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GROMOV'S CONVERGENCE THEOREM

AND ITS APPLICATION

ATSUSHI KATSUDA

One of the basic questions of Riemannian geometry is that "If two

Riemannian manifolds are similar with respect to the Riemannian invari-

ants, for example, the curvature, the volume, the first eigenvalue of the

Laplacian, then are they topologically similar?". Initiated by H. Rauch,

many works are developed to the above question. Recently M. Gromov

showed a remarkable theorem ([7] 8.25, 8.28), which may be useful not

only for the above question but also beyond the above. But it seems to

the author that his proof is heuristic and it contains some gaps (for

these, see § 1), so we give a detailed proof of 8.25 in [7]. This is the

first purpose of this paper. Second purpose is to prove a differentiable

sphere theorem for manifolds of positive Ricci curvature, using the above

theorem as a main tool.

For a d-dimensional Riemannian manifold M, we denote by KM the

sectional curvature, by vol (M) the volume, by diam (M) the diameter, by

dM(m, n) the distance between m and n induced from Riemannian metric

g and by iM the injectivity radius.

A subset B is called d-dense when for any point me M, there exists

a point n e B with dM{m, n) <ΞJ 3. A subset B is called ^-discrete if n19 n2e B

(nx Φ n2) implies dM{nu n2) ^ δ. Let M(d, Δ, i0) (resp. M(d, Δ> p, v)) be the

category of all complete Riemannian manifolds M with dimension = d,

\KM\ <£ Δ and iM ^ i0 (resp. dimension = d, \KM\ <Ξ Δ, diam(M) ^ p,

vol (M) ^ v).

The following theorem is seemingly different from 8.25 in [7] but the

inwardness is essentially same.

THEOREM 1 (Gromov's convergence theorem). Given d, Δ9 ίQ > 0, 0 < R

< min (1J2*J Δ, io/2), for any δ > 0, there exist a = a(d, Δ, i0, R; δ) > 0 and
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12 ATSUSHI KATSUDA

ε = ε(d, Δ, ί0, R; δ) > 0 such that if M, Mr e M(d, Δ,ί0) have an ε-dense,

εllO-dίscrete subset N[ε] = {roJJLΊ c M and N'[e] = {m^lx c AT containing

the same number of members with

1 _ α ^ «[«(< m'j) £ 1 + a for 0

then there exists a diffeomorphism F: M—> Mf with | |dFm(f)| — 1| < δ for

ξ e UM, where UM is the unit sphere bundle of M.

We can estimate constants α, ε > 0 explicitly, but we omit it to avoid

non-essential complexity. Here we call it Gromov's convergence theorem

because he proved a convergence theorem (8.18 in [7]) with respect to the

Hausdorff distance using this theorem as a main tool.

An easy application of Theorem 1 and Dirichlet drawer principle is,

THEOREM 2 (Cheeger's finiteness theorem). The number N of the dif-

feomorphism classes of the manifolds in M(d, J, p, v) is finite.

This theorem was originally proved by J. Cheeger [2] except for

d = 4. After this, in Cheeger-Ebin's book [3], it was stated in the above

form without proof. It was also given by M. Gromov [6]. S. Peters [12]

gave another (simple) proof.

The following is the differentiable sphere theorem mentioned above.

Let Ric^ be the Ricci curvature of M.

THEOREM 3. Given d, Δ > 0, there exists δ0 = δo(d, Δ) > 0 such that if

a compact d-dimensional Rίemannian manifold M has the property that

Ricjtf ^ d — 1, \KM\ ^ Δ, vol (M) ^ ωd — δ0, where ωd is the volume of the

d-dimensίonal unit sphere, then M is diffeomorphic to Sd.

In [16], T. Yamaguchi obtained the same conclusion under a stronger

assumption and in [9], Y. Itokawa showed that, under the essentially

same assumption except for the estimate of the constant, M has the same

homotopy type as Sd. (He only assumes the upper bound of KM but

under the condition of Ric^ ^ d — 1, the lower bound of KM is automati-

cally derived.) But it should be remarked that in [15], K. Shiohama

proved that M is homeomorphic to Sd under a weaker assumption than

ours.

Finally we remark that for the diameter or the first eigenvalue of

the Laplacian Λ(M), the following pinching theorem is obtained by using
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GROMOV'S CONVERGENCE THEOREM 13

the above one and the results of C. B. Croke [5] and A. Kasue [10].

COROLLARY. Given d, Δ, υ > 0 there exist δ1 = δ^d, Δ, v) > 0 and δ2 —

δ2(d, J, ι>) > 0 such that if a d-dimensional Rίemannίan manifold M with

Ric^ >̂ d — 1, \KM\<LΔ, vol (M) ^ v has the property that d i a m ( M ) ^

π — δί or λ^M) <; d + δ2. then M is diffeomorphic to Sd.

ACKNOWLEDGEMENT. The author would like to thank T. Sakai, who
showed [13] and refined arguments of the first version, and T. Sunada who
gave valuable advices and continuous encouragements. He is also in-
debted to A. Morimoto, K. Shiohama, P. Pansu, K. Fukaya, T. Yamaguchi,
N. Innami and J. Itoh.

Remark. After the preparation of this paper the author learned that
D. L. Brittain also got the same result as Corollary independently.

[Donald L. Brittain, A diameter pinching theorem for positive Ricci
curvature, (preprint.)]

§ 1. Outline of the proof of Theorem 1

Firstly we observe the case when M, M' e M(df Δ, ί0) is compact. For
an ε-dense, ε/10-discrete subset N[ε] = {m^^ we define a map/: M-> 2?̂ β

using the distance from mt. If ε is sufficiently small, then / is an em-
bedding (§ 2). We can estimate δ > 0 such that the normal exponential
map Exp is a diffeomorphism on the ^-tubular neighborhood of f(M);
Bδ(f(M)) (§ 4). For Mf e M(d, Δ, i0) and for /': Mr -> RN< which is defined
similarly to /, we see that f(M) c Bδ{f\M')) and f'(M') c Bδ(f(M)). From
this, the normal projection P:f(M)->f'(M') can be defined (§ 5). Nextly,
we see that the tangent spaces TJ(M) and Tp,f\Mf) are almost parallel,
where pf = P(p) (§ 6). Using this, it can be shown that P:f(M) -+f'(M')
is a diffeomorphism (§7). For F = / M o P o / , we estimate dF(ξ)\ (§8).
In the case when M is non compact, the diffeomorphism is given by the
approximation arguments (§ 9).

Here the author would like to comment on Gromov's proof in [7] 8.25.
Firstly he says that it suffices to estimate δ > 0 so that Exp is locally
diffeomorphic but it really needs to estimate δ > 0 so that it is globally
diffeomorphic. (We add Lemma 4.3.) Secondly P may cut the two points
of /(M), for this possibility, he says "good" one can be chosen without
detailed arguments. (We add Section 6.) Thirdly for the argument of the
estimate of \dF(ξ)\, it needs more arguments than that given there.
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14 ATSUSHI KATSUDA

Though almost all arguments owe to Gromov [7], we give a full proof

for the sake of completeness. It should be noted that the author also

referred to T. Sakai [13].

§2. Definition of the embedding f:M->RNε

We firstly prove the Theorem 1 in the case when M is compact.

Take constants 0 < r < R and K > 0. Let h: R -> [0,1] be a C°° func-

tion such that

h(t) = 1 if ί ^ 0, h(t) = 0 if t ^ r

- A < h'(t) < - - if ^ < t < ^
T r 8 8

-A<Λ'<0<O if %<t£% or ξ£t<^
T 8 8 8 8

- * < h'(t) < 0 i f 0 < ί ^ — o r — £ t ^ r .
O O

Note that we may take K > 0 arbitrarily small, which is needed in

Section 8.

Put

k = max (I h\t) ( 1 + I ) I, I h"(t) |) and A = (l - A

In the following, we remark that the constants ct > 0, β > 0, which

appear in the proof, are depending only on d, J, ί0, r, δ > 0 and

Put

Kltf 2 Λ ' '\2 SsΔ(r/2),

where sτ(t) is the function

D i l l y t VJ , IX c y^ \J ,

ί , if τ = 0 ,

, * sinΛ((-r)'^), i f T < 0 .

Using this h(t) and an ε-dense, ε/10-discrete subset N[ε] = {mi}fj1 with ε < ε1(

we define a C°° map / = /,: Λί -> 2? '̂ by
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f£m) = (h(dM(mu m))9 , h(dM(mNsi m))) .

We show that fε is an embedding by the following two lemmas.

LEMMA 2.1. fε has maximal rank at every point me M.

Proof. Take an orthonormal basis {ejf=1 of the tangent space TmM

to M at m and choose {TO^-I c N[ε] satisfying dj¥(expm(r/2)ej, m^) < ε.

Put tj = lexp^/n^l and Uj = f j 1 exp ^m^. Note that 3r/8 < dM{mip m) <

5r/8. Then, from the Rauch's comparison theorem (R. C. T.) (cf. [3] or [13]

(1.2.20)), we see

^ - | ( # i - tjUj\ £ dM(mip expm(r/2)e,) < ε < *£L(1 - A2)1/2

r &

and this implies g(ej9 u3) > A ^ (1 — (l/3d2))1/2. From this, we see

are linearly independent. Since gradd^|m.y = uj9 we can get the conclu-

sion by

the rank of df at m = rank df \m

= rank(cϋ.Λ(di¥(m,1? ))U, , d h(dM(mu, ))U)

^ rank(h'(dM{mH, m))uu - ,h'(dM(mίd, m))ud)

= d . q.e.d.

LEMMA 2.2. fε is an embedding.

Proof. If not, then there exist m, ne M with m Φ n such that f(m) =

/(ra). Since ^(/n^, m) = dM(mί9 n) for all mf e iV[ε] Π -Br(m) = N[ε] Π Sr(^), we

see dM(m, n) : = d < 2ε < r/8. Let Γ be the minimal geodesic from mton and

put z = ϊ((r/2) + d). Then z e Br/2(n) - Br/2(m) and B2ε(^) c Br(n) - Sr/4(τn),

where Br(m) is the set of the point p with d^Cp, m) < r and S is the

closure of B. Take a point p e N[ε] Π B2ε(2:) with d' : = dM(j>, n) ̂  r/2 - 2ε,

d r < r/2 and the vector u e TnM that is the unit initial vector of the

minimal geodesic λ from n to p. Now we estimate g(u, t(d)). From R.C.T.,

we get

\{rβ)ϊ(d) - dfu\ = lexp;1* -

< Γ/2 d (Ό z) < rε

from which follows
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j g(Ϋ(d), u) = g((rl2)Ϋ(d) - d'u, u) + d'

^ d ' - | ( r / 2 ) f ( d ) - d ' u | > — - 2 s - - r%

16s/r/2)

- 4 V 4β/r/2)/'

namely

On the other hand, note that c^Cp, r(ί)) < r for 0 £ t £ d and d*(p, r(0))

= dM(p9 Γ(d)), then from the Rolle's theorem, there exists a point mι = ΐ(tL)

(0 < tt < d) with g{t(Q, ut^) = 0, where w, is the unit initial vector of the

minimal geodesic from ΐ(t) to p. Then we have

g(f(d), u) =

= f Έίess dKtP(ΐ(t)J(t))dt
(*) Jίi

<*) J ίΛ dM(p,

After all we get

It contradicts the fact

Except for (*) we get the conclusion.

To show the inequality (*), we need following sublemma. Put dM,p{-)

= dM(p, •).

SUBLEMMA ([7] 8.23 or [13] (1.4.4), iii). If \KM\<Z A, then the hessian

of dM,p at x = Hess dMiP(x, x) ^ I^Pίl/d^p, m) + (Δl2)dM(p9 m)) for x J_

graddM t P |m and dM{p, m) < r. q.e.d.
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§ 3. Estimate of df

The contents of this section are detailed arguments developed by

Gromov's hints.

(i) Estimate of the number of the elements in N[ε], which are nearly

orthonormal.

Firstly, we take d > 0 with

infc < inf
0<ε<εi/10 O_ j (4Γ) O_Δ(ε)

where bτ(t) is the volume of the ball with radius t in the space of the

constant curvature τ. Note that Cj can taken as positive because

lim, io bΔ(tl2ϋ)lb_Δ{t) = 20-d. Put Nε = supm # (B2r(ro) Π N[e]), mt = exP?7l((r/2)e,)

and D*m[e] = B,l/2(m,) Π 2V[e].

LEMMA 3.1. // ε ̂  £l/10, ίAera d ^ #ΦUε])/iVε ^ 1.

Proof. From the fact

U B.ta) C Bεi/2(nii)

U

and the volume comparison theorem ([7] or [13]), we have

Combining these, we get the conclusion,

(ii) Estimate of df.

LEMMA 3.2. For ε < εl9 there exist c2, c3 > 0 such that

c2N\/2 £ \dfε(ξ)\ ^ czN\n for any ξeUM.

Proof. From the definition of /ε, we see

<*/.,»(£) = (αiί(Mi, f), -,aNεg(uNs, ξ)) ,

where α̂  = h'(dM(m, nj). We may put c8 = s u p o ^ r |A7(i)|- For the ex-

istence of c2, we take the representatives mk. e DiXε] and put uk. =

'm^l. Let ί = £{ku...,kd): TmM~> Rd be a linear map defined by
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£(ξ) = (aklg(ukl, ξ), • • ,akdg(uίd, £)) .

Then we see that it satisfies the following estimate

In fact, if we put ai3 = g(uki, e3) and ξ = ΣJ ?A> then from the proof of

Lemma 2.1 au > A, \atj\ ^ (1 - A2)1/2(ί φ j) and 4/r ^ | α Λ ί | > 3/r. Thus,

we get

= 2 a\.ξ\a\ + (the other terms)
i

On the other hand, from Lemma 4.1, we see

#{(*,, , kd) I mki e JDJLW} ^ inf ftZyje]) ^ c,iVε

Combining these, we get

Therefore we may put

Remark. We discuss here the dependence of r on c1? c2, c3 when r is

sufficiently small, which is essential in Section 8. Since the function

f(t) = bΔ{tj2ϋ)\b_Δ{t) is decreasing and we may assume ει JΞ> r/50d, we can

take

c =1
(λ 1 V <
\40 1600d/ ~

i n fo<e<£l/io b.j(4r)b_j(ε)

= c['2(—) = — (105d)-
\2r/ 2A

4c -
r

https://doi.org/10.1017/S0027763000000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000209


GROMOV'S CONVERGENCE THEOREM 19

§ 4. The tubular neighborhood of f(M) and the normal exponential
mapping

Let Exp: Nf(M) -> RNe be the normal exponential map of the normal

bundle Nf(M). Put

Bδ(Nf(M)) = {(p, u) e Nf(M)\\u\<δ}.

We estimate δ > 0 such that Exp \BδiNf{M)) is a diffeomorphism.

(i) Local estimate.

The following Lemma 4.1 owe to [7] and [13].

LEMMA 4.1. There exists c4 > 0 such that if ε <εi and δ <: c^N1/2, then

Exp \Bδ(Nf(M)) is an immersion.

Proof. Suppose that n e RNε is a critical value of Exp. Namely there

exists a curve φ ) = f(m(s)) in f(M) and the normal vector field n(s) along

φ ) such that n = e(0) + n(0), c(0) + ή(0) = 0. From g(n(s), c(s)) = 0, we

have

£(rc(0), c(0)) = - ί(Λ(0), c(0)) = |c(0)|2 .

Since φ ) ( , h(dM(miy m(s))), •)> w e have

c(0) =
ds

dM(m,, m(s)))2

h'{dM{mi, dM(mi; •) .

/

Recall that

ds

d2

ds2

dM(mu m(s))\ = |#(grad d^mo m

dM{miy m(s))
dM(mi9 m(0))

Note that max(|hf(t){llt + Jί/2)|, \h"(t)\) = fe. Then we see

|c(0) | 2 ^ |n(

and this implies,

|m(0)|2
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Thus we get the conclusion by putting c4 = c\j2k.

Hereafter we denote by dM, the distance on f(M) defined by the induced

Riemannian structure of f(M) from RNe and by d, the euclidean distance

of J?-v .

(ii) Relation between dM and d, (I)

LEMMA 4.2. Fix a > 0. If ε <̂  min (εJWO, α/100c3), then there exists

a > 0 such that if dM{p, q) ̂  a N1/2, then d{p, q) ̂  ά-N1/2. For the case

a = cJlO, we put a = 3c5.

Proof. Since dM(p, q) ̂  a N1/2, we see dM(f'\p\ f-\q))^ajcz. Put

ε2 = min(r/10, α/10c3) and β = |Λ(9e2) - Λ(ε2)| > 0.

Take the balls Bl9 B2 of radius ε2 centered at f~\p), f~\q) respectively.

By the method similar to Section 3-(i), we find that there exists β > 0

such that

Therefore we get

(d(p, q))2 = Σ {h{dM{f-\p\ rnt)) - h{dM{f-\q), mj)}2 ^
i = l

We have done if we take a ^ βί/2β.

(in) Global estimate.

LEMMA 4.3. If ε< min fo/100, c4/1000c3) and δ < c^N1/2, then Exp\BδiNf{M))

is a dίffeomorphism.

Proof. Suppose that there exist (p, u), (q, v) e Bδ(Nf(M)) with (p9 ύ)

Φ (q, v) and Exp (p, u) — Exp (q, v) : = x. Then from Lemma 4.2, we see

dM(p, q) ̂  cJlO N1/2 because

d(p, q) ̂  d(Exp (p, u\ Exp (q, v)) + d(Exp (p, u),p) + d(Exp (g, u), q)

^\u\ + \v\^2c5Nl/2 .

Now we define a smooth map

F ( M ) : [0,1] X [0,1] >RN*

by F(s, t) = (1 — £)f(s) + ίx, where λ(s) is the minimal geodesic from p to

q in /(M).

Since

d(F(s, t), f(M)) ^ d(F(s, t), r(s)) £ d(x, ΐ(s))

£ d(x, q) + d(q, r(s)) £ d(x, q) + dM(q, r(β))
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£ d(x, q) + du(p, q) £ cM" + ^ -NY* ^ | . 2\^ .

we observe

F(s, t) c B(ei/!,.Aj/,(/(M)) = Exp (B(Ci/2).^(Nf(M)) .

The following sublemma is crucial in the proof. Put B

SUBLEMMA. There exists a smooth map

G(s,t): [0,1] X [0,1] >B

such that Exp (G(s, t)) = F(s, t).

Proof of the sublemma (cf. J. Schwartz [14] 1.23). Let I be the set of

t e [0,1] such that G(s, t) can be defined for all s e [0, 1]. Since G(s, 0) =

ϊ(s), 0 e I Φ φ. It is sufficient to prove that I is open and closed.

We see that I is open by the following argument. Take a e /. Since

Exp | 5 is an immersion and [Js G(s, a) is compact, it can be covered by a

family of finite open sets {ί/J, which are mapped by Exp diffeomorphically

to open neighborhoods {VJ of F(s, at) and (J« ^ ^ Lλ -̂ (5> α) This implies

G(s, t) can be defined beyond a and / is open.

We show that I is closed. Since the closure of B e Bc^r/i{Nf{M))

is compact, there exists A > 0 such that |<2Exp| ^ A. Then for all (s, ί)

€ [0,1] X J,

\Gt(8, t)\ = \dExp-WXs, t)\ £ A-*\Ft(s, t)\ = As<oo

where Gt, Ft mean the derivative with respect to t.

Integrating this we get

It implies lim^supj G(s, t) exists and G(s, sup/) can be defined. It means
/ is closed whence the conclusion.

From this sublemma, we see Exp (G(s, 1)) = x. But this contradicts
the fact that Exp]β is an immersion. Therefore Exp\Bδ{NfiM)) is a diffeo-

morphism. q.e.d.

§ 5. Definition of the projection P

Take another Mf e M(d, J, i0), which has an ε-dense ε/10-discrete subset
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N'[ε] = {mΊ} c M' such that

1 _ a £ Ά«'(mi> < L ^ 1 + α for 0 < d^m,, m f ) < i .

We define /' for M' in the same way as / for M. From the definition of
/ and /' we get

d(f(mk), /'(mi))= (j£\h(dM(mt, mk)) - h(dM.(ml, m'k))\ψ

The last inequality follows from the fact \h'(t)\ = 0 if t^ r. Therefore we
see

d(f(m), /WO) £ d{f{m\ f(mk)) + d(f(mk), f'(m'k))

< 4(α + ε) ΛTI/2

Γ

where mfc is the point of N[ε] with dM(m, mk) < ε. If a, ε ^ c5r/10, then
/(M) c Bc^(f'(M')) and similarly f(M') c Bc^(f(M)). From Lemma 4.3,
the normal projection P\Bctfif*(f'{M')) ->f'(M') is well defined. In the
later section, we show that for sufficiently small a, e > 0 P\nM)\ f(M) ->
f'(M') is a diffeomorphism.

§6. Tpf(M) and Tp,f{M') are almost parallel

( i ) Relation between dί̂  and d (II)
Firstly we investigate the relation between dM and d. We have already

done in Lemma 4.2, but here, we need the estimate of dM\d in the case
when dM(x, y) is small, which is different from previous one.

LEMMA 6.1. There exists c6 > 0 such that if ε < εJlO and dM(m, ή) <
εi/10, then

1 dM(f(m), f(ή)) <
)) ~ 6 '1

- d(f(m),f(ή))
Proof. Let Γ be the minimal geodesic from m to τι. Put dj = dM(m, ή)

and 2 = r((r/2) + d^. For p e ΰεi(2:)niV[ε] with dM(n,p) < r/2 - (eJlO), if
p' 6 jBIl/10(p) Π 2V[e], then p' e Bβl(β) Π 2V[ε] and d^(n, pθ < r/2. Thus, by the
argument of the proof of Lemma 2.2, we see
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GROMOV'S CONVERGENCE THEOREM 23

ΐ(dd, W) - g(ΐ(t), ut) = Γ 4~8<J{t\ u<)dt < ^ ί - 1 6 - + rά),
h dt 10 \ r I

where u', ut are the unit initial vector of the minimal geodesic from n,

ϊ(t) to pf respectively. This implies

inf g(Ϋ(t), ut) > l ( l - - j - ^ - ) - ^ - ( — + rΔ) := βt > 0.
ostsdi 4 V 4sj(r/2) / 10 \ r /

Since |Λ'(ί)| > 3/r for <e [3r/8, 5r/8], and 3r/8 ^ d^ίp', r(ί)) ^ 5r/8,

I M ^ P ' , ι»)) - h(dM(p', n))| = I f' Λ'Cd^p, ϊ{t))g(j{t), ut)dt
[ J O I

10 7 * r ~ lOr

Combining this with the fact that there exists c7 > 0 such that

which is obtained by the same method as Section 3-(i), we get, using the

method similar to Section 4-(ii),

On the other hand, from Lemma 3.2, we get

These two estimates imply the conclusion.

For simplicity, we define some constants. For the later purpose, we

introduce a new parameter σ > 0. For fixed σ > 0, we put

μ = max ( β ^ c ^ c ^ σ , 100σ(J + 1)), V ^
100//

1000/i

y, _ C2?3 ,7θΊ/2 _ 57l _ 57l .7O--1/2

C 6 // C3

In the later parts, we denote by Bτ{p) the ball with radius τ and

centered p in RNε and ΰf (p) is the τ-neighborhood of p in Q with respect
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to the induced metric of a subset Q in RN*. Let P: RNε->Tpf(M) be the

normal projection.

(ii) The position of/(AT) and Tpf(M).

For p0 € /(M), put p0 = P ( A )

L E M M A 6 .2 . If d ( p , p 0 ) ^ η ^ 2η19 t h e n d ( p o , p o ) < jy/1000.

Proof. Let B(t, n) be the (d + l)-dimensional ball centered at Exp (p, in)
with the radius ί in the (d + l)-dimensional subspace of RNe spanned by
a unit vector n normal to TJ(M) and the vectors in Tpf(M). Then
Bit, n) is tangent to TJ(M) at p. Put B(t) = [Jn B(t9 ή).

CLAIM: If t ^ c5#ί/a, then B(t)Γ\f(M) = {p}.

Proof Suppose that B(t)Γ)f(M) contains another point q. Let n be
the unit vector normal to TPM such that 3B(t, ή)f]f(M) — {p} Φ φ. Put
x = Exp (p, ίτι). Then there exists q' ef(M) such that p =£ g7, d(x, q') =
d(x,f(M)) := t' <Lt. Note that the vector ϋ = g'x is perpendicular to
Tq,f(M). Since Exp(</, ί'y/lϋl) = x, it contradicts that Exp|5(ί) is a diffeo-
morphism.

Then this lemma follows from the following elementary fact. In
general, let B be the ball in euclidean space with the radius α, tangent
to an affine subspace H at p. If we take a point q e H with d(p, q) <I α/6
(6 ^ 1000), then d(q, qf) <̂  α/62, where </ is a point of dB which projects
normally on q. q.e.d.

(iii) P(B%M)(p)) occupies a "large portion" in Bτ

ηf
{M\p).

Let < , •) be the standard inner product of RNε.

LEMMA 6.3. For any x e Upf(M), there exists p 0 6 Bf

η[
M){p) such that

<Po, *> ^ %

Proo/. Put A;4 = {ϋ = ίx + y 11; e BT

n>"*\p)9 \t\^η* <x, y> - 0}. It suf-
fices to prove that P(B^M)(p)) is not contained in A 4̂. From Lemma 3.2,
we see Bf

vί
M)(p) Z) f(B*(f-\p))), where JBf( ) is the ball with radius η in

M. Take a maximal ^-discrete subset {nj in Bf5(/(p)). From the volume
comparison theorem, we have

because
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From Lemma 3.2, we observe that {/(τι£)} is a CgiVy^g-discrete subset with

respect to dM in f(B^(f-\p))). From Lemma 6.1, it is an ^-discrete subset

with respect to d in BηΛ(B**nm(p)). On the other hand, we consider in-

discrete set {n } in J39a(A*4). Since η2 <; 4̂/1000, we easily see that {P(n[)}

is ??4/2-discrete in A*i+Vi c Aj,4. Then,

From

there exists (n^ & Bηtλ{Ax

η)y whence the conclusion.

(iv) Estimate of the "angle" between TJ(M) and Tp,f{Mf).

Put p ' = P(p) and take a £ ε < c3 := ̂ 2r/10 N;1/2. Hereafter we

assume this. Then, for ̂ (e) : = (10ε/r)iVy2 < η2,

f(M) c B ! ( l ) ( / W ) and f'W) c B,

For i; e Upf(M) and fr e Up,f'(M'), let <£ (y, i;') be the angle between i; and

ι/, which is equal to cos" 1 ^, v').

LEMMA 6.4. For any v e Upf(M), there exists vf e Uv,f'{M') such that

Proof, If not, then there exists υ0 e Upf(M) such that

inf <£ (ϋ0, i O = max ( inf <̂C (y, y7)) >
) vGUpf(M) υ'eUp'f'(M')

Let JEfp, be the plane through // parallel to TJ(M) and H=HP,Γ\ Tv,f'(Mf).

Then ι>0 is perpendicular to H. In fact, let P ' : Tpf(M) -> Tp,f'(M') be the

normal projection and decompose L>0 as f0 = ̂ ^i + Λ2u2, where >ίf + λ\ = 1,

ι;t i . H and y2 e F. Since \F(λιvι + ̂ 2y2)| = {Ffaυd + λ2vz\ ̂  1^(^)1 and

\P'(vQ)\ is minimal, we see Λ2 = 0 and therefore v0 is perpendicular to H.

For x = u0, we take p0 e Bf

η[
M)(p) satisfying <p0, vQ} ^ ^4, by Lemma 6.3.

Translate p0 to pi e Hv, and decompose pj = p[ + p'2 + pi, where p[ is ι;0-

component, p'zeH and Ps belongs to the orthogonal complement. Put

P'(pί) = <7*. Then,
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d(p0, Tp,f'(M')) > d(p0, Tv,f\M>)) - d(po,po)

= \Po - qo\ -r)2-7]2^ \p[ - q,\ - 2η2

^ η, Sin (μσ) - 2η2 ^ 5% - 2η2 = Sη2 .

On the other hand, from d(p,p0) <I dM(p,p0) ^ ηu we get

d(P(pQ\p') ^ d(P(p0), p0) + d(pQ, p) + d(p, p') ^ 2η2 + ^ ^ 2^ .

Therefore, since Lemma 6.2 can be applied,

d(p0, 7V/'(M')) ^ d(Po, P(Po)) + d(P(p0), Tp,f\Mf))

^ 2̂ + % = 2^2 .

It is a contradiction. q.e.d.

§ 7. The diffeomorphism from M to Mf

( i ) P|/(Λf) is an injection.

LEMMA 7.1. JP|/(Λf> is injective.

Proof. Suppose P(p) = P(q) = p ' with p φ q. Note that the vector pq

is perpendicular to Tp,f
f{M'). From Lemma 6.4, there exists a unit normal

vector 7Z, which is parallel to the orthogonal complement of Tp,f\M') of

pq, such that

<£ (A pq) ^ i"σ

Now, put x = Exp(p, cbNl/2ή). Since Exp|5C5iγi/2(iV/(Λf)) is diffeomorphic, we

see d(x, p) < d(x, g). Let r be the point of the through x and q and pr _|_ gx.

Note that d{p, r) <Ξ d(p, g) and // : = <£ (n, pg). Therefore,

d(p, 9 ) ^ d(p, r) ^ cfi1/2 cos (p) > 3^ .

On the other hand, since f(M) c BJf'(M')) and P(p) = P(q) = p7,

<*(P, 9) ^ d(APθ - d(p\ q) ^ 2 2̂ .

This is a contradiction. q.e.d.

(ii) P\f(M) is an immersion.

It sufficies to show the following.

LEMMA 7.2.

-L^sinQQ ^ |dP(f)| £ 1 ± ^ M /or f e UM,

u Λere Λ = 27](ε
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Proof. Firstly, we estimate the principal curvature of f{M). For x e

Upf(M), let c(s) = f(m(s)) be the curve with c(0) = x, m(Q) = m. From the

definition, the second fundamental form H(x, x) is the normal component

of d2/ds2\s=Qc(s). Let v1 be the normal component of the vector v.

= ( ., h'(dM(mi, m)) Hess d.J-g®-, g
\ \|c(o)| |c

+ h"(dM(m, m

By the argument similar to Lemma 4.1,

\H(x, x)\ < 2kN]/2 \™Ά <
1 V n - ε | c (0) | 2 -|c(0)|2 - c\

Nextly, let x(s) be the curve on f(M) with x(0) = ξ and put y(s) = P(x(s)).

Then it can be written as x(s) — y(s) = £(s)n(s), where n(s) is the unit

normal vector field along y(s). Since ξ - dP(ξ) = i(0) ~ 5<0) = έ(0)n(0) +

£(0)ή(O), we get

i(0)n(0)

where Pf is the normal projection to Tp,f'(Mf).

Note that P'(ή(0)) is the tangential component of ή(0). The above estimate

implies,

- dP(ξ)\ = ^

On the other hand, from Lemma 6.4, if we denote by f the parallel trans-

lation from p to pf of f, then

Therefore

From this, we get a conclusion.

Finally, we get the diffeomorphism F: M-+M' by F = f'~ιoPof.
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§ 8. Est imate of dF

We show t h a t | dF\ is close to 1, if we take sufficiently small r > 0,

α, ε > 0.

( i ) Triangle comparison theorem.

Following lemma is an easy consequence of triangle comparison

theorem in [3] Chap. 2.

Let J(α, b,c) C M be the geodesic triangle whose segments are α, b, c

and £(a) be the length of a and <C (α, 6) is the angle between a and 6.

LEMMA 8.1. For any δ' > 0, there exist c9, c10 > 0 swc/i ί/iαί // J(α, 6, c)

c M and A(a', b\ c') c M r satisfy the following,

i) c9 ^ ^(α), /(6), Z{a'\ Z{V) ^ cβ/10,

ii) \£(a) - Ha% \£(b) - £(b% \£(c) - ^(cθ| ^ c10,

ίΛβn | < ( σ , 6 ) - < « &0I ^ ^

( i i ) Estimate of \dM{mu m) — dM,{m'u F(m))\,

LEMMA 8.2. There exist cn, c12 > 0 such that if a <Ξ ε < c12,

(rf^m^ m) - du,(m'u F(m))\ £ cnε .

Proof. Take m ; e N[ε] and m .̂ e iV'te] satisfying

dM{m, m3) £ ε and dM,(F(m), m'k) ^ ε .

From this,

'j), f\m'k)) £ dif'im'j), /(m,)) + d(/(m,), f(m))

m), P o / ( m ) ) + d(P°f(m), f'{πQ)

We recall Lemma 4.2 and take a = c2εjlθ. For sufficiently small a,rε >Q,

we see c13ε ^ α-. Thus we see dM,(f'(m'j), /'(mi)) ^ feεi/lO)^72 and from

Lemma 3.2, dM,(m'j, m'k) £ εJlO. So we can use Lemma 6.2, then,

dx,(m'j, m'k) £ ^
c2

r(ε) + εC.N1/2)
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From the above, we observe,

\dM(m, mt) - dM,(F(m), mfi\

^ \dM(mi9 m,) - dM,(m'u mj)| + dM(m, m3) + dM,(F(m), m'j)

^ 2ra + dM(m, m,) + dM,(F(m), mk) + dM,(m'k, m'3)

^ 2rε + ε + ε + - ^ ε : = cnε . q.e.d.
c

(iii) Definition of the isometry /: TmM-^ TF(m)M'.

Put ut = exp-1 mJlex p-1 mt\
and

Combining Lemma 8.1 and 8.2, we get for any δ" > 0, there exist c14, c15

> 0 such that if cu >̂ dM(mu m) ̂  cH/10 and ε < c15, then

We choose z/̂ , - - -9uid satisfying (ι/ .̂, wίy) ^ 1 — (l/100<i2) and \(uip un}\ ^

1/lOOd2, (j Φ k). From these, we get the orthonormal basis {βjf=1 of TmM

by Schmidt's orthogonalization. Namely eγ = uiχ,

1+1 = (^, + 1 - Σ <uij+1, ekyeλ/\uiJ+1 - Σ <uij+ι9
\ J k=i / / I fc=i

We also get the orthonormal basis {β }?=1 of TF{m)M
f from {wy^i Put αjA. =

<βy, wίft) and αy/ — <ej, M^). Then by inductive arguments, we see

We define the isometry 7: ΓTOM-> TF{m)M' by /(β,) = eί.

(iv) Estimate of dF.

From the definition, we know

dfm(Φ = (•••, h ' i t d Σ j ^ ξ , , •••)

for f = Σ f A e C/mM and ί, = d^τn,m%). Put £ = dNf(F(m), m't').

LEMMA 8.3. For any δ > 0, ί/iere exist clβ, cπ, c18 > 0 sαc/i ί/iαί if r <C cί6,

K < c17 (see § 2), o, f < c18, then,

\dF(ξ) - I(ξ)\ < δ .

Proof. Firstly, we estimate \df(ξ) — df'(I(ξ))\. From the definition,

\df(ξ) - df'(I(ξ))f = Σ (h'(Q Σ atjξj - h\t[) Σ <^Y
i = l j j

£ Σ + Σ
ίi>ί[e[r/8,7r/8] otherwise
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From Lemma 8.2, there exists c19 > 0 such that if α, ε < c19, then \h\t^) —

Λ'(*0l < c17/10Λ Thus, from |A'(ί)| ^ 4/r,

(first term) ^ ^ Σ {AUXΣ (αύ ~ O ? ; )

•W - AW) Σ <ξj}2

j

δ"d< + c17.

Note that if tt e [0, r/8] U [7r/8, r], then ^ e [0, 2r/8] u [6r/8, r] : = J. Since

c17 > Λ: > I Ar(ί) I on t e J, we see

(second term) £ ( Σ 1^(0 + &WX| Σ <*,,£, | + IΣ

^4c? 7 4d4iVε .

Therefore,

|d/(f) - df'(I(ξ))f ^ (((100d)M + A

^ (100d)eί r-2(<5" +

Secondly, from Lemma 7.2, we find

\dPodf(ξ) - df(ξ)\ £ 2V(ε) + i

For fixed r > 0, there exists c20, c21 > 0 such t h a t if a, ε < c20, σ > c21, then the

righthand side of the above inequality is smaller t h a n (105d)~d(δ/10c3)\df(ξ)\,

by the definition of ^(ε) and μσ (§ 6, § 7).

Therefore since c2 = (105d)"d/23/2r, (§3 Remark),

10c3

For δ" > 0 satisfying ( l O Ή ) 5 ^ " ^ δ/10, take c16 > 0 as c16 ̂  c u and c17 > 0

as (105d)5d2c17 ^ a/10 and c18 > 0 as c18 ̂  min (c15, c19, c20).

Finally we get,

- I(ζ)\ = \df'-^dPodf{ξ) - I(ξ)\
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§9. In the case when M is noncompact

In the case when M is noncompact, let Mb be the set of all points

m of M with dM{m, m0) < b for fixed mQ e M. In the above, we get the

map Fb: Mδ_2r-> M'b. Note that the estimate of constants do not depend

on 6, thus for fixed 60, Fb\Mbo = Fb,\MbQ for b, U > 60. Let F: M-*Mf be

the inductive limit of Fb.

We see that F is a diffeomorphism. The injectivity and immersivity

follows from those of Fb. Surjectivity follows from Lemma 8.3 and the

implicit function theorem. q.e.d.

§ 10. Proof of Theorem 2

From the result of Heintze-Karcher [8] or Maeda [11], we get the

estimate of the injectivity radius iM in terms of d, A, p, v, namely,

iM ^ min (π\Δ"\ -™- exp ( - (d -

Therefore we can use Theorem 1. Take α, ε > 0 which satisfy the

assumption of Theorem 1. Let MNl be the set of elements in M(d, J, p, v),

which have a minimal ε-dense subset {mjf=v From the volume comparison

theorem, we see Nx <̂  b_Δ(p)lbΔ{εj2) := NQ. Therefore it suffices to estimate

the number of the diffeomorphism classes in MNι for Nt <̂  iV0.

Now, take a function

NχiNt-1)

Φ: MNl > Q = Π [log (e/2), log (P)]
fc = l

defined by

Φ(M) = {log {dM{m"u m;))}βf -» ,

where Q is the direct product of the intervals [log (ε/2), log (p)] and k is

a loxicographic order of (i,j). We define the distance dQ on Q by,

dQ(x,y)= max \xk—yk\9

where x = {xt}, y = {y,}.

Then, Theorem 1 says that if dQ(Φ(M), Φ(Mf)) ^ - l o g ( l - a) : = 6^

then M and M ; are diffeomorphic. Therefore it is sufficient to estimate

the cardinality of maximal set PNχ in Q, of which elements a, β (a Φ β)

satisfy dQ(a, β) > 6,,

https://doi.org/10.1017/S0027763000000209 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000209


32 ATSUSHI KATSUDA

Λi(i\i+i)

where b2 = log (p) — log (ε/2). After all we can estimate the number of the

diffeomorphism classes of M(d, A, p, v), which is smaller than iVo(262/61)
Λ'o(Λo+1).

q.e.d.

§ 11. Outline of the proof of Theorem 3

Let M be a compact d-dimensional Riemannian manifold with | KM \ <^

Δ and Ric^ ^ d — 1. Let m, n, mu m2, , be the points of M and p, q,

PD P2, - - '9 be the points of Sd. We denote by TD(m) the interior of the

tangential cut locus i.e., TD(m) = the interior of {v e TmM\ dM(m, expm v)

= \v\}. For the linear isometry I: TpS
d -> TmM, we define the map F =

expmo/oexp;1: B,(p) -> M Put Π = e^p(I-\TD(m)). From the theorem

of Myers, we see D' c Bπ(p). Moreover if the closure of Π is not contained

in Bπ(p), then diam^ = π, so M is isometric to Sd by Cheng's Theorem

[2]. We may argue the case when the closure of Όr is contained in

BXp).

We give an outline of the proof of Theorem 3. From \KM\ ^ Δ, \dF\

can be estimated in D'. We see that vol(Sd — D') is small and \dF\ is

close to 1 on much part in D' —this is "good" part—, using the fact

vol(M) ^ vol (Sd) — δ. Since the volume of the "bad" part is small, we

can choose ε/2-dense, ε/4-discrete subset {pt} of Sd in U such that the

geodesic connecting the points of {pj intersects small "bad" part. So we

see that dsd(pίf q3) is not much smaller than dM(mu nij), where mi = F(pt).

Therefore, if we see that

(1) {rrii} is ε-dense, ε/10-discrete in M.

(2) dsaiPi, Pj) is not much larger than dM(mu rrij),

then, from Theorem 1, we find that M is diffeomorphic to S d. We show

(1) by the following arguments. If not, then there exists a point neM such

that min dM(n, mj is larger than 3ε/2. Since F does not much expand on

"good" part and so Bε/i(ri) is intersect only "bad" part. But since "bad"

part is very small, it cannot cover Bεμ(ri). This contradicts the fact F is

surjection. Assume that (2) does not hold, namely there exist pίy Pj such

that dsd(pupj) is much larger than dM(mum^. Let Bu B2 be the ball

with the center pu pjf of which radius is a half of dsd{pu p3). From the

assumption, we see that vol (Bx U B2) is much larger than vol (F(Bι U B2)).

It contradicts the fact vol (M) > vol (Sd) - δ.
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§ 12. Estimate of dF

LEMMA 12.1. i) | d e t F | <: 1 on D'.

ii) For any δ3 > 0, there exists L = L(d, Δ\ d3) > 0 such that

\dF\£L on Bπ_δ(p) .

Proof. From Ric¥ ^ d — 1, i) follows from the volume comparison

theorem (cf. [7] or [13]). For ii), we quote from [1] 6.4.1, that is |(c?expm)rϋu;|

^ |^|(s_j(£)/r) on M, where \v\ = 1, v _[_ w and this inequality holds as long

as S(i/2χ-j+j)(r) = r is positive. Since \(d exτρp)rvw\ = |iϋ|(sin (r)/r) on Sd

9

we may put L = s_Δ(π — ^3)/sin(7τ — <53). q.e.d.

Put Ά[δ4] ={qe D'\\dFq\ >l + δA] and B[δ4] = {g e Z)'||det rfF J < 1

— 34}. Notice that A does not mean the closure of A here.

LEMMA 12.2. For any δ4, δb > 0, there exists δ6 = δQ(d, A; δb) > 0

vol (M) ^ vol (Sd) - <56, ίΛen vol (ϊϊ[34])< 35, vol (S[δJ)< S5 and

vol (S d - Π) < δ,.

Since the proof of this lemma is elementary but complicated, so we

only give here an outline and the detailed proof is left over to Section 14.

It seems to be able to prove more easily.

From Lemma 12.1, F is volume decreasing. With F{Df) = M and

vol (M) ^ vol (Sd) - δ, we see that the vol (B[δJ) < 55 and vol (Sd - Π)

< d5. To show the first inequality, we observe that the arguments of the

equality case of the volume comparison theorem in [8] can be modified

to the near-equality case. So we find KM is close to 1 on much part.

From this, using Rauch's comparison theorem, we see \dF\ is close to 1

on much part.

§ 13. Proof of Theorem 3

( i ) Construction of ε-dense set {pt} on Sd.

LEMMA 13.1. For any δ7, δ9 > 0, there exists δd = δd(d, J ; 37, δ8) > 0 and

a δΊ-dense subset {pt} of Sd in Bπ_δinQ{p) such that if vol (M) ^ vol (Sd) — <59,

then

MZλ <: 1 + 5β for dUPu Λ ) < - ^
20ds*(Pu Pj

Proof We may assume 0 < δ8 < 37 < 1. Take a 37/2-dense, ^7/2-discrete
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subset {qrJΓ-i of S" in Br.h/20(p). Put N = #{gj and £, = Bh/m(q,). Note

that Si c Bτ_hm(j>). Take

61μ)μ
202V jr V 100 / V 1000

We define
Λ[δβ] = {q e B,_ ί l o(p)| |dF ί I rg 1 + δ8/2} =

From Lemma 12.2, there exists <59 > 0 such that if vol (M) ^ vol (S") - δs,

then

• f(f)' ™-(JL) ,

where α: = δ7δj2Q0L and L = L(δ10) — s_X̂ r — ^10)/sin(τr — £10) in Lemma

12.1.

Hereafter we denote by Γp,g the minimal geodesic from p to q. Then,

we observe that for q[ e Bi7 q] e Bjy if ϊq,,q, c Bπ_δlQ(p), then

dM(F(qd, F{q>3)) £ f
Jί β;,β;

= ί |c?F|dί + ί

{qi, q'3) + ί W ,

where m( ) is the canonical measure on Vq Λ>.

If mίr,.,,. - A[δs]) £ a, then

2 dsΛ{q'u Qd

In the following, we prove that pt can be taken in Λ[δa] Π Bτ. For the

existence oίp^Bγ[\Λ\δ^, we only note the inequality vol(βc_ J l 0 — Λ[δa])

< vol (S,).

Nextly, suppose that there exist points pu p2, , pk (pt e Bf) such

that

ddξiklίyi <:1 + δs for d,^, Pi) £ ^ . (1 ̂  ί, £ k)
20
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Then, we show that there exists pk+i^Bk+1 which satisfies

In fact, if not, then for any qeBk+ί, there exists pt e Bi such that

dM(F(q),

Then from (*), m(TqyP. — Λ[δ9]) > a or TqtPiΓiBδlQ(p) Φ φ, where p is the

antipodal point of p. Let S\ be the set of qeBk+ί such that m(ϊQίPι —

Λ[δ8]) > a and S\ be the set of q e Bk+1 such that ϊPuq Π Bδl0(p) Φ φ and St =

S\\jSl. Since, by the assumption, Bk+1 c \JiSί9 we may assume that

(**) vol (S1) = max vol (S,) ^ - ^ - vol (Bfc+1) .

Let C* be the cone consisting of the points of Tpuq(qeSl) and Cι —

exp"1 (C1). Put JSj = C< Π BXP^. Since mC^,,, - Λ[δ8]) > a, for q e S{, from

the Fubini's theorem, we observe

vol(Bπ_δl0(p)-Λ[δ8])

^ f
where ΐυ is the geodesic emanating from p^ with initial vector v, XA(t) is

the characteristic function of the set A and dvUpSd is the canonical measure

on UpS
d induced from Lebesgue measure on TpS

d.

^ (( + ) Bin'-1® dt)dυUrιS<
J UPlS

dnCi \\Jθ Jπ-δlo-a/2/ /

Namely,

ί d^ ί l S, ^ vol (5..,,, - >1[3J) 4 (

On the other hand, since dSi(pu BSw(p)) > δβ/100, we see
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where E is the cone in Sd, which contains Bδl0(p) far from its summit

with distance <58/100 and the length of generating line is smaller than π/10.

From the spherical trigonometry, we calculate

d 10 V πδe

Thus we estimate, from m(rv Π Bt) < δj50.

vol (Sd ^ vol (E\,w n A) + vol (El/W)

= ί ( ί Z(r,nΛ)(ί) sin*-1 (t)dt)dΌBfι84 + vol (El/10)

1 0 V

namely,

vol (S,) <

It contradicts (**). q.e.d.

(ii) Proof of Theorem 3.

We take a, ε > 0, which satisfy the assumption of Theorem 1. For

δΊ = ε/2, take δ8 > 0 satisfying δ8 <; min ((l/2)6J(^7/10)ω^1, α/10). Let {p<}

and a > 0 be the same as in Lemma 13.1. From Theorem 1, it suffices

to prove that there exists δ > 0 such that, if vol (M) ^ vol (Sd) — δ, then

{Fipt)} is an ε-dense, ε/10-discrete in M and it satisfies

—M %-——^— >̂ 1 — α , for 0 < dsd(pu p3) < —— .

dSd\pi, Pj) Δ\J

CLAIM 1: {F(pτ)} is 2δΊ (= ε)-dense in M.

Proof of Claim 1. If not, then there exists ne M such that
Bδ7/10(ή)Γ\(U Bzδ7/2(F(Pi))) =- Φ

i

Put
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B'( = {q e Bh(Pι) I q e rq,,pt, q' e dB,,(pt),

m(rq.,Pί - Λ[3J) > a or Γ , , , w n ΰ j p ) *= $5}

and Bt = BS7(p{) — Z?ί. From (*) in the proof of Lemma 13.1, we see

From the similar argument to Lemma 13.1, we see

vol (BO £ f ( !
2 \
f ()%ol(2Wp) ΛM) + (
2 \ α / o \ 10

vόliBd^

Note that

vol (F(Bt Π V - B M ) ^ (1 - β8) vol φt f]D'- B[δs]),

where B[δe] appears in Lemma 12.2.

From this, we have

vol (M) ^ vol (B,τ/10(n)) + vol (U F{Bt))

^ vol (BhnM) + (1 - \)( vol (U CB* Π Z)' - S[3J))

^ vol (Bhm{ήj) + (1 - β8)(vol (U BO) - vol (S* - ΰ') - vol

^ vol {Bhm{n)) + (1 - δ8)(vol (ψ B^pO)) - NAt - vol (S* - U)

^ vol (B,τ/10(n)) + vol (Sd) - δa vol (S") - NA, - vol (S* - D')

where JV = §{Pi}

From Lemma 12.2, there exists δn > 0 such that if vol (M) ^ vol (Sd)

— δn, then

δs vol (SO + iVΛ, + vol (S" - DO + vol (S[3J) <

(The constants are determined in following order, <57-><58 —>• <510 —>L—*a-^

Therefore, we see,

vol (M) > vol (Sd) + vol (Bδ7/ί0(n)) - 6/^/10) ^ vol (S"2) ^ vol (M) .

It is a contradiction.

CLAIM 2: M M ^ ^ U i . ίB > i _ α .

Proof of Claim 2. If not, then we may assume dM{F(pϊ), F(p2)) <

(1 - d,)dsd(pl9p2), Put d' = dsd(Pί,p2) and d" - du(F(p& F(pJ). There

exists δ12 > 0 such that
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\ 2 / \ 2 7 10 V 2 2 /

For this <J12> similarly as Lemma 13.1, there exists JJ > 0 such thatlf dM(F(q'),

F(Pi)) > d'β for q' e dBt.,t_,Jpd, then

m{rq.,pι - Λ[δ,]) > η or rt.,pt Π Bίlβ(p) =£ 95 .

Put

B = U (Ba,n_la(Pi) - {q e B4V2-ί.2

9' e dBd,/2(Pί), m(lίq,,Pi - yί[δj) > 9 or r,,,P( Π B,a(p) Φ

and

Then we observe i?(B) c (B^^Fip^ΌBd,n(F(p2))) and

^ vol (F(β)) ^ vol (Bd,/2(F(Pι)) U Bd,n(F(p2)))

< vol (B,V 2(F(P l))) + vol (β t f72(F(p2)))

- vo\(BiΊΪ_d,,n(z)) ,

where z is the mid point of the minimal geodesic from F(pϊ) to F(p2).

These inequalities imply that

vol (M) ^ vol (F(D' - (Bd,n(Pl) U Bd,n(p2))))

+ vol (F(D' Π (β ί 7.(Pi) U BdΊ2{p))))

£ voKS* - (Bd,n(Pl)Γ)BdΊ2(p2)))

+ vol (BdV2(p,) -

+ vol (Bd,/2(p2) -

+ vol

vol (Sd 7 2(A)) + vol (BdΊ2(p2)) + A2
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Note that the second term of A2 can be small if we take sufficiently small

δ10. From Lemma 12.2, there exists δlz > 0 such that if vol (M) >̂ vol (Sd)

— δn, then

We take

in Theorem 3. Then if vol (M) ^ vol (Sd) - δQ9 then

vol (M) < vol (Sd) - ± . b Λ - - - — ) < vol (Sd) - δ0 .
4 \ 2 2 /

It is a contradiction, ε/10-discreteness of {F(pi)} follows immediately from

Claim 2 with a <: ε2/10. q.e.d.

Corollary follows from the above and the following two theorems.

THEOREM A. (C. B. Croke [5], Theorem B.) Let M be a compact d-

dimensional Riemannian manifold with diam(Λf) ^D<Cπ and Ric^ >̂ d — 1.

Then there exists C(d, D) > 1 such that λt(M) ^ C(d, D)d.

THEOREM B. (A. Kasue [10], Theorem 4.1.) Given d, A, v0 > 0 with

A > 1, ϋ0 < ωd, for any Ve (v0, ωd), there exists a constant p = ρ(d, A, vo; V)

> 0 with p < π such that if d-dimensional Riemannian manifold M has

the property that Ric^ ^ d — 1, | JBΓ̂  | ^ J , vol (M) ^ u0 and diam (M) ^ |O,

ίΛen vol (M) ^ V.

§ 14. Proof of Lemma 12.2.

We firstly take constants which satisfy the following.

- δX δΛ < — . * .. and lo

min V 3 I 9

+ 1) / 3(16d2

s <• m\n (4/ί ^π^o d1B δ\s δ\s δ2i\ λ ^ ι520

min (ί4, 1 - exp (—
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Then we can conclude by putting

Put

C[3,, 314, 3i5] = {̂  € C7pS
d I r(ί) = expp tυ ,

m(r([0, π - δj) Π (B[314] U Sd -

D[δ3, δu, δκ] = UpS
d - C[δ3, δu, ί15] ,

and

CLAIM 1: / / vol (M) ^ vol (Sd) - δβ,

vol (S[3J) ^ vol (S[ί14]) ^ A < 35, vol (S* - Π) < δ6

voliUpSd)(C[δ3ί δU9 ί15]) ̂  - J 3 ? τ . _ _ < A .

where voliUpSd) means the canonical measure on UpS
d.

Proof of Claim 1. Since

vol (Sd) - δ6^ vol (M) = ί dvM = f |det rfF| d i v

^ ί (1 - δu)dυsd + ί dys<ι

= vol (Sώ) - vol (Sd - DO - δu vol

we see

vol (B[δu]) < -?t- and vol (Sd - D') < <56 .

From the Fubini's theorem,
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vo\(B[du]{jSd - D')

= ί ([XirvωnBztuiuist-D'vit) smd~ι tdt)dυL

^ —r~ s m i —-•- \avu Sd ,
Jec*3,*u,ίi5] 3 \ 3 /

namely

a a lϊ < 3vol(g[cyuSd-£>/)

2π '

q.e.d.: Claim 1.

For v e D[δ3, δu, δ15], put ϊ(t) = expm ίy and f(0 = expp tl-\v). Let

(resp. E/ ί̂)) (1 ̂  / ̂  rf — 1) be the linearly independent parallel vector

fields along tv (resp. tl'Xυ)) which is perpendicular to v (resp. I~\v)).

Put Yt(t) - dexpm(Z£/m F,(0 = dexvP(tUi(t)) and ^( ί) - PtoIoP_tγt(t),

where Pt and P_£ are the parallel translations along ΐ(t) and ΐ(t) respec-

tively. For ΐ(s0) e Dr - B[δ7], we put

Elo[δίβ] = Elfa, δu, 315, ί lβ]

- {r(s)Is e [o, s0], (logi y.00 Λ Λ F.-.ωiy

Λ Yd-ι(s)\Y + διe} .

CLAIM 2: m(r([0, s0]) - E',0[δu]) £ - I ^ S ίLziA*)_ < A .
' 16 1 ^

Proof of Claim 2. It is an easy consequence of the following two

inequalities,

(log I Y.is) Λ Λ Yd .,(*)!)' ^ (log I Ϋι(8) Λ Λ F d .

log [ F^o) Λ Λ 7,^(5)1 < (log ( ^(so) Λ Λ YdM - log(l - δ14) ,

q.e.d.: Claim 2

In the following, we fix s{ e Er

So[διs\. We may assume sx ^ π — δ^ —

S20/10 — 315 > τr/2. Since the value

(log 17,(8) A Λ y^OOl)' - (log I Y^s) A • Λ Y,-,(*)!)'

does not change when we replace Yt and Yi by linear combination, so

we may assume that {Y^sJ} and {Y^)} are orthonormal.

We denote by /^(Yi, Yi) the index form of Y< along Γ|[0,Sl].
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CLAIM 3: // ΐ(s,) e ΐ[0, s0]) - E>0[dlti], then

I.XWt, Wt) £ 7M(Yf, Yd + δu .

Proof of Claim 3. From the argument of Heintze-Karcher [8], we sea

( log lY^Λ Λ Y,.^)!)'

= Σ I.SY« Yd ({y*(β,)} are orthonormal.)
ί-1

d-1

^ Σ IsSWuWτ) (the index lemma.)

ί = l

^ Σ I.,(Fι, Ϋ«) = (log I F,(βj) Λ Λ ?„.,(«,)|y

= (log I Y,(S]) Λ Λ Y, _,(«,) I)' + 316

1 = 1

Thus with the index lemma, ISl(Yt, Yt) ^ ISl(Wi, Wt), we get

JSl(Wi; Wt) ^ I,JJu Yd + δu for each i .

q.e.d.: Claim 3

Since {Y/s)} is a basis of TrωM, we may put Wt(s) = Σ/^/tX*)1'/8)-
For fixed ί, we define

= {r(s)|se[O,sJ, \tfij

CLAIM 4: ( i ) m(ϊ([δ,, sj) - FjJ^]) <

(ii) If ϊ(s) e FJJSjJ, then,
017

Proof of Claim 4. From the arguments of Cheeger-Ebin [3] (Chap 1,
§r8, 1.21), we have

therefore,

i (w wz) = is (Yi9 Yt) + y] /• Y

d

2 fa Yj dt ̂  δu for

dt ,

This implies (i).
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By the integration by parts, we observe,

Γίί:r<,γjdt = f ± fiMYj, γ«)]s

Jo\j = i i Lj,fc=i J o

- Γ Σ KfitgW, Y«)dt

- f Σ f'MgW, Yu) + §(Yp Y'
J 0 j , k = l

For the estimate of

|Γ Σ K'j

firstly we see g(Y'j9 Yk) = g(Yi9 Y'k) by taking the derivation of the both

sides, (cf. [3] p. 25 (**))

Nextly, from R.C.T., we have

= I FJ(O)| sin (s) = I Ϋ&dl 4
s
4 ^ 4^
sm (sj sm (so δ

SJ(SI) sAsi) sAδ3)

Thirdly, we estimate \fίk\. Put Yi(s) = J^aίkek, W^s) = 2 bίkek, where

{ej?=i is the orthonormal basis of Tΐis)M. From Wt = Σ / ί i 7 Yj, we get bίk

= 2] /iΛfc Let i?i be the matrix such that the ^-th column of A = (aJk)

is replaced by bH. By Cramer's formula, fίk = det .ί^/det A. Note that

det A = I Yj Λ Λ Yd | and

max [det B\\ <̂  max (| Wt\

Since T(s) e Df - B[δΊ],

I Yi Λ Λ Yd I ̂  I Y1 A Λ Y, | (1 - δΊ) ^ sin d (s)(l - 37) .

It implies

|/,fe| ^ max |det Bi/det A | ^ - ^
sm

Fourthly we have

by the following arguments.

We may assume Δ > 1. Decompose Yk(s) as Yfe(s) = Z^s) + Z2(s), where
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Zt(s) are Jacobi fields with Zfa) = Z'2(sx) = 0, Z2(s) = Yk(sx) = 1 and ZJfo)

= Y£(s!). From the Berger's comparison theorem ([2] 1.29),

\Z2(Sl - πl2Δι**)\ ^ c.A/2J^) .

Then,

Thus, we get

\Yi(Sι)\ = \Z{(Sι)\£(^l-

Fifthly we have

(*)

)-' £ K2

= Σ ΓgWY*, r)ΐ, Yt)dt + g(Yl(Sl), Yk(Sι))dt
k i JO

\Sl (3/2)JI Ykpdt + I Yί(Sl)11 Y,(S l) |at

*-M < κt.
sΔ(δ3) ~

Therefore, we get, from W< =

Λs d

V f"f β(Y
Jo y,fc=i

^f'Σ^y.
Jo y=o

+ 2

sslβ +

ί
o . 7 = 1

1/2 / ΛS

(

\Jo

l/2

q.e.d.: Claim 4

We put

Then, from Claim 4 and (*), we see,
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CLAIM 5: If ΐ(s) e GjJifJ, then

\j[g(R(7i,hi,7t)-

Proof of Claim 5. From g(Ϋ't', Ϋt) = g(W't', Wt) and

( d \ / / d

we find if r(s) e GJJ^J, then,

*, T)ί Ϋt) -

2 £ f'JngW, Yί)dt\

Γ Σ /ίί5(ϊi, wt)dt + 21Γ £ K, Yj
Jo j=i !Jo j = ι

max(|/ 4 t | |Yi |

= δu
δu . q.e.d.: Claim 5

We put G{Y] = Π?=i GίJϋΓJ. We take another orthonormal basis {X{j}

at Γ(5X) with Xi 7' = (Xi + Y^/dYi + Y |̂) and repeat the above arguments

for each (i,j). Put Gr = p)Λ G { x * } and

G = f(0)ez>Q,14,15]

Gr

Then, since sγ ^ TΓ — £3 — <52O/1O — <515, we see

(**) π δ 3 ^ δ l 5 d ( ^ +

10 \ d17 K2

On the other hand, we find if T(s) e G\ then for any Xe Tfis)S
d,

, Ϋ)f, Wx) - g(R(X, T)ΐ, X) dt ^ π(16d* + ΐ)\X\*δί9 ,

where Wx = Ps o IoP_s(X). It is easily derived from the following ine-

quality,

, Y)dt
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+ 2 (|Γ
\ Jo

+ y,, y, + y,)dί

where ^(Z,, Z2) := g(R(Zu ΐ)ΐ, Z2) - g(R(WZι9 T)t WZ2) and ΣUi A = L

CLAIM 6: For ϊ(t) e Gr, \dFm\ < 1 + δ4.

Proof of Claim 6. Similarly as above, put Y(ί) = d expm (tU(t)) and
F(ί) = d expp (tl-^Uit))). Take r(^) e Ĝ  with ^ ^ δ3 and put

and = P t o Jo P.,V(ί) =

where {VJ are the linearly independent Jacobi fields such that
are orthonormaL For fixed

put

and

Then, similarly as above, we see

\Itl(V, V) - Itl(W, W)\ £ δlt

and therefore

\Itl(V, V) - Itι(V, 7)1

{g{R{W, ϊ)7, W) - g(R(V, hi V))dt

\, r)ΐ,

Namely,

For 7(t)eGr, since the value (log|y(ί)]X does not change
replace by constant multiple of y(<), for t <Ξ tu we see

\Y(Q\

s in
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(V, V)

£ Γ\tf'tV(\dt+ Γg(R(W,r)r, W)dt
JO ;ΐ = l I JO

and similarly,

Integrating these, we get

log I Y(t)\ - log I F(ί)| < log ( 4 = ^ - ) + δtlπ + ( ~ ) 2 3 ( J + l)πδia < δ22.
\ sin (δ3) ) \ δs I

Therefore we see

\dFm I = -g|jJ ^ exp (δj <l + δt. q.e.d.: Claim 6

Note that Ά[δ,] a Όf - F~\G) := A[d<] .

CLAIM 7: vol (A[δ4]) ^ vol (A[^4]) < 55.

Proo/ o/ C/αim 7. Since m(F-\Gr)) = τn(G0, we have, from Claim 1

and (**),

vUpSd
vol (A[3J) ^ f (Γ sin*"1 tdt)dv

J C[δ3,<5l4,3l5] \ J θ /

+ f ( ί sin*2"1 ίd

^ vol{UpSd) (C[δ3, δU9 δ15])τr

+ max m(r([0, -]) - GO vol ( S ^ 1

^ A π + (s25 + a8) vol (S^-1) ^ 55 . q.e.d.: Claim 7
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