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0. Introduction

Let S = C[zy,...,z,+1] be the ring of polynomials im + 1 variables oveC,
corresponding to the homogeneous coordinate ring"ofLet = be the reverse
lexicographical order on the monomials$fGiven a homogeneous ided [C S,
we can form the monomial ideal of initial terms ffunder>~ and, for a generic
choice of coordinates, obtairBarel-fixednonomial ideal; this is called thgeeneric
initial ideal of I and is denoted gii7). (For more information about generic initial
ideal theory see [B], [BM], [BS] or [Gr].)

The generic initial ideal, although it is a monomial ideal and hence basically
a combinatorial object, contains quite a bit of the information about the original
ideal. For example, it has the same Hilbert function and the same regularity.

The question we would like to answer M/hich Borel-fixed monomial ideals
can arise from geometryfere, we will answer a more limited question and give
necessary conditions for a Borel-fixed monomial ideal to be the generic initial ideal
of a reduced, irreducible, non-degenerate curve’in

Motivation

The simplest examples of generic initial ideals arising from geometry are those of
points in the plane. If we |6t C P? be a set off points, the generic initial ideal of

I has the following form

. —1 As_ A A
gln(IF) = (ina :L"i 1‘7:28 17 s 7351]7217‘7320)7

with \; > A1+ 1foralli < s —Landy 25\ = d.

One might ask, given a generic initial ideal as above, what can be said about
the geometry of the points? In particular, what can be said about the generic initial
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ideal of points in uniform position? The answer to this question is given by the
following theorem of Gruson and Peskine.

THEOREM 1. (Gruson, Peskind)etl’ C P? be a set of points in uniform position,
with generic initial ideal gin(Ir), as above. Then thavariants {Ai}f;g, satisfy

>\i+1+2>>\i>)\i+1+1 forall i < s —1,

and we say that the invariants Bfare connected.

(The original theorem of Gruson and Peskine considered the invaniaats,; +i.
Then the theorem shows that 1 + 1 > n; > n;41 forall i < s — 1, or that there
are no ‘gaps’ in the sequen¢s; }.)

It is Theorem 1 which motivated the question answered here for space curves.
Associated to a space curve there are families of invariants which generalize the
invariants of points iP2. In fact, one of these families is the set of invariants
of a generic hyperplane section of the curve, which is a set of points in uniform
position. The main aim of this paper is to show that for a reduced, irreducible, non-
degenerate space curve each of these families of invariants satisfy a connectedness
property.

The organization of the paper is as follows: In Section 1, we will define the
invariants of a space curve and state the ‘Connectedness’ Theorem. In Section 2, we
will prove a general result which puts constraints on generators of a generic initial
ideal of high degree and ‘split’ a non-connected (unsaturated) id€&tin =2, 3.

In Section 3, we will prove the theorem incorporating ideas used in Green’s proof
of Gruson and Peskine’s Theorem ([Gr]) and a more differential approach due to
Strano ([S]). In Section 4, we will put some further conditions on the generic initial
ideal of a reduced, irreducible, non-degenerate cun®?irin particular, we will
generalize results of Strano on the effect of sporadic zeros. In Section 5, we will
give some examples of the uses of the main theorem.

1. Statement of the Theorem
1.1. APICTORIAL DESCRIPTION OF MONOMIAL IDEALS

The inspiration for defining the invariants of a space curve and conjecturing what
a generalization of connectedness might be, came from considering the generic
initial ideal of points inP? and of space curves in pictorial way. Thus before stating
the theorem for curves, we will rephrase the statement of the theorem of Gruson
and Peskine in this new context, where the generalization we intend to prove will
become apparent.

The following pictorial represention of the generic initial ideal of a space curve
is due to M. Green.

LetC be a curve itP®. As I is saturated, the generatorslof gin(I¢) will be
of the formaziz32%. (See [B] or [Gr] for information regarding saturated ideals.)
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To represent the generic initial ideal 6f pictorially, we first draw a triangle
such that thei, j)th position corresponds to the monomi&k?, wherei + j = n,
0 < n < no, andng > 0. Now letf (i, j) = min{k | ziz)z € I'}. For each(i, j),
if f(i,7) = o0 (i.e.g:gx;xfg ¢ I for all £ > 0) put a circle in thdi, j) position, if
0 < f(i,7) < oo put an encircled (4, j) in the (7, j) position, and iff (i, j) = 0
put an X in the(7, j) position.

EXAMPLE 1. The Borel-fixed monomial ideal
3 2 22 4 3 2.2 3 4 5
I= (351303,$1$2$3,ﬂclwzxsa361,301%2,151362,361%2,%2363,302)

can be represented by the triangle configuration

@)
QOQ
©@

XX XX

Note.If (7, 7) is not in the picture, one may assume th’gt% el

One can also represent the generic initial ideal of a set of points in the plane in
the same way. For example, the ideal

3 .2 2 4
J = (3517 T2, T1T2, 352)

can be represented by the triangle configuration

O
OO
O

X X X
XX X XX

Notice the following

(1) The number of circles in thi&h diagonal of the triangle i&;. (In this case 4,
2 and 1.) We will call this number tHengthof theith diagonal.

(2) Theorem 1 says that the lengths of consecutive diagonals of circles cannot
differ by more than 2. (Or that there are no ‘big steps’.)

(3) Itis a result of Green ([Gr]), that if there were a curve whose generic initial
ideal was the one in Example 1, it's generic hyperplane section would have
the configuration above.
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We will generalize the idea of the length of a diagonal in note (1) to give a family
of invariants. We will then state a ‘Connectedness’ Theorem for these invariants
using on the idea of note (2).

1.2. SOME NEW INVARIANTS OF C

DEFINITION. Let I = I be the ideal olC. We defineinvariants{u;(k)} of a
curveC as follows
Let J, = (Qin(Ic)|z,—0: 75), theny;(k) is the length of theth diagonal of
circles (including those which contain numbers) in the triangle configuratidp. of
More formally, letf (i, j) = min{k | ziz3z% € gin(I)}. Let
sk = min{i [ £(i,0) <k},
wi(k) =min{j | f(i,7) <k} for 0<i<sp—1.

EXAMPLE 2. The ideal in Example 1 gives the triangle configurations

Jo= O
OOO
e

X X X X

with Nz(k') = ,U,Z(Z) fork > 2.

Note that due to the work of Green ([Gr] Proposition 2.21) oy 0, we have
Jr = gin(I), wherel is a generic hyperplane section@f Thus these invariants
generalize the invariants of a generic hyperplane sectiéh of
1.3. SATEMENT OF THE THEOREM

THEOREM 2 (The Connectedness of Curve Invarianfs): is a reduced, irre-
ducible, non-degenerate curve®i. Then the invariants{u;(k)}, of C are such
that for eachk

/J;Z'+l(k') +2> [Lz(k‘) > lu:i+1(k) +1 for 0<i<sy—1,

and we say thafs;(k)} is connectedFurthermore, ifs, < so, thenu,, —1(k) < 2.
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Note The invariants of Example 2 aboaee connected.

2. Splitting a non-connected ideal

In this section we will assumgis a homogeneous (not necessarily saturated) ideal
in S = C[z1, 22, 73]. The generators of giY) are still of the formz$z4=§ and so

we may define the invarianis;(j). We will assume the invariants of are such
that

1i+1(0) +2 < ;(0)

for some 0< @ < sg — 1.
We will show that there exists a polynomidl of degree + 1 such that, after a
generic choice of coordinates

in(X) Nin(J) =in(X N.J).

This means that i£™ ¢ in(.J) is such that:t™ | ™ thenz™ = in(f) for some

f = Xh € J. In terms of the pictorial representation of gif) this means that
every monomial of ifJ) corresponding to point in the triangle to the left of the
ith diagonal corresponds to an element/adivisible by some polynomiak. So
the pictorial representation may be ‘split’ along titie diagonal. We will call this
construction thesplitting of the idealJ.

EXAMPLE 3. The triangle configuration below corresponds to a monomial ideal
with disconnected invarianjg(0) = 5, u1(0) = 2.

Notice the triangle on the right has a big ‘step’ between(fieand 1st diagonals.
We would like to write elements id corresponding to elements to the left of the
step as a multiple of a some polynomial.

2.1. GENERATORS OFgIn(I) IN HIGH DEGREE

First we need to prove a general result which we will need later! lbet a homo-
geneous ideal it = C[z1,...,z,+1], we will put conditions on the generators
of a generic initial ideal, gifY), whose degree is larger than that of the gene-
rators ofT.
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DEFINITION. An elementary movey, for 1 < k < n is defined bye,(z7) =
z’, whereJ = (j1, ... jk—1,5k + L jks1 — L, jks2, - -, jns1) and we adopt the
convention thainj] = 0if j,, < Ofor somen. (Note, we are using the multi-index
notation;z”’ = 2}tz ... zir.)

One can show that a monomial idedl,is Borel-fixed if and only if for all
x’ € T and for every elementary movg, e;(z’) € I. Thus it is Borel-fixedness
which gives the right-hand inequality of Theorem 2 and the step-like look in the
triangle configuration.

THEOREM 3 (Syzygy Configuration).et I be a Borel-fixed monomial ideal with
generatorse’1, . .., 2/~ Then the first syzygies biis generated by

{(zi®@2 —zhi @27 |1<j <N, 0<i<max.;),
mm(LZ]) Z ma)(‘]lij)}?

wheremax(.J) = max{i | j; > 0} andmin(J) = min{i|j; > O}.

(The® is a place holder.)
This theorem is due to Eliahou and Kervaire ([EK]) and a proof may be found
in [Gr] (Theorem 1.31).

THEOREM 4. Let I be a homogeneous ideal generated in degfee, with

generatorse”’t, ..., 2/~ of gin(I) in degree< r. Then any generataP of gin(1)
of degreer + 1 is such thatP < z;z7i, for someJ; such that|J;| = r and
i < max.J;).
Proof. (z”1,...,z/V) is a Borel-fixed monomial ideal. So, by Theorem 3, the

first syzygies among the’i are generated by syzygies of the form
{2 @27 —z" @2 m [1<j <N, 1<k < maxJ;)}.

We will first use the syzygies dfc”2, ..., z7/V) to obtain some new generators of
gin(I),4+1 which satisfy the condition stated in the theorem. By Galligo’s Theorem
([Ga]) we may assume, after a generic change of basis, th@t)giain(I). Let

g; € I be monic polynomials such that(if)) = =’ fori = 1,..., N. Given a

syzygyazy ® i — xlhi @ 7, let
h1 = zpgj —z gy

As the leading terms of;g,; and kajglkj will cancel, the initial term ofhq,
in(h1) < xkx‘]f.
Givenh;, if in(h;) = zXi+1z7in | let

K.
hit1 = hi —aip1z i

whereq;_ 1 is the leading coefficient df;. Then inh;1) < in(h;) < zpz’i.
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This process must terminate, so fosufficiently large eitherz’+ does not
divide in(h;) forany 1< k£ < N, in which case ifh;) is a new generator of gftf)
satisfying the conditions stated in the theorentpe= 0. (In particular, the latter
will occur if deg(h;) < r.)

Now let P = in(h) be a generator of {iT) of degree- + 1. AsT is generated in
degree< r, {g;}, generate and we may writér = " f;g;.

Let g be such that

(1) In(fiy9i,) is maximal,
(ii) if in (fi,9i,) = In(fig:) theng;, has maximal degree,
(iii) if in (fi,9i,) = in(fig;) and dedg;,) = dedg;) then ing;,) is minimal.

As P # in(fi,gi,), there exists, such that itif;, g;,) = in(fi,gi,). We have
pickedig in such a way that either dég,) > dedg;, ), or dedg;,) = dedg;,) and
in(gi,) < in(gi,)-

We want to show that; | in(f;,) for somei < max(J;,).

Let in(g;,) = x4, in(g;,) = 2. 24 andzP are generating monomials of a
Borel-fixed monomial ideal and" 4 = 2V 2? for some monomials™ andz" .

Case 1ded A) > ded B).

Let A = (as,...,0as50,...,0) with s = maxA) and B = (b1,...,bp11).
Supposé; < q; forall i < s — 1, then we may apply elementary movesido
getB suchthat:? € in(I) with b; < a; forall I. As ded B) = deq B) < ded A),
this would imply 24 is not a generator. Therefore there exists> a; for some

1<s— 1.
Case 2ded A) = deg B) andz* < z5.
Let A = (a1,0a2,...,an+1) @NdB = (b1, b2,...,b,+1). Then there exists

such thata;, = b, for all £ > s anda; > b,. As the degrees are the same, there
must exista; < b; for somes < s.
In either case there exists asuch that; | in(fi,) = = forsomei < max.J;,).
Consider the syzygy
I L Jp..
T; @ x70 — 70 Q x 0.
Let »* be the element of constructed formally, as in the first part of the proof,
from this syzygy.

x Lii K;
h* = @igiy — a"iog, — Y aix’ig;,

where iz g;) < in(z;g;,). Let P* = in(h*) < x;z7%.
Notice thath* = 0 if deg(g;,) < -

Let

bt =h — e h*,
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wheree;, = a;,in(fi,)/=; anda;, is the leading coefficient of;,. Let P! = in(h?).
Then as above we can fingifor h1 and we have either

(i) in(fizg:1) < In(fiogio),
(ii) in(fiag:2) = In(fiogio) @nd dedg;1) > dedgi),
(i) in (f29:2) = In(fiogio) and degg;1) = dedgi,) and in(g;z) < in(giy).

Thus we have two cases, either< P* < z;z”’i and we are done, dP = P*
in which caseP = P! and we may proceed by induction.

COROLLARY 5. 1If I is an ideal generated in degree r and gin(Z) has no
generators in degree+ 1, thengin(I) is generated in degre€ r.

Proof. If there are no generators in degree- 1, then by the construction of
generators of gifY) of degreer + 2 in Theorem4 there can be no generators in
degree-+ 2. Continuing one one can show there are no generators in degreeé
foralls > 1.

2.2. PLITTING A NON-CONNECTED IDEAL

Let.J is a homogeneous ideal 1= C[x1, z2, 23] with invariantsy;1(0) + 2 <
1i(0) for some 0< i < sp— 1. LetK be the ideal generated by elements of degree
< i+ pi11(0) + 2 in J. We want to show that there exists an id&alc K C .J
such that ginK) = (zi1) ngin(J).

LEMMA 6. All elements ogin(K) are divisible byz: ™.

Proof. Let z{z4z§ € gin(K)y for d < i + pi1(0) + 2. If @ < i, then by
Borel-fixedness} qu( 1*2 ¢ gin(K) C gin(J), but i 24® is a generator of
gin(J) and so,hH( ) + 2> p;(0). But1;(0) > p1;41(0) + 2, hences > 1.

Suppose all elements of i), are divisible byz:™ for somed > i +
pi+1(0) + 2.

CLAIM. If d > i+ u;i+1(0) 4+ 2, then any generator of ¢iA'); has anz3 term.

Proof of Claim Let z¢x5x§ be a generator of gik'), and suppose = 0. By
assumption. > i+1. Leta = i+1+j. Thenzzbz§ = 21 4 g”lﬂ( 9 ¢ gin(J).

ok 1i+109 is also in gir{.J) and so by Borel-fixednegs= i+ 1+ j+pit14;(0) <
i+1 + wi+1(0) < d, but this is a contradiction. Therefoee> 0.

Now let P = x1z2x3 be a generator of g )4, 1. If a < i, then by Borel-
fixednessrjzg ™~ € gin(K)qy1, and asei** divides all elements of degreed,
xlxgH 'is agenerator of gif¥ ) 4. 1, and hence by Theorem#,z3 = < z,.2™

for 2 some generator of gk ), andk < max M ). However, by the claira:™
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has anzs term, which impliesziz4™~* ~ z,2M; a contradiction. Hence by

induction every generator of gi’) is divisible by:pl“.

LEMMA7. LetK be anideal irC[x1, 72, #3] such thagin(K) C (z%), withk > 1
andk maximal. Then, after a possible change of basis, there exists a homogeneous
polynomialX such thain(X) = % andK = X K'.

Proof. K C K& therefore gifiK) C gin(K®®) and gin{ K2 is generated by

{925 | 2§a52§ € gin(K) for somec > O}.

Therefore gitKks3) C (z%). We may assumé& is saturated.

LetV = V(K) be the variety irP? associated td<. Considering the Hilbert
function of V and the fact that gifK') C (2¥) we find thatV’ contains a plane
curveZ = {F = 0}. Hence every element df is a multiple ofF'.

Let K = FK; then eitherKl ¢ (x1) in which case we are done wiffi = X
andK; = K',orK; C (xl ) with k1 < k£ and we may proceed by induction én

(Note that after a change of basis, we may assum@g@in= in(K) which
would automatically imply that i) = z%.)

Let K be an ideal contained A, maximal with respect to the properties
(1) (K)a = (J)a ford < i+ pi1(0) + 2.
(2) K = XK' withdeg X) =i + 1.

By maximality K = X N .J. We would like to show that every monomial in ¢ify
divisible byggl+1 can arise from an polynomial iff’.

LEMMA 8. gin(X') ngin(J) = gin(X N J)
Proof. As we may make a generic choice of coordinates, by Galligo’s Theorem
(JGa)) it is sufficient to prove that

in(X) Nin(J) Cin(X NJ),

where i X) = le+1.

Let M = z$x5x§ € in(X) Nin(J), thena > i + 1, and we may write

M = a3 "ag " (e305a)),

whereA = z¢452] is a generator of if).

If degA < i + p;11(0) + 2, thenA € gin(X N J) and hencé/ € gin(X N J).

Suppose ded > i + 1;11(0) 4+ 2, anda is maximal.

If « < aandf orvy > 1, then eltherno‘+1 01z or zizh 2]t € gin(J).
Then there would exisB = x%“g:g x3 , a generator of gify/), such thatB | M.

Then either de@3) < i + u;+1(0) + 2 in which caséV/ € gin(X N J) for degree
reasons as above or we contradict the maximality.of
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If « < aandB = v = 0, thenz{ is agenerator of it/). Howeverx"l“acgi“(o) €
in(J) and hence by Borel-fixedness we must have i + p;+1(0) + 2, which

again is a contradiction. Therefore we may assumea > i + 1.

If v < 1, then eithergzs or z¢z5 1 is a generator of if). As ziH 1+ ¢

in(.J) and in(J) is Borel-fixed z¢zh O HD= ¢ in( 1) In either case we have
deg A) < i+ ui+1(0) + 1. Which again is a contradiction. Thus, we may assume
Y= 2.

So we are reduced to the situation

deqA) =a+B+v > i+ pit1(0) + 2,
a>1+ 1
Y =2

Supposed ¢ in(X N.J) = in(K). Pick A satisfying the conditions above of
minimal degreen, and among those of minimal degree, febe maximal. Pick
f e Jwithin(f) = A. Let L = (K, f) be the ideal generated iy and f. Then
in(L)q = in(K)y ford < m and inL),, = in(K),, + A. As A is maximal, the
generators of i(iL) in degree< m form a Borel-fixed monomial ideal and as in
the claim in Lemma 6 every generator of degrebas ancz term and all elements
of in(L) must be divisible by} ™. This however contradicts the maximality &f.
Therefored € in(X N J) and inX) Nin(J) C in(X N J).

If I is the homogeneous ideal of a space curve which is disconnected, we will
use Lemma 8 to give invariants of a hyperplane sectiofi .ot his will be used in
the final part of the proof of Theorem 2.

3. Proof of the connectedness theorem

We will prove the theorem in two steps. In Section 3.1, we will use the results of
Section 2 to show that if is an ideal inS = Clz1, . . ., z4] with invariants{y;(j) }

such that for soméandy, with 0 <@ < s; — 1, pi+1(j) + 2 < pi(j). Then, for a
general linear fornk, the ideal/ = (I],: z3) is an ideal inS' = C[z1, x2, 23] with
invariants{v;(j)} such that;;1(0) + 2 < ;(0). Hence there exists a polynomial

X of degree + 1 such that, after a general choice of coordinatésy ymin(.J) =

in(X N.J). l.e. we carsplitthe idealJ. In Section 3.2, we will show, that if is the
ideal of a reduced, irreducible, non-degenerate cdrve P3, such anX would

give rise to a contradiction.

3.1. SLITTING AN IDEAL RELATED TO A NON-CONNECTED/

If Iis an ideal inS = Clz,...,2n41], let1],,,, € S = Clzy,...,,] be the
ideal generated by

{fIf+znaf €1, f €Claa,..., 2]}
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Furthermore, iftV be the set of linear forms i andh € V is generic, we may
assume ther,, 1 coordinate ofh is nonzero and definé|, to be the ideal in
Clz1,...,z,] generated by

{fIf+hf el, feClry,...,za]}

Let ¢, € GL(V') be defined byp, (z;) = z; fori < n+ 1, ¢5(x,+1) = h. Note,
on one hand a$gl|§ is the identity operator and ssﬁgl(ﬂh) = I|;, on the other
hand one can show thaf, *(1]5) = ¢, (1)|s,,4-

PROPOSITION 9Let I be a homogeneous ideal #h Then for a general choice
of coordinates and a generic choiceloE V

in(I|a: k) = (@in(7)]s, 30 o%):

Proof. Without loss of generality we may assume(din= in(I).

CLAIM 1.

in(I)|z,., =in(Iz,.,,)

Proof.Let g € in(])|z,,,, theng + z,1h € in(I) and hencey = in(f) for
somef € I.Thenf|;, ,—0 € I|4,,,, andin(f|z,.,—0) = In(f) = g € in(I|,,,).

Conversely, iy € in(I|;,_,), theng = in(f) for somef suchthatf +xz, 1f’ €
I.Thenin(f + zn41f') = in(f) = g € in(I) and sy € in(I)|,, -0

CLAIM 2. For any ideal/ in S,

(in(J):z¥) = in(J: zF).

Proof.Letg € (in(J): z) thenzk g = in(f) for somef € .J. As we are using
the reverse lexicographical orderingf, | f and f = z%h for someh € (J: zF).
Theng = in(h) € in(J: zk).

Converselyify € in(J:zF). Theng = in(f) wherezk f € J.in(zk f) = 2k g €
in(J) and sag € (in(J): zk).

Putting the two claims together we have, for a general choice of coordinates,

Now, ash is generic we may assume thg ., coordinate ofi is nonzero. Let
¢n, € GL(V) be defined as above, ther(d *(1)],,.,: zk) = in(I],: #¥) and this
monomial ideal is constant for a generic choicé.ofs we may choose a general
choice of coordinates, we may assumg 1 is generic and hence for genefi¢

(L], 0 k) = in(I]y: k).
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Let I be anideal inS = C[z1, ..., z4] with disconnected invariantg:;(j)}.
There exist andj, with 0 < ¢ < s; — 1 andu;41(j) + 2 < pi(j). Then for a
generic linear formh, the idealJ = (I|h:x§) is an ideal inS = Clz1, 2, x3]
such that iJ) = (gin(I)|m4:g:§;) andJ has invariants/; (k) = p;(k + j), and in
particular

I/Z'+1(O) +2< I/l(O)

Lemma 8 implies that there exists a homogeneous polynakiial S such that
after a general choice of coordinates

in(X NJ) =in(X)Nin(J).
EXAMPLE 4. If I is an ideal giving rise to the triangle configuration on the left

with disconnected invarianjg(2) = 5, 11(2) = 2. ThenJ = (I|,: z3) will give
the configuration on the right

gin(J) = (gin(1)]s,: 23) =

Lemma 8 allows us to find four elements f», f3, f4 € J such that after a general
change of basis {if1) = 3, in(f2) = 2322, In(f3) = x123 and in(f4) = z%z3 and

there exists alX € S suchthatf; = Xg; fori =1,2,3,4.

3.2. THE FINAL STEP OF THE PROOF

So far, we have shown that for a generic linear fdrmthe idealJ;, = (I|,: z3) is
such that there exists a polynomig), of degree’ + 1 and an ideaK, C Jj, such
that K, = X, K}, C J, and gin(J;) N (zi™1) = gin(K}). As S C S, we may
view { X}, } as a family of polynomials it = Clz1, ..., z4]. We will would like
to show that this family{ X}, } is, in some sense, independentof\We will first
prove a more general result.

Fix coordinatescy, ..., z,1 of P?, (we will needn > 3) letts,...,t,.1 be
the dual coordinates ¢¥"*. Let { X}, } be a family of homogeneous polynomials
in the polynomial ringS = Clz1, . .., z,+1], parametrized by generic hyperplanes
H = {}"tiz; = h = 0}.

The family { X}, } corresponds to a functioA which is a homogeneous poly-
nomial in the{z;} with coefficients which are rational functions in thg}. The
field of rational functions in{¢;} has derivation®/0t; and we may extend these
derivations to act on the famil{yX}, }.
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PROPOSITION 10Supposé X}, } is afamily of homogeneous polynomials varying
with b = >~ t;2; such that

0Xy, 0X

Ty " e (X5,) mod(h).

ot;
Then, for a generid,, we may writeX; = aX + hY},, whereq is a rational
function in the{¢;} and{Y} } is a family of homogeneous polynomials varying with
h. (In this case we will say that, for generi¢ X, is projectively constantip to a
multiple ofh.)

Proof. (Green). Let

e (Y),

X 0X
Y = Xl <xj h h)
h

ot; T 8tj
= lin.

5 9Xn 90Xy
7ot "0t .

OXp _ 0Xp\ _ ( OXn _ .%)
TR\ T T M ) T\ oy T T o,

0Xy, 0Xy,
+z; | vp—— —z;—— | =0,
l( ot; T oty )

SO

and hencéxyl;; — ;i + x;15:)Y = 0. AssumingY” # 0 generically (otherwise
we are done), we have.l;; — z;l;; + z;l;; = 0, and hence

lij = oy — oy, L = qmp —ogmi, L = oy — o,

up to a multiple ofh, for somex;, «; anday,. (Note that as, > 3 andh is generic,
for distincti, j andk, the linear formse;, z;, z;, andh form a regular sequence.)

Therefore
(9Xh 8Xh
== X ) — s [ 2= s X —

(o (202 o)~ (22— o
and

% —a; Xy, :inmod(h), % —Oszh ::EijOCKh),

ot; ot;
similarly

0Xp,

— —ap Xy = 2 U h).
ot ap Xy, = U modh)
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Therefore(0X},/0t;) — z;U = o; X, mod(h). We may changeX;, by adding a
multiple of h without changing the hypothesis or claims of the Proposition. Letting
X; = X, — hU we get

0X;,  0Xy oUu
T LT
8U
= o; Xp — modh) = «; X;, mod(h).

8t

Therefore we may assume thg}, is such that

00Xy,

— =X hU;,
o, o; Xp, +

whereq; is a function of{t;}.
Differentiating twice we get

82Xh 80@ 8X 8U
ot;ot; Ot ot EN
oay; oU;
= azXh + ai(anh + hUj) + :E]'UZ' + h—L
ot; ot
and
PX,  dqy 0X), oU;
= X Uj+h
otor, o %y Ty
Oa; oU;
= Ot: Xy, + aj(; Xy, + hU;) + U + h o
Thus
Oa;  Ooy ou;  0U;
;U —z;U; = J Z>Xh+h<oz-Ui—oin'+ I Z>
J J ( ot; (%j J J ot; (9tj
and

804] ou; o (% B aai>
ot; Ot T\ ot ot
Oay,  Oaj
R N Y X, =
+i (815] atk>> nln =0

Thereforeda; /0t; = Ow; /Ot; for all 4, 5.
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Assume, for the purposes of induction, that

0X

Wih = CMZ'Xh + hkUZ’
for somek > 1 anddw;/0t; = dcy/0t; for all 4, j. Let M be a multi-index such
that| M| = k, then

OF X,

oy, — OM+viXh + k\z™ U; mod(h),

wheregi 1., is a sum of products of differentials of the; } depending only on the
indexM +v;. If M +v; = M+ V5, thena’”th/atMati = 8’“+1Xh/8tM'8tj
and deM,Uj—xMUmh = 0.Now,zM" = z;zVN andz™ = zjz™ and sz;U; —
l"jUi)|h = 0, therefordJ; = z;V + hV; andaXh/ati = ;X + hk(ZEZV + h,VZ)
Let X} = Xj, — (1/(k + 1))hkT1V, then
= =L _pkg v — ——_pktl

ot o S LTS

1 hk+18_v

= X hk+1’i_
aiXp +hTV = T

= a; X, + BF W

Therefore we may assumd, /0t; = a; X},.

As we may multiply the family{ X, } by rational functions in thé¢; } without
changing the hypothesis or results, we may assume that the f&xjly corre-
sponds to a bihomogeneous polynomiabf degree(a, b) and9dF/dt; = o, F.
If v is a bihomogeneous polynomial of degi@é 0) and F = G thenG will
also satisfyoG /0t; = o/,G. Therefore we may assumes minimal. Ifa = 0 we
are done. Otherwis€' = 3 f;M; whereM; is a monomial in the{z;} and f;
is a polynomial in the(;}. 0f;/0t; = «; f; for all j, «; is a rational function of
degree—1, therefore we may write; = ;/+; and thus(df;/ot;)y; = B f; for
all j and thusy; | f; for all ;. But this contradicts the minimality af. Therefore
X, is projectively constant up to a multiple af

We will know restrict our attention to the familyX,} we obtained at the
beginning of this section using the disconnectedness dflgin For a generic
linear formh, we found that there exists a polynomig, of degree; + 1 and an
ideal K;, C J, = (I|h:xé) such that(Kp)q = (Jp)g for d < i+ 2+ piv1(4),
K, = X, K}, andin(J,) N (z5t1) = in(K},).

COROLLARY 11.X,, is projectively constant up to a multiple of
Proof.Pickp;, € K} coprime taX), suchthatde@, X)) = m < i+1+pu;41(5).

(As zitlghinl) ¢ OiN(Jn)it14p1() = 9INER)i+14p.4(j) there existp, €
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K} such that itp),) = x’z‘i“(j). As in(X;) = zt, p, and X, cannot have a
common factor.)
Then
xgphXh + hA;, € I forsome Ay,

Lettingh = > t;x; vary and differentiating with respect to thewe get

i (Opn oXy,
xé(atl Xh+ph 3152 ) +xiAh€I|h:0
and so
Opn, 0Xy, ) <8ph X}, > ,
X — @i | 5 X, — I\ 2}
T ((%i h+ Pn a1, T; ot h + Ph By € (I|n: 23 m+1
= (Jh)m+1-

m+1<i+ 24 piva(y), henceJy)mi1 = (Kp)m+1 C (Xp). Therefore

0Xp, 0Xy,
Dh ((L‘Ja—tz —mza—t]> € (Xh)a (phaXh) =1

and so

0Xp 0X,

h
:Eja—ti —x; S (Xh)

ot

Therefore, for generik, { X}, } satisfies the hypothesis of Proposition 10 and hence
X, is constant up to a multiple @f.

Proof of Theorem 2Let X}, = aX + AY) andY = gch. For a generic
hyperplane = {h = 0} and allp;, € K], there exists4,;, such that

oY + hAy, € 1.

Letl'y = HNC,thenl'yy C V(prY) = V(Y)UV(py). If for a genericH, there
existsqy a point inI'y such thaigy € V(Y), thenS = {qu | gz € V(Y)} will
be a 1-dimensional space afd_ C, C'is reduced and irreducible therefasds
dense inC and henc& C V(Y). HoweverV (Y) = V(z4) UV(X) and as C is
nondegenerate, this would imply C V(X). However;i < s; — 1 < sg — 1 and
soi+ 1 < so. Butsg is the smallest degree of elementd pthereforeC' ¢ V (X).
Therefore for generidf, 'y C V(K}). However the invariants ofK},)® are
Aiy1> -+ > XAs_1andas +1>0,T'y ¢ V(K}). This concludes the proof of
the main part of Theorem 2.
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Now supposes, < so, and u,, —1(k) > 3. For a generic hyperpland,
(I|n: 25)s, = (Xn)s,, and(I|n: 28)s,+1 = (X1n)s,+1, and so there exists a homo-
geneous polynomial;, such that

:EléXh + hA;, €1.

Allowing h = }_ t;z; to vary and differentiating with respect {o, }, we get

0X,
flig ( 8th> + x; Ay € I|h

and so

3Xh 8)(h .
(%‘a—ti - ﬂfia—tj> € (In:78) 541 = (Xn)syr1-

Thus by Proposition 10X, = aX + hY}, is constant up to a multiple éf.

LetT'y = H N C be a generic hyperplane section®@f As t5X + hA;, € I,
'y C V(x3) UV(X). But as the points df ; are in general position, there must
exist at least one point @f; € V(X). But varyingh as above would, again, imply
thatC C V(X), and hence that;, > so, which is a contradiction. This completes
the proof of Theorem 2.

4. Further restrictions on the generic initial ideal of a curve

4.1. GENERALIZED STRANO

This result generalizes a result of Strano ([S])

DEFINITION. If ziza{"’") is a generator of gifi¢) with f(i,j) > O, then
zia)rk is asporadic zerdor all 0 < k < f(4,5).

THEOREM 12 (Strano)lf C is a reduced irreducible curve and has a sporadic
zero in degree m, thefy has a syzygy in degreem + 2.

THEOREM 13 (Generalized Strand)et C be a reduced irreducible curve with a
sporadic zermﬁxéx’;*“ of degree m, such that,z3=5% is a generator ofjin(1.).
Then, for a generic linear forrh, J = (Ic|n: 5) has a syzygy in degreem + 2.

Proof. zizbah* € gin(J),,, therefore there exist8, € (Ic|n=0: 23)m =
(J)m varying with h, and hence for generiéd there exists4;, such that

23F, + hAy € Ic.

The families{ F},} and{ A4, } correspond to homogeneous polynomialand A in
the {z;} whose coefficients are rational functions in tftg}, whereh = 3" ¢;z;.
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On clearing denominators we may assufhis a bihomogeneous polynomialin
andz;. ChooseF so that the degree @f with respect ta; is minimal.
Letting ~ vary and differentiating with respect {@; }, we get

F
Iga—t] + QL'JA S IC|h:O
and so
oF oF
— — Ti— J .
Yot~ ot € (Nmi1
Hence

oF  OF\ ( oF _ .‘9_F>
Th\ T ot; xzat]‘ T3\ Tk ot; xzatk

+x; xa—F—xa—F =0
! kat]‘ ]8tk

is a syzygy ofJ in degreen + 2.
Suppose/ does not have a syzygy in degreen + 2, then

oF oF
x].a_ti _ xza_t] — iji — ,’L‘Z'Uj where Uz € (J)m

Rewriting, we get

OF OF

and so

oF

Letting ' = F — hR we get

OF'  OF OR
i v ;R — ha_ti =U;modh) € (J)m.

As we have assumed the degredts minimal with respect to; we get that?’ is
constant up to a multiple éf. Hence, by an argument similar to that of Theorem 2,
F € Ix. This, however, is a contradiction.

EXAMPLE 5. The following diagram can not correspond to a generic initial ideal
of a reduced irreducible curve, even though it is connected.
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O

O
X XO@)Q@

The ideal has a sporadic zero in degree 3, and so by the Theorei £2,
(Ic|n=0: x3) has a syzygy in degree 5. The diagram of gifV/) is

O

O
X OO
X XX Q@
Let K C J be the ideal generated by elementsjoin degree< 4. Every new
generator of gifiKX) in degree 5 arises from syzygies of elements of ipin
degree 4 as constructed in Theorendas only two generators in degree4,
corresponding ta$ andz2x3 and so ifJ has a syzygy in degree 5 this would
imply that gin K') has no generators in degree 5 and &) = (3, v21,). Hence
we may ‘split’ the ideal/ as in the proof of Lemma 8 and obtain a contradiction
as in Theorem 2.
More generally, suppose we have a triangle configuration as below.

@)
@)

OO

®O©

Let s = min{i| f(i,0) < k} for & > 0. By connectedneds < a. Let J =
(Ic|n: %) andK C J be the ideal generated by elements/oh degreeg s + 1,
then by Theorem 12] has a syzygy in degree s + 2. If ¢ > a, we find, as above,
that ginN K) is generated in degreg s + 1. But again this would imply that we
couldsplit the idealJ and obtain a contradiction as in Theorem 2.

4.2. GOMPLETE INTERSECTIONS AND ALMOST COMPLETE INTERSECTIONS

The resultin this section is inspired by the work of Ellia ([E]) and again generalizes
a result of Strano ([S]).
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DEFINITION. If I is a set ofd points in general position with invarianig >
.-+ > X1 > 0suchthaty; = \p — 2i for all i. ThenI" is acomplete intersection
of type(k,d/k). (See [Gr]).

THEOREM 14 (Strano)if C' is a reduced irreducible curve whose generic hyper-
plane section has the Hilbert function of a complete intersection of type:),
wheren > m > 2, thenC is a complete intersection of tyfe:, n).

Proof. Let J = (I¢|,: %) for k >> 0 so thatJ = I wherel is a general
hyperplane section @' and hence the only syzygy dfis in degreen + n.

Suppose” is not a complete intersection of tyge:, n), then gir{/¢) has a
sporadic zero). If the degree o\l = m, Theorem 12 implies there is a syzygy
of J in degree< m + 2. Butm +n > m + 2 and we obtain a contradiction. If the
degree of\f > m, connectedness implies there is a sporadic zero of degtag
again this implies there is a syzygy of degtee + 2 and we obtain a contradiction.

PROPOSITION 15Let C be a reduced, irreducible, non-degenerate curve in
P3, letI’ = C' N H be a generic hyperplane section with invariamt)s}f;g. If
As—i = As—1+ 2(1 — 1) for 1 < 7 < k, wherek > 3, thenf(i,j) > 0 only if
1< s—k.

Proof.LetJ = (I],: %) for j > 0, so that gifiJ) = gin(Ir). Let f correspond
to z3 and letg correspond t@iflxgs‘l, wheref andg are inJ. If f andg have
a syzygy in degred < A,_; + (s — k), then generators of g{d) in degreed
correspond to generators dfand thus we may split the idedl and obtain a
contradiction as in the proof of Theorem 2. Theref¢randg have no syzygy in
degree< A\s_j + (s — k). By Theorem 12 or Theorem 13, this means that there can
be no sporadic zeroes in degree\;_; + (s — k) — 2.

If there is a sporadic zeroindegrég + (s —k) —1=XA__1)+s—(k—1),
thenu,_,—1)(0) > As_(x—1) andps_(12)(0) = As_(x—2) = As_(x—1) — 2, Which
contradicts the connectedness of {lig(0) }. Similarly if f(s — &, As_x) > 0 then
ps—k(0) > As_p = Ag_(k—1) + 2 = ps—x—1)(0) + 2 which again contradicts
connectedness.

Thus for the following configuration of a hyperplane section, the only possibly
spots for sporadic zeros are in the (1,6), (0,7) or (0,8) positions.

https://doi.org/10.1023/A:1000316500235 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000316500235

THE CONNECTEDNESS OF SPACE CURVE INVARIANTS 241

5. Some curves of low degree

As an application to the theorems in the previous sections, we will discuss the
possible Borel-fixed monomial ideals occuring for some curves of low degree. The
theorems seem to work particularly well for curves of high genus with respect to
their degree. From the possible Borel-fixed monomial ideals one can then find all
the possible Hilbert functions. Furthermore, the minimal resolution of the generic
initial ideal of a curve gives us an upper bound on the degrees of all the syzygies of
the actual curve (see [Gr]), thus we also get some ideas as to what the degrees of
syzygies of the curves can be. As an illustration we have chosen to discuss curves
of degree 7, genus 2 and curves of degree 8, genus 4.

First we will give a list of some known results which we will find useful in
eliminating more Borel-fixed monomial ideals.

5.1. ME KNOWN RESULTS

1. Genus.Let C' be a curve whose generic hyperplane section has invariants
Ao, - - -, As_1. The (arithmetic) genus df is

s—1 .
g(C):l—i-Z((i—l))\i—{—(;\Z))— > flizsia).
=0 1

il,i2)<oo

This equation is may be found by considering the Hilbert polynomiél ahd that
associated to gid¢). For details see [Gr] (Proposition 4.19).

2. Regularity. The following is due to Gruson, Lazarsfeld and Peskine ([GLP]).

THEOREM 16. Let C' be a reduced irreducible non-degenerate curve of degree
d in P*. ThenC is (d + 2 — n)-regular. Furthermore, ifd > n + 1 andC is

(d + 1 — n)-irregular, thenC' is smooth and rational, with & + 2 — n)-secant
line.

As the regularity is the same as the maximal degree of the minimal generators
of gin(I¢) (see [BS]), it follows that gif/¢) is generated in degree d — 1.
Furthermore, if degré€’) > 4, and genug”) > 0, then girt/¢) is generated of
degree< d — 2.

3. Liaison. (a) If C is linked via a complete intersection to an Arithmetically
Cohen—Macaulay curve, théhis Arithmetically Cohen—Macaulay. This is equiv-
alent toC' having no sporadic zeros. (For more information on Liaison Theory see
for example the work of Rao [R]).

(b) If C'is linked via a complete intersection to a curve of degree 2,thean
have at most one sporadic zero in each degree. (This paraphrases some of the work
of Juan Migliore, [M]).
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5.2. QJRVES OF DEGREE/, GENUS?2

If the degree of” is 7, then the invariant«SAi}f;& of a generic hyperplane section
of Caresuchtha}” \; = 7and);.1 < \; < \jp1+2fori =0,...s5— 2. Hence
eithers =2and\g =4, A1 =3,0ors =3and\g =4, \1 =2, A, = 1.

In the former cas&’ must lie on a quadric. But the only curves of degree 7
lying on a quadric are of genus 6, 4 or 0. Therefore we must khave3 and
Ao = 4,1 = 2, )2 = 1. In this cas&” has 3 sporadic zeros and by Theorem 16
gin(I) is generated in degree 5. The only possible connected configurations are

Qg@ Qg@
X X (@ XD@
X X X X X X X X X

Using Liaison Theory we may also eliminate the first possibility as this corresponds
to a curve linked to a curve of degree 2. Hence by 3(b) above, it can not have two
sporadic zeros in degree 4.

Thus we are left with 3 possible generic initial ideals. Considering the resolutions
of these ideals we get two possible Hilbert functions for curves of degree 7, genus 2.
(The second and third configurations give the same Hilbert function.) Furthermore,
we find there are nine possible minimal resolutions of these curves.

5.3. QURVES OF DEGRER, GENUS4

If the degree ofC is 8 then eithers = 2 andA\g = 5,21 = 3 ors = 3 and
Ao = 4,21 = 3, \» = 1. As there are no curves of degree 8, genus 4 lying on a
quadric, we must have= 3 and)\g = 4, \1 = 3, A\» = 1. In this case the number
of sporadic zeros is 3 and dif) is generated in degrege 6.
We may also eliminate configurations of the form
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wherea < b, asthen/ = (I];: (v3)*) has asyzygyin degree 5 (by Theorem %3).

andz2x;, correspond to the generators.bfn degree 3, and; 23 cannot represent

a new generator af , otherwise we would be able &plit the ideal along the:?

line. As J has a syzygy in degree 5, this means® z1x3 corresponds to a real

syzygy ofJ and thus we caasplit J along thez; line and obtain a contradiction.
The possible connected configurations of(gjnare

OgO ogo
X®O @0
X X X X X\ /XX XXX
OgO OgQ OgO
X 20 @O X OO
X X X X X X X X X X X @

Thus we have 5 possible generic initial ideals. Considering the resolutions of these
ideals we get 3 possible Hilbert functions for curves of degree 8, genus4. (The
second and fourth and the third and fifth configurations give the same Hilbert
function.) Furthermore, we find there are 18 possibilities for the degrees of the
syzygies of the minimal resolutions of these curves. (Notice that the first possibility
is a curve with a secant line of order 6).
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