which satisfies

d(F(pe.s), F(p)) <143, fori<k.
dso(Dis1s P2) - o

In fact, if not, then for any ¢ ¢ B,.,, there exists p, € B, such that

du(F(Q, F(P)) 1 . 5.
ds«(q, p,) Z

Then from (x), m(r,,,, — Al6]) > & or 7,,,NB;(p) + ¢, where p is the
antipodal point of p. Let S; be the set of q e B,,, such that m(r, , —
A[8g]) > « and S} be the set of g€ B,,, such that 7, ,NB;,(p) # ¢ and S, =
StUS2 Since, by the assumption, B,,; € |, S;, we may assume that

(%) vol (S,) = max vol (S) = '21W -vol (B..,) .

Let C* be the cone consisting of the points of 7, ,(ge S} and Ci=
exp;1(CY). Put Ei= C*'NBy(p,). Since m(7,,,, — A[d]) > «, for q e S}, from
the Fubini’s theorem, we observe

VO1 (Bx —Elo(p) - A[58])
gj ) ( j () sind =t (8) dt)dvl,msa.
Up,SEnC13w

0

where 7, is the geodesic emanating from p, with initial vector v, 2,(¢) is
the characteristic function of the set A and dv,,s. is the canonical measure
on U,S* induced from Lebesgue measure on T,S°.

gf _ ((J-a/z n jur—aw )Sind—l(t) dt)dvvpxsa
Up,SeNCy 0 r—810 —a/2
a t d-1
ST
UpSinGi \Jo \ 2 n
d

2 a)
= 21 =)d .
J.Uplsdnéx d ( 2 Vonse

Namely,
| vy, 5o < vol (Bo_s, — AlG]) - i.(&)“,
UpSenés n 2 o

On the other hand, since dg(p,, B;,(p)) > 9,/100, we see

vol (E% ) < vol (E) ,
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where E is the cone in S¢ which contains B, (p) far from its summit
with distance J,/100 and the length of generating line is smaller than =/10.
From the spherical trigonometry, we calculate

gy <l ® (1000510 )d-l
vol (B) = d 10 '\,

Thus we estimate, from m(7,N B,) < §,/50.
vol (S)) < vol (E},,,N B)) + vol (E2,,)
= J _ (J x(rmB;)(t) sin?~* (¢) dt)dvup,sd + vol (Ei/lo)
UpySenCidv r

s a1 ™
= ‘[Uplsmc"; sin®™ ( 10 ) 58 dv””sd + vol (E% )

2\¢ . ..« 0
< vol (B,_s(p) — A1)+ 3+ (2 sine-r (5). 22
< vol (B,_;,(p) EA)) 5 () sin 10/ 5o
1.z ( 10003, )“
+ d 10 g
1

= 1(B..,) ,

—10N (100) N Vol (B
namely,

vl (8) < - +vol (B,

It contradicts (xx). g.e.d.

(ii) Proof of Theorem 3.

We take a, ¢ > 0, which satisfy the assumption of Theorem 1. For
8, = ¢/2, take d, > 0 satisfying J; < min ((1/2)b,(6,/10)w;?, a/10). Let {p;}
and « > 0 be the same as in Lemma 13.1. From Theorem 1, it suffices
to prove that there exists > 0 such that, if vol (M) = vol (S¢) — §, then
{F(p,)} is an e-dense, ¢/10-discrete in M and it satisfies

u(F(p) F(pj)) >1— for 0 < dg
Do~tn 4 s AP py) < -
de(pz’ p]) g ! 20

Cramvm 1: {F(p,)} is 25, (= ¢)-dense in M.
Proof of Claim 1. If not, then there exists n e M such that
Bs.i) (U Bsoo(F(P2)) = ¢
Put
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B = {q e Bi(p)|q €T, a0 €3Bs(P),
m(7 g0, — Al6g]) > « or 7, ,,N B, (D) # ¢}
and I§i = B;(p;) — B;. From (x) in the proof of Lemma 13.1, we see
F(J,B)) < (U B367/2(F(pi)))'
From the similar argument to Lemma 13.1, we see
d [4\¢ 1/ = \/10005,, \¢!
1(B, g_-(_) 1(B, . (p) — AI5, —<¥)<w. 1&) (=4,
Vo ( )._. 2 o Vo ( on(p) [ ]) + d 10 7'[58
vol (B) = vol (B,(p)) — 4, .
Note that

vol (F(B,ND’ — B[3)) = (1 — 6,) vol (B,n D’ — B[3,)),
where B[d,] appears in Lemma 12.2.
From this, we have
vol (M) = vol (B;,(n)) + vol (U F(B,))
= vol (Byu(n)) + (1 — 6)(vol (U (B.N D’ — Bls,))
= vol (B;, (1)) + (1 — d5)(vol (U By)) — vol (S* — D) — vol (B[d,])
= vol (Buu(m) + (1 — 3)(vol (U B,(p) — NA, — vol (S* — D)
— vol (B[3.)) Z
= vol (B;,1(n)) + vol (89) — §,vol (S?) — NA, — vol (S¢ — D)
— vol (B[d,])
where N = #{p,}.
From Lemma 12.2, there exists 6,; > 0 such that if vol (M) = vol (S¢)
— 05, then
3, vol (8% 4+ NA, + vol (S¢ — D’) + vol (B[d,]) < b,(5./10)
< vol (B;,1,(n)).
(The constants are determined in following order, §, — 6, — 6;,— L — ¢ — 4,;.)
Therefore, we see,
vol (M) > vol (S8¢) + vol (B;,,(n)) — b,(3,/10) = vol (S¢) = vol (M) .
It is a contradiction.
Cramg 2: GlF@)LF(®)) o 1 551 4
dsi(pi, p;)
Proof of Claim 2. If not, then we may assume d,(F(p,), F(p,) <

(1 — d9dsdpy, p), Put d’ = dp, p,) and d” = d,(F(p,), F(p,)). There
exists §,, > 0 such that
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_di) _ b<_ﬁ_ 5 ) __E,,.b(i _ Q’L)
b‘(z \ 2 ‘”<10”2 2/
For this 4,,, similarly as Lemma 13.1, there exists 7 > 0 such thatif d,(F(¢’),
F(p;) > d’|2 for ¢’ €9B,./,_5,(p:), then

m(rq’,pi - A[aa]) > 7 or 7’q’,pi n Bﬁm(f’) == ¢ .
Put

2
B = }Jﬂ (Bd’/z-ﬁm(pi) — {q € Bd'/z-m(pi) lqe Tarpor

q' €9B,.,/(py), m(T g p — A[5]) > or Tt pi ﬂB&,o(f’) #* ¢} .
and

e S8t 3 ().

Then we observe F(B) C (B, (F(p))UB,.(F(p.))) and

VOl (F(Byj2-5,,(P) U Byro-s,i(P2)) — A,
< vol (F(B)) = vol (By.(F(p) U By.s(F(p.)))
< vol (By(F(py)) + vol (B, (F(p.)))
— Vol (Byjz-avo(2))

where z is the mid point of the minimal geodesic from F(p,) to F(p,).
These inequalities imply that

vol (M) < vol (F(D" — (By:/{py) U By:o(P2)))
+ vol (F(D' N (By/(p) U By.x(P))))
< vol (8¢ — (Buy(p) N By p2)
+ vol (By/(p) — Boyrje-s,,(P1)
+ vol (By/p2) — Bajo-5,,(D2)
+ vol (F(Bd'/z-a,z(px) U By j2-5,(D2)
< vol (S* — (By(p) U By o o))

o) -8(% )

+ vol (B,(F(py)) + vol (B, (F(p))
— vol (By/jz-ar2(2))

< vol (S — (Bu(p) U By« D))
+ vol (By{py) + vol (By(p)) + A,

~ Ly (4

2 ‘\2 2
1 dl d//

< vol (§¢ Az———b(q——»—).

< vol(S% + 5 bl 5
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Note that the second term of A, can be small if we take sufficiently small
0. From Lemma 12.2, there exists §,, > 0 such that if vol (M) = vol (S9)

— 05, then
1 d/ dl/
a<top ( — _).
VRN 2
We take
8, = min (513, 1. bd(iii — ,di>)
5 2 2
in Theorem 3. Then if vol (M) = vol (S¢) — §,, then
vol (M) < vol (S%) — %- b4<—‘é: _ 5‘52'1) < vol(S,) — 3.
It is a contradiction. ¢/10-discreteness of {F(p,)} follows immediately from
Claim 2 with a < £4/10. q.e.d.

Corollary follows from the above and the following two theorems.

TraeoreM A. (C.B. Croke [5], Theorem B.) Let M be a compact d-
dimensional Riemannian manifold with diam(M) < D <r and Ric, = d — 1.
Then there exists C(d, D) > 1 such that 2,(M) = C(d, D)-d.

TueoreMm B. (A. Kasue [10], Theorem 4.1.) Given d, 4, v, > 0 with
4> 1, v, < w,, for any Ve (v, w,), there exists a constant p = p(d, 4, vy; V)
> 0 with p < r such that if d-dimensional Riemannian manifold M has
the property that Ricy, =d — 1, |Ky| < 4, vol(M) = v, and diam (M) = p,
then vol(M) = V.

§14. Proof of Lemma 12.2,
We firstly take constants which satisfy the following.

0 <log(1+34), 6, < E&%@T and 1og( si_ri((aél))> < %i,
5y < 522 , 0y < min (53, %757&;515), < %%ﬁsfq),

G < 57* 5 < (532‘8)2,

o <min (5 S0 Y ok, KK 5 P10

i 0
9, < min <54, 1-— exp(- 21023)16 )> ,
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?

d*K, 3 s_Jm)\* , Ks_,x)
K, > K>3 dA( s ) +
0y 2 i s,(0,) 5,(05)

S _A(ﬂ') 172 1/2)) -1
K, > <E o+ s-tal2a” ))(sxn/ZA ),

X o (@) |
it @00 T = )

Then we can conclude by putting

0, = min (~556“5‘5 sin?-! <§>, 555“) .

T 3
Put
C[d, 8,5, 03] = {ve U,S*|7(t) = exp, tv,
m(r((0, = — DN (B3.,JUS* — D)) > 8.},
Dby, by, 8] = U,S* — C[8s, ,, 855] ,
and

D[53’ 514, 515] = I(E[539 514’ 515]) .

Cram 1: If vol(M) = vol (S¢) — &,, then

vol (B[5,]) < vol (B[5,]) < ; <8, vol(S*— D)<,

14

o 30 0
voly sy (C 84 6y, 035]) < - 2200 T8
(Up8 )( [ 3 Y1ip 1]) 6“515 si ‘1'1(515/3) 27[

where vol 5.y means the canonical measure on U,S*.

Proof of Claim 1. Since
vol (§%) — 8, < vol (M) — j dvy = j |det dF| dvsa
M D’

<, (—a)dvs+ | dvgs
B[614]

D’ ~B[614]
= vol (§%) — vol (8¢ — D) — §,,vol (B[4.]),
we see
vol (B[5,]) < g and vol (S¢ — D) < 5, .

From the Fubini’s theorem,
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vol (B[6,]US? — D)

= j (j X0 Brasau sd-om(t) sin? ' ¢ dt)dvUpS,
UpSdaw

) . a0
< I_ ~Besin® -2 )duy e,
Clos, o14,015] O 3

namely

Vol g0y (Cld, 31 0,]) = S YOLBEJUS® — D)

315 sin® ! (0,5/3)
< B 6
T 0.0, 8in¢"! (6,4/3) 2z
q.e.d.: Claim 1.

For v e D[4, d,, 0], put 7(?) = exp,, tv and 7(f) = exp, tI'(v). Let U(?)
(resp. U;(t)) 1 <i<d—1) be the linearly independent parallel vector
fields along tv (resp. tI '(v)) which is perpendicular to v (resp. I-'(v)).
Put Y,(t) = d exp, (tU,(¥), Yi(t) = dexp, tU() and W(t) = P,o I P_,Y (),
where P, and P_, are the parallel translations along 7(f) and 7(¢) respec-
tively. For 7(s,) e D’ — B[3,], we put

Ego[aléi] = E§0[53, 514, 515, 516]
= {1(®)|sel0, 5], log|Yi(s) A--- A Yy ()]
< (log|Y,(s) \--- A Yd—l(s)l)/ + 0} -

Crame 2: m(r([0, s,]) — Ei[5,]) < ,r}9g§1;§;o, <l
16

Proof of Claim 2. It is an easy consequence of the following two
inequalities,

(log|Yis) N+~ A Yo i) < (og|Yi() A+ A Yau(9)),

log|Yis) A---A Y. (s)] < (log|Yi(sy) A---A Y, (s) — log(1 —d,),
g.e.d.: Claim 2

In the following, we fix s, € E;[d,]. We may assume s, =7 — d, —
0:/10 — 8,5 > =/2. Since the value

(log|Ys) A=A Yoei®)) — (log|Yi(s) A+ A Yo i)

does not change when we replace Y, and Y, by linear combination, so
we may assume that {Y,(s,)} and {Y.(s,)} are orthonormal.
We denote by I,(Y,, Y,) the index form of Y; along 7|y
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Cram 3: If 17(s,) €710, so]) — E7[65], then
I (W, W) < I(Y,Y)+ 0.
Proof of Claim 3. From the argument of Heintze-Karcher [8], we sez
(log|Yi(s) A+ A You(s)))
= z I(Y,Y) ({Y.(s))} are orthonormal.)

[

= dZ_]l I (W,W,)  (the index lemma.)

=1

d-1 o _ _
< 2, LY, ¥ = (log|Yi(s) A+ A Yaos(s)l)
= (IOg l Yl(sl) VARRRWAN Yd—l(sl)[)/ + 5]6

d—

L (Y, Y) 4 b

1

(2

Thus with the index lemma, I, (Y, Y,) < I, (W, W,), we get
IL(W, W) <I(Y,Y)+3d, for each i.
q.e.d.: Claim 3

Since {Y,(s)} is a basis of T, M, we may put W,(s) = >4, fi,(s)Y,(s).
For fixed i, we define

Fi[0,1] = Fi[0s, eus 01, 016 011l
| d 2
= {1@1sel0. 81, 3 F@YO[ < i)

Cuant 4 (1) m(r(B, s)) — Filos]) < 0=

17

(ii) If 7(s) € Fi,[3,,], then,
s a
' O;Z_;:lf;’jfikg(yj, Yk),dti < 0Oy »

Proof of Claim 4. From the arguments of Cheeger-Ebin [3] (Chap 1,
§8, 1.21), we have

sy | d
LW, W) = LY, Y) + [ 5 1.7,

J

2
dt,

therefore,

2
dt < 6y for s <s,.

d
Z fi; Y,
Jj=1

This implies (i).
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By the integration by parts, we observe,

[y a = 3 rifue, v,

0lj=1 Jrk=1

— [ 33 Fifus(y, Yot
— [ 33 Fufule(¥s, ¥ + &(¥, Yt

For the estimate of

1 (s d
j 33 Fifug(Y, Yot

| 0 j,k=1
firstly we see g(Y/}, Y,) = g(Y,, Y;) by taking the derivation of the both

sides. (cf. [3] p. 256 (xx))
Nextly, from R.C.T., we have

|Y.(s)| = |Y0)|sin (s) = | Yi(s))| - :’112 E:)) = :I;l E:)) <Z,

, L5489 _ s.[8) _ s.4m)
| Yi(s)| = | Yi0)|s_4(8) = |Yi(s)] 5.5 34(31) = 60D
Thirdly, we estimate |f..|. Put Y,(s) = > a,e., Wis) = 2, be,, where
{e.}i, is the orthonormal basis of T,,,M. From W, = 3f,Y; we get b,
= > fi;0;. Let Bj be the matrix such that the ¢-th column of A = (a,,)
is replaced by b;,, By Cramer’s formula, f;;, = det Bi/det A. Note that
det A=Y, A---AY,] and

1 sin (s) [ s_4(s)
maxldetB = max(IWl H RO sin (s,) ( 5,(0,) )

Since 7(s) e D’ — B3],
YA AY S| A A YA —6) < sin?(s)(1 —d,) .
It implies

i 1 _ sin(s) [ s_4(s) \**
|fie] < max |det Bi/det A| < sin? (s)(1 — ;)  sin(s) ( 84(s1) )

IA

K.

Fourthly we have
|Yi(s)| = K,

by the following arguments.
We may assume 4 > 1. Decompose Y, (s) as Y.(s) = Z,(s) + Z.(s), where
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Z(s) are Jacobi fields with Z(s,) = Zi(s,) = 0, Z(s) = Yi(s,)) =1 and Zi(s)
=Y;(s). From the Berger’s comparison theorem ([2] 1.29),
|Z(s, — n[24'%)| < c_,(x[24"%) .
Then,
|Z(s, — n[24'%)| < | Yi(s, — n/24'%)| + | Zy(s, — =[24")]|

s_4(m) 1/2
= '—34(33“ + c_((x/24'7) .

Thus, we get
Yi(s)| = |1Z4(s)| < (ﬁ:d(??)— + C_J(rr/24”2)>(34(7F/A”2))'1 <K,
34(53)
Fifthly we have
s d sy d ,
[ 3 vipae = [0 53 viae
0 k=1 0 k

=1

I

d S1 . N
3 [ e @, i, Yodt + g(YiGe), Yis)ds
< d-[" @241 YuPdt + | Yi(s)]| Vi) at

3 S_ (7!') 2 Kzs-a(”)
< 2add( S-AD ) R8-S g
=5 () Ny
Therefore, we get, from W, = > f.,Y,,

[ 3 fofus¥, Yot
<[ Y dt+ S8, W)
+2 [ 5 fufes(¥, Yodt
< b + | 3 AV WO
w2, o) ([ S @)

é 516 + ‘2—2%—2 + 2(516K3)‘/2 < 515 . q.e.d.: Claim 4

3

172

We put

GLIK) = {1(9) € Fi o]

MCLER AP

Then, from Claim 4 and (%), we see,
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m(GLIK] = s, — ‘;__ — % .
Cramv 5: If 7(s) e G [K.], then
Uo g(R(T, 1Y, T) — g(R(Y,, Y, Yi)dtg <5,
Proof of Claim 5. From g(Y/,Y,) = g(W/, W,) and
Wi = (S %)) = 5 (5, + 2007 + F,¥9),
we find if 7(s) € Gi[K], then,
[ @@, 177, 20 — R, 17, Wodt

S . . d !
—|[[e@r. V) — 2 sy, Wodt

d

s d
= :;g(YJ’ WZ) + 2 Z u zkg(Y Y/)dt

Jk=1

s d | |
= Uo ]Z:lft{;g(yj’ Wi)dti + 2{"[ Z fi ]dt;max (full YiD
= 01 + 20, KK <y . ge.d.: Claim 5

We put G* = M, Gi{[K,]. We take another orthonormal basis {X}'}
at 7(s;) with X¥ = (X, + Y))/(]Y: + Y;|) and repeat the above arguments
for each (i,j). Put G' = M), G¥# and

G= M G .

#(0)€ D[83,614,015]

Then, since s, = & — 0, — 0,/10 — 6,5, we see

() mG) =1 — 5, — _% -5 — da(% ¥ 5&) > — 6, — 8.

17 2

On the other hand, we find if 7(s) € G", then for any Xe T}, S,
[ e@We, i, W) — g(BE, 17, X dt| < =160 + DI,

where Wy = P,oIoP_(X). It is easily derived from the following ine-
quality,

[ E(S 2y, fav)d < 52 K, vd

0
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d S
regiaal(|[ K@+ v, Yo+ v)a

).

where K(Z, Z)) := g(R(Z, )7, Z) — g(R(W,,, D7, W,) and 3¢, 2 = 1.

+ UZ K, Yi)dt’ + UZ K(Y,, Y)dt

Cramm 6: For 7(t) e G,, |dF, | <1+ 4.

Proof of Claim 6. Similarly as above, put Y(t) = dexp, (tU() and
Y(¢) = dexp, (I"(U(®))). Take 7(¢,) e G' with ¢ = 5, and put

YO Y(2) T ¢
V) = -7 V(@) — -2~ and W({E) = P,oIoP_ V(@) =21, V,,
| Y()] 1Y) =
where {V,} are the linearly independent Jacobi fields such that {V(z)}
are orthonormal. For fixed
szr—g, 8L 0) 5
€16

put

V) = YO _ oy, 1Y@ = P,oI-P_ V)
VO = 3oy = VO gy 24 WO =Piel-P VO

Then, similarly as above, we see

LV, V) — L(W, W)| < s

and therefore
LV, V) = 1V, V)]
2 o = e T3 [
= 0. + [ (@R, 1y, W) — g(BV, 1), V)t

&RV, 1, Wy — a(R(V, 77, Vyae] - 1T
< 0 + [, B, D7, W) — gR(V, 7, V|- ged

< 5, + (16d° + 1)619( sin (sl)) <6y
sin (3,)

Namely,
|Qog | Y(@)) — (log [Y(t))| < 6u

For 7(t)e G, since the value (log|Y(?)]) does not change when™ Y(¢)
replace by constant multiple of Y(2), for t < ¢, we see
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(log | Y)Y = TY((%L(V, V)

< f SNAY fdt + [ erew, 7, )

0 ,i=1

<6, 4 24(_ ?_>2 < 347:(%)2,

O3

and similarly,
(log|Y(1)) =< m(i)z .
d,
Integrating these, we get
logl Y(t)| - log [ Y(t)| = log <§I:@) + Oum + <_§_)H3(A + 1)”520 =< 0,.
3
Therefore we see

Y(o)| .
dF.,| = YOI — oen Gy <1435, . e.d.: Claim 6
|dF; ] Y| = exp(d,) <1+ q aim

Note that A[6,] ¢ D' — F(G) := A[3,] .
Cramm 7: vol (A[s,]) < vol (A[s,]) < 4..
Proof of Claim 7. Since m(F-(G")) = m(G’), we have, from Claim 1

and (xx),

vol (A[5))) < f (j sin?-! tdt)duyps,z
Clé3, 014,015]

0

+ f q sin?-! tdt)de-pS,z
D[ 33, 914,015] (7([0,=]) - GT)

= VOI(Upsd) (CI6,, 8,4, 0s5))m
+ max m(7([0, z]) — G") vol (S¢~")
< .;Ln 4 3y + 8) vol (S < 3, . ged.: Claim 7
T
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