SOME FURTHER EXTENSIONS OF HARDY'S INEQUALITY

BY
LING-YAU CHAN

1. Introduction. Let $p>1, r \neq 1$, and let $f(x)$ be a non-negative function defined in $[0, \infty)$. The following inequality is due to G. H. Hardy [5, Ch. IX]:

$$
\begin{equation*}
\int_{0}^{\infty} x^{-r} F^{p}(x) d x \leq\left(\frac{p}{|r-1|}\right)^{p} \int_{0}^{\infty} x^{-r}(x f(x))^{p} d x \tag{1.1}
\end{equation*}
$$

where $F(x)=\int_{0}^{x} f(t) d t$ or $=\int_{x}^{\infty} f(t) d t$ according as $r>1$ or $r<1$.
This inequality has important applications in analysis, especially in the study of Fourier series, and has been generalized in various directions by a number of authors (see for example, [1]-[3], [6]-[9]). The case when $p<0$ has also been discussed, for example, in [1].
It is easy to see that (1.1) breaks down when $r=1$, as in this case the left hand side of (1.1) is infinite unless $f(x)$ is almost everywhere zero, while the integral on the right hand side may be finite. Recently, on splitting [$0, \infty$), the interval of integration, into [0,1] and $[1, \infty$), the author [3] has proved the following four corresponding inequalities for $r=1$ and $p>1$:

$$
\begin{align*}
\int_{1}^{\infty} x^{-1}\left(\int_{x}^{\infty} f(t) d t\right)^{p} d x & \leq p^{p} \int_{1}^{\infty} x^{-1}(x \log x f(x))^{p} d x, \tag{1.2}\\
\int_{0}^{1} x^{-1}\left(\int_{0}^{x} f(t) d t\right)^{p} d x & \leq p^{p} \int_{0}^{1} x^{-1}(x(-\log x) f(x))^{p} d x, \tag{1.3}\\
\int_{1}^{\infty} x^{-1}\left(\int_{1}^{x} f(t) d t / \log x\right)^{p} d x & \leq\left(\frac{p}{p-1}\right)^{p} \int_{1}^{\infty} x^{-1}(x f(x))^{p} d x, \tag{1.4}\\
\int_{0}^{1} x^{-1}\left(\int_{x}^{1} f(t) d t /(-\log x)\right)^{p} d x & \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{1} x^{-1}(x f(x))^{p} d x . \tag{1.5}
\end{align*}
$$

The object of this paper is to obtain four-fold generalizations of (1.2)-(1.5), in which the Lebesgue integral is replaced by Lebesgue-Stieltjes integrals, the factor \log is replaced by $\log ^{r}$, the power p on the left hand sides is replaced by q and the range $1<p<\infty$ is extended to $-\infty<p<\infty(p \neq 0)$. Namely, we shall

Received by the editors August 20, 1979 and, in revised form, February 21, 1980.
prove inequalities such as the following:

$$
\begin{align*}
\int_{1}^{\infty} g^{-1}(x)(\log g(x))^{-r} & F^{a}(x) d g(x) \tag{1.6}\\
& \leq A\left\{\int_{1}^{\infty} g^{p-1}(x)(\log g(x))^{[(q-r+1) p / q]-1} f^{p}(x) d g(x)\right\}^{q / p},
\end{align*}
$$

and

$$
\begin{align*}
\int_{0}^{1} g^{-1}(x)(|\log g(x)|)^{-r} & F^{q}(x) d g(x) \tag{1.7}\\
& \leq A\left\{\int_{0}^{1} g^{p-1}(x)\left(\left.|\log g(x)|\right|^{[(q-r+1) p / q]-1} f^{p}(x) d g(x)\right\}^{q / p},\right.
\end{align*}
$$

where $\mathrm{g}^{-1}(x)$ denotes $(g(x))^{-1}, F(x)$ is an integral of $f(x)$ and $A>0$ depends on p, q and r only. In fact, as in [3], we shall prove more precise inequalities in which the ranges of integration are sub-intervals of $[1, \infty)$ and $[0,1]$, which reduce to (1.6) and (1.7) on passing to the limits.
2. Main results. Throughout this paper we let p, q, and r be real numbers, $A=(|q /(r-1)|)^{(p-1) q / p}(|p /(r-1)|)$ and $\delta=[(q-r+1) p / q]-1$ (provided that these quantities are finite). We let $f(x)$ be a non-negative measurable function defined on $[0, \infty)$, and let $g(x)$ be a continuous non-decreasing function defined in $[0, \infty)$, such that $g(0)=0, g(x) \neq 0$ when $x \neq 0, g(1)=1, g(x) \neq 1$ when $x \neq 1$ and $g(\infty)=\infty$. We shall also let, provided that the integrals in question exist,

$$
F_{i}(x)=\int_{E_{i}} f(t) d g(t), \quad \theta_{i}(x)=\int_{E_{i}} g^{p-1}(t) f^{p}(t)(|\log g(t)|)^{\delta+[(r-1) / q]} d g(t),
$$

where $i=1,2,3,4$, and E_{i} 's are intervals in $[0, \infty)$ defined as follows:

$$
\begin{aligned}
E_{1} & =[x, \infty)(1 \leq x<\infty), \quad E_{2}=[1, x](1<x<\infty), \\
E_{3} & =[0, x](0<x \leq 1) \quad \text { and } \quad E_{4}=[x, 1](0 \leq x<1) .
\end{aligned}
$$

Theorem 1. For $1 \leq p \leq q<\infty$ or $-\infty<q \leq p<0, r \neq 1$, we have

$$
\begin{equation*}
\int_{1}^{\infty} g^{-1}(x)(\log g(x))^{-r} F_{i}^{q}(x) d g(x) \leq A\left\{\int_{1}^{\infty} g^{p-1}(x)(\log g(x))^{\delta} f^{p}(x) d g(x)\right\}^{a / p}, \tag{2.1}
\end{equation*}
$$

where $i=1$ when $(r-1) / q<0$ and $i=2$ when $(r-1) / q>0$.
More precisely, if the integral on the right hand side of (2.1) is finite, then $\theta_{i}(x)(i=1$ when $(r-1) / q<0$ and $i=2$ when $(r-1) / q>0)$ is finite for every $x \in(1, \infty),(\log g(x))^{(1-r) / q} \theta_{i}(x) \rightarrow 0$ as $x \rightarrow 1+$ and as $x \rightarrow \infty$; in this case, for
$1 \leq c \leq \infty$ we have

$$
\begin{align*}
& \int_{1}^{c} g^{-1}(x)(\log g(x))^{-r} F_{1}^{q}(x) d g(x) \tag{2.2}\\
& \quad \leq A\left\{\int_{1}^{c} g^{p-1}(x)(\log g(x))^{\delta} f^{p}(x) d g(x)+(\log g(c))^{(1-r) / q} \theta_{1}(c)\right\}^{q / p}
\end{align*}
$$

when $(r-1) / q<0$, and

$$
\begin{align*}
& \int_{c}^{\infty} g^{-1}(x)(\log g(x))^{-r} F_{2}^{a}(x) d g(x) \tag{2.3}\\
& \quad \leq A\left\{\int_{c}^{\infty} g^{p-1}(x)(\log g(x))^{\delta} f^{p}(x) d g(x)+(\log g(c))^{(1-r) / a} \theta_{2}(c)\right\}^{q / p}
\end{align*}
$$

when $(r-1) / q>0$, where $(\log g(c))^{(1-r) / q} \theta_{i}(c)(i=1$ when $(r-1) / q<0$ and $i=2$ when $(r-1) / q>0)$ at $c=1$ and at $c=\infty$ are interpreted respectively as their limits as $c \rightarrow 1+$ and as $c \rightarrow \infty$.

Theorem 2. For $1 \leq p \leq q<\infty$ or $-\infty<q \leq p<0, r \neq 1$, we have

$$
\begin{align*}
\int_{0}^{1} g^{-1}(x)(-\log g(x))^{-r} F_{i}^{q}(x) & d g(x) \tag{2.4}\\
& \leq A\left\{\int_{0}^{1} g^{p-1}(x)(-\log g(x))^{\delta} f^{p}(x) d g(x)\right\}^{q / p}
\end{align*}
$$

where $i=3$ when $(r-1) / q<0$ and $i=4$ when $(r-1) / q>0$.
More precisely, if the integral on the right hand side of (2.4) is finite, then $\theta_{i}(x)(i=3$ when $(r-1) / q<0$ and $i=4$ when $(r-1) / q>0)$ is finite for every $x \in(0,1),(-\log g(x))^{(1-r) / a} \theta_{i}(x) \rightarrow 0$ as $x \rightarrow 0+$ and as $x \rightarrow 1-$; in this case, for $0 \leq c \leq 1$ we have

$$
\begin{align*}
& \int_{c}^{1} g^{-1}(x)(-\log g(x))^{-r} F_{3}^{q}(x) d g(x) \tag{2.5}\\
& \quad \leq A\left\{\int_{c}^{1} g^{p-1}(x)(-\log g(x))^{\delta} f^{p}(x) d g(x)+(-\log g(c))^{(1-r) / a} \theta_{3}(c)\right\}^{q / p}
\end{align*}
$$

when $(r-1) / q<0$, and

$$
\begin{align*}
& \int_{0}^{c} g^{-1}(x)(-\log g(x))^{-r} F_{4}^{q}(x) d g(x) \tag{2.6}\\
& \quad \leq A\left\{\int_{0}^{c} g^{p-1}(x)(-\log g(x))^{\delta} f^{p}(x) d g(x)+(-\log g(c))^{(1-r) / a} \theta_{4}(c)\right\}^{q / p}
\end{align*}
$$

when $(r-1) / q>0$, where $(-\log g(c))^{(1-r) / q} \theta_{i}(c)(i=3$ when $(r-1) / q<0$ and $i=4$ when $(r-1) / q>0)$ at $c=0$ and at $c=1$ are interpreted respectively as their limits as $c \rightarrow 0+$ and as $c \rightarrow 1-$.

Theorem 3. When $0<q \leq p \leq 1$, Theorems 1 and 2 hold with the inequality signs in (2.1)-(2.6) reversed.

If, in particular, $g(t)=t$ and $1<p=q<\infty$, then (2.1) and (2.4) reduce to (1.2) and (1.3) when $r=0$, and reduce to (1.4) and (1.5) when $r=p$.

Theorems $1-3$ break down when $r=1$. Take Theorem 1 as an example. When $r=1$, the left hand side of (2.1) is always infinite (unless $f(x)$ is almost everywhere zero, in the case when $q>0$), while the integral on the right hand side may be finite. Nevertheless, if we decompose [$1, \infty$), the interval of integration in (2.1), into [$1, c_{0}$] and [$\left.\mathrm{c}_{0}, \infty\right)$, where $1<c_{0}<\infty, g\left(c_{0}\right)=e$ and $g(x) \neq e$ when $x \neq c_{0}$, then for $1 \leqslant p \leq q<\infty$ or $-\infty<q \leq p<0$ we have

$$
\begin{align*}
& \int_{c_{0}}^{\infty} g^{-1}(x)(\log g(x))^{-1}(\log \log g(x))^{-r} F_{5}^{q}(x) d g(x) \tag{2.7}\\
& \leq A\left\{\int_{c_{0}}^{\infty} g^{p-1}(x)(\log g(x))^{p-1}(\log \log g(x))^{\delta} f^{p}(x) d g(x)\right\}^{q / p}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{1}^{c_{0}} g^{-1}(x)(\log g(x))^{-1}(-\log \log g(x))^{-r} F_{6}^{q}(x) d g(x) \tag{2.8}\\
& \quad \leq A\left\{\int_{1}^{c_{0}} g^{p-1}(x)(\log g(x))^{p-1}(-\log \log g(x))^{\delta} f^{p}(x) d g(x)\right\}^{q / p}
\end{align*}
$$

where $r \neq 1, F_{5}(x)=\int_{x}^{\infty} f(t) d g(t)$ or $=\int_{c_{0}}^{x} f(t) d g(t)$ according as $(r-1) / q<0$ or $(r-1) / q>0$, and $F_{6}(x)=\int_{1}^{x} f(t) d g(t)$ or $=\int_{x}^{c_{o}} f(t) d g(t)$ according as $(r-1) / q<0$ or $(r-1) / q>0$. If $0<q \leq p \leq 1$, then (2.7) and (2.8) hold with the inequality signs reversed.

Again, both (2.7) and (2.8) break down when $r=1$; and for this case additional inequalities involving $(\log \log \log g(x))^{-r}, \quad(\log (-\log \log g(x)))^{-r}$ ($r \neq 1$), etc., can be obtained by further decomposing the intervals $\left[1, c_{0}\right]$ and $\left[c_{0}, \infty\right)$ into [$\left.1, c_{1}\right],\left[c_{1}, c_{0}\right],\left[c_{0}, c_{2}\right]$ and $\left[c_{2}, \infty\right)$, where $1<c_{1}<c_{0}<c_{2}<\infty, g\left(c_{1}\right)=$ $e^{1 / e}, g(x) \neq e^{1 / e}$ when $x \neq c_{1}, g\left(c_{2}\right)=e^{e}$ and $g(x) \neq e^{e}$ when $x \neq c_{2}$. To avoid too much complication, however, we shall not go further in this direction, except that in the next section we shall state how (2.7) and (2.8) can be proved.

3. Proofs of theorems.

Lemma. Let $-\infty \leq a \leq b \leq \infty$ and $-\infty \leq \alpha \leq \beta \leq \infty$. Suppose that $\xi(x)$ and $\eta(x)$ are continuous and non-decreasing, $\alpha \leq \xi(x) \leq \eta(x) \leq \beta$ for $a \leq x \leq b$, and that $\lambda(t)$ is non-decreasing for $\alpha \leq t \leq \beta$. Suppose also that $h(x, t)$ is non-negative and measureable for $a \leq x \leq b$ and $\alpha \leq t \leq \beta$. Let $\chi(x, t)$ be defined by

$$
\chi(x, t)=\left\{\begin{array}{ll}
1, & \text { when } a \leq x \leq b \\
0, & \text { otherwise. }
\end{array} \quad \text { and } \quad \xi(x) \leq t \leq \eta(x),\right.
$$

Then:
(i) when $1 \leq p \leq q<\infty$ or $-\infty<q \leq p<0$ we have

$$
\begin{align*}
& \int_{a}^{b} g^{-1}(x)\left(\int_{\xi(x)}^{\eta(x)} h^{1 / p}(x, t) d \lambda(t)\right)^{a}\left(\int_{\xi(x)}^{\eta(x)} d \lambda(t)\right)^{(1-p) a / p} d g(x) \tag{3.1}\\
& \quad \leq\left\{\int_{\alpha}^{\beta}\left(\int_{a}^{b} \chi(x, t) g^{-1}(x) h^{q / p}(x, t) d g(x)\right)^{p / a} d \lambda(t)\right\}^{q / p}
\end{align*}
$$

(ii) when $0<q \leq p \leq 1$; (3.1) holds with the inequality sign reversed.

Proof. First let $1 \leq p \leq q<\infty$. We have by Hölder's inequality

$$
\int_{\xi(x)}^{\eta(x)} h^{1 / p}(x, t) d \lambda(t) \leq\left\{\int_{\xi(x)}^{\eta(x)} h(x, t) d \lambda(t)\right\}^{1 / p}\left\{\int_{\xi(x)}^{\eta(x)} d \lambda(t)\right\}^{1-1 / p} .
$$

Hence

$$
\begin{aligned}
& \int_{a}^{b} g^{-1}(x)\left(\int_{\xi(x)}^{\eta(x)} h^{1 / p}(x, t) d \lambda(t)\right)^{q}\left(\int_{\xi(x)}^{\eta(x)} d \lambda(t)\right)^{(1-p) q / p} d g(x) \\
& \quad \leq \int_{a}^{b} g^{-1}(x)\left(\int_{\xi(x)}^{\eta(x)} h(x, t) d \lambda(t)\right)^{q / p} d g(x) \\
& \quad=\int_{a}^{b}\left(\int_{\alpha}^{\beta} \chi(x, t) g^{-p / q}(x) h(x, t) d \lambda(t)\right)^{q / p} d g(x) \\
& \quad \leq\left\{\int_{\alpha}^{\beta}\left(\int_{a}^{b} \chi(x, t) g^{-1}(x) h^{q / p}(x, t) d g(x)\right)^{p / q} d \lambda(t)\right\}^{q / p}
\end{aligned}
$$

where the last inequality follows from the generalized form of Minkowski's inequality ($[10, \mathrm{p} .19]$). This proves the Lemma for the case $1 \leq p \leq q<\infty$.

For other cases we only have to observe that here Hölder's inequality is reversed when $-\infty<p \leq 1$ (cf. [5, §2.8, §9.13]) and the generalized form of Minkowski's inequality is reversed when $0<q / p \leq 1$.

Proof of Theorem 1. Let $\alpha=1, \beta=\infty, \lambda(t)=[q /(r-1)](\log g(t))^{(r-1) / q}$ and $h(x, t)=g^{p}(t) f^{p}(t)(\log g(t))^{\delta+1}(\log g(x))^{[(1-r) / p)-1] p / q}$.

We shall prove the theorem for the case $(r-1) / q<0$ only, as the proof for $(r-1) / q>0$ follows almost exactly the same lines.

Suppose that $(r-1) / q<0$, and that the integral on the right hand side of (2.1) is finite. As $(\log g(x))^{(r-1) / a}$ is non-increasing, when $x>1$ we have

$$
\begin{aligned}
\theta_{1}(x) & \leq(\log g(x))^{(r-1) / a} \int_{x}^{\infty} g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta} d g(t) \\
& \leq(\log g(x))^{(r-1) / a} \int_{1}^{\infty} g^{p-1}(t) f^{p}(t)\left(\log g(t)^{\delta} d g(t)<\infty\right.
\end{aligned}
$$

Hence $\theta_{1}(x)$ is finite for every $x \in(1, \infty)$, and $(\log g(x))^{(1-r) / a} \theta_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$.

Let $a=1,1<b<\infty, \xi(x)=x$ and $\eta(x) \equiv \infty$. We have

$$
\chi(x, t)=\left\{\begin{array}{ll}
1, & \text { when } 1 \leq x \leq b \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad x \leq t \leq \infty\right.
$$

Straightforward calculation shows that

$$
\begin{aligned}
& \int_{a}^{b} g^{-1}(x)\left(\int_{\xi(x)}^{\eta(x)} h^{1 / p}(x, t) d \lambda(t)\right)^{q}\left(\int_{\xi(x)}^{\eta(x)} d \lambda(t)\right)^{(1-\mathrm{p}) a / p} d g(x) \\
&=(q /(1-r))^{(1-p) a / p} \int_{1}^{b} g^{-1}(x)(\log g(x))^{-r}\left(\int_{x}^{\infty} f(t) d g(t)\right)^{a} d g(x) .
\end{aligned}
$$

the last quantity is by Lemma (i) not exceeding

$$
\begin{aligned}
& \left\{\int_{1}^{\infty}\left(\int_{1}^{b} \chi(x, t) \mathrm{g}^{-1}(x) h^{q / p}(x, t) d g(x)\right)^{p / q} d \lambda(t)\right\}^{q / p} \\
& \quad=\left\{\int_{1}^{b}\left(\int_{1}^{t} g^{-1}(x)(\log g(x))^{[(1-r) / p]-1} d g(x)\right)^{p / q}\right. \\
& \quad \times g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta+[(r-1) / q]} d g(t) \\
& \quad+\int_{b}^{\infty}\left(\int_{1}^{b} g^{-1}(x)(\log g(x))^{[(1-r) / p]-1} d g(x)\right)^{p / q} \\
& \left.\quad \times g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta+[(r-1) / q]} d g(t)\right\}^{q / p} \\
& \quad=[p /(1-r)]\left\{\int_{1}^{b} g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta} d g(t)+(\log g(b))^{(1-r) / q} \theta_{1}(b)\right\}^{q / p}
\end{aligned}
$$

We have therefore proved (2.2) for $1<c<\infty$.
Now consider the case when $c=1$ or $c=\infty$. We have already proved that $(\log g(x))^{(1-r) / a} \theta_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$, so that the case $c=\infty$ of (2.2) is proved. In order to prove that $(\log g(x))^{(1-r) / a} \theta_{1}(x) \rightarrow 0$ as $x \rightarrow 1+$, we suppose that $\varepsilon>0$ is arbitrarily fixed. For $1<x<x^{\prime}<\infty$ we have

$$
\begin{aligned}
& (\log g(x))^{(1-r) / a} \theta_{1}(x) \\
& \quad=(\log g(x))^{(1-r) / a}\left(\int_{x}^{x^{\prime}}+\int_{x^{\prime}}^{\infty}\right) g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta+[(r-1) / q]} d g(t) \\
& \quad=J_{1}+J_{2}, \text { say. }
\end{aligned}
$$

We recall that $g(x)$ is continuous and non-decreasing, $g(x) \rightarrow 1$ as $x \rightarrow 1+$, so that $(\log g(x))^{(1-r) / a}$ is non-decreasing and $\rightarrow 0$ as $x \rightarrow 1+$. since $(\log g(x))^{(1-r) / a}$ is non-decreasing,

$$
J_{1} \leq \int_{x}^{x^{\prime}} g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta} d g(t) \leq \int_{1}^{x^{\prime}} g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta} d g(t)
$$

Hence $J_{1}<\varepsilon$ when x^{\prime} is sufficiently closed to 1 . Having fixed x^{\prime}, as
$(\log g(x))^{(1-r) / q} \rightarrow 0$ as $x \rightarrow 1+$, we have

$$
J_{2}=(\log g(x))^{(1-r) / q} \int_{x^{\prime}}^{\infty} g^{p-1}(t) f^{p}(t)(\log g(t))^{\delta+[(r-1) / q]} d g(t)<\varepsilon
$$

when x is sufficiently closed to 1 . Hence $J_{1}+J_{2}<2 \varepsilon$ when x is sufficiently closed to 1 , or $(\log g(x))^{(1-r) / a} \theta_{1}(x) \rightarrow 0$ as $x \rightarrow 1+$. We have therefore also proved (2.2) for $c=1$, hence for $1 \leq c \leq \infty$. (2.1) is the special case of (2.2) in which $c=\infty$.

In order to prove Theorem 1 for $(r-1) / q>0$, we apply Lemma (i) with $1<a<\infty, b=\infty, \xi(x) \equiv 1, \eta(x)=x$, the same $\alpha, \beta, h(x, t)$, and $\lambda(t)$ as for $(r-1) / q<0$.

In order to prove Theorem 2 for the case $(r-1) / q<0$, we apply Lemma (i) with $\alpha=0, \quad \beta=1, \quad \lambda(t)=[-q /(r-1)](-\log g(t))^{(r-1) / q}, \quad h(x, t)=$ $\mathrm{g}^{\mathrm{p}}(t) f^{p}(t)(-\log g(t))^{\delta+1}(-\log g(x))^{[(1-r) / p)-1] p / a}, \quad b=1, \quad 0<a<1, \quad \xi(x) \equiv 0$, and $\eta(x)=x$. For the case $(r-1) / q>0$ we apply Lemma (i) with $a=0,0<b<1$, $\xi(x)=x, \eta(x) \equiv 1$, the same $\alpha, \beta, \lambda(t)$, and $h(x, t)$ as for $(r-1) / q<0$

The proof of Theorem 3 is also omitted, as it is exactly the same as those of Theorems 1 and 2, except that part (ii) of the Lemma is applied instead of part (i).

We now come to the proofs of (2.7) and (2.8). Set $G_{i}(x)=$ $g^{-1}(x)(\log g(x))^{-1}(\mid \log \log g(x))^{-r} F_{i}^{a}(x) \quad(i=5,6)$,

$$
H(x)=g^{p-1}(x)(\log g(x))^{p-1}(|\log \log g(x)|)^{\delta} f^{p}(x)
$$

In order to prove (2.7) for the case $(r-1) / q<0$, we apply Lemma (i) with $\alpha=c_{0}, \quad \beta=\infty, \quad \lambda(t)=[q /(r-1)](\log \log g(t))^{(r-1) / q}, \quad h(x, t)=g^{p}(t) f^{p}(t)(\log g(t))^{p}$ $\times(\log \log g(t))^{\delta+1}(\log \log g(x))^{[((1-r) / p)-1] p / a}(\log g(x))^{-p / a}, \quad a=c_{o}, \quad c_{0}<b<\infty$, $\xi(x)=x$ and $\eta(x) \equiv \infty$. For the case $(r-1) / q>0$, we apply Lemma (i) with $c_{0}<a<\infty, b=\infty, \xi(x) \equiv c_{0}, \eta(x)=x$, the same $\alpha, \beta, \lambda(t)$, and $h(x, t)$ as for $(r-1) / q<0$. In fact the results obtained are as follows:

$$
\begin{equation*}
\int_{c_{0}}^{b} G_{5}(x) d g(x) \leq A\left\{\int_{c_{0}}^{b} H(x) d g(x)+[\log \log g(b)]^{(1-r) / a} \theta_{5}(b)\right\}^{q / p} \tag{2.7a}
\end{equation*}
$$

if $\quad(r-1) / q<0, \quad c_{0}<b<\infty, \quad$ where $\theta_{5}(b)$

$$
=\int_{b}^{\infty} H(x)[\log \log g(x)]^{(r-1) / a} d g(x)
$$

while

$$
\begin{equation*}
\int_{a}^{\infty} G_{5}(x) d g(x) \leq A\left\{\int_{a}^{\infty} H(x) d g(x)+[\log \log g(a)]^{(1-r) / a} \bar{\theta}_{5}(a)\right\}^{a / p} \tag{2.7b}
\end{equation*}
$$

if $\quad(r-1) / q>0, \quad c_{0}<a<\infty, \quad$ where $\quad \bar{\theta}_{5}(a)$

$$
=\int_{c_{0}}^{a} H(x)[\log \log g(x)]^{(r-1) / q} d g(x) .
$$

In order to prove (2.8) for the case $(r-1) / q<0$, we apply Lemma (i) with $\alpha=1, \quad \beta=c_{0}, \quad \lambda(t)=[-q /(r-1)](-\log \log g(t))^{(r-1) / q}, \quad h(x, t)=g^{p}(t) f^{p}(t)$ $\times(\log g(t))^{p}(-\log \log g(t))^{\delta+1}(-\log \log g(x))^{[(1-r) / p)-1] p / a}(\log g(x))^{-p t a}, 1<a<c_{0}$, $b=c_{0}, \xi(x) \equiv 1$ and $\eta(x)=x$. For the case $(r-1) / q>0$, we apply Lemma (i) with $1<b<c_{0}, a=1, \xi(x)=x, \eta(x) \equiv c_{0}$, the same $\alpha, \beta, \lambda(t)$, and $h(x, t)$ as for $(r-1) / q<0$. The results obtained here are:

$$
\begin{equation*}
\int_{a}^{c_{0}} G_{6}(x) d g(x) \leq A\left\{\int_{a}^{c_{0}} H(x) d g(x)+[-\log \log g(a)]^{(1-r) / a} \theta_{6}(a)\right\}^{a / p} \tag{2.8a}
\end{equation*}
$$

if $\quad(r-1) / q<0, \quad 1<a<c_{0}, \quad$ where $\quad \theta_{6}(a)$
and

$$
=\int_{1}^{a} H(x)[-\log \log g(x)]^{(r-1) / a} d g(x)
$$

$$
\begin{equation*}
\int_{1}^{b} G_{6}(x) d g(x) \leq A\left\{\int_{1}^{b} H(x) d g(x)+[-\log \log g(b)]^{(1-r) / q} \bar{\theta}_{6}(b)\right\}^{a / p} \tag{2.8b}
\end{equation*}
$$

if $\quad(r-1) / q>0, \quad 1<b<c_{0}, \quad$ where $\quad \bar{\theta}_{6}(b)$

$$
=\int_{b}^{c_{0}} H(x)[-\log \log g(x)]^{(r-1) / a} d g(x)
$$

The inequality (2.7) follows from (2.7a) by letting $b \rightarrow \infty$, or from (2.7b) by letting $a \rightarrow c_{0}+$. Similarly (2.8) follows from (2.8a) by letting a $\rightarrow 1+$, or from (2.8b) by letting $b \rightarrow c_{0}-$.

As before the reverse inequalities to (2.7a)-(2.8b) for the case $0<q \leq p \leq 1$ follow by using Lemma (ii) instead of Lemma (i) at the appropriate place.
Acknowledgement. The author wishes to thank the referee for his suggestions and for pointing out a number of typographical errors in the original manuscript of this paper.

References

1. R. P. Boas, Jr., Some integral inequalities related to Hardy's inequality, J. Analyse Math. 23 (1970), 53-63.
2. J. S. Bradley, Hardy's inequalities with mixed norms, Canad. Math. Bull. 21 (4) (1978), 405-408.
3. L. Y. Chan, Some extensions of Hardy's inequality, Canad. Math. Bull. 22 (2) (1979), 165-169.
4. E. T. Copson, Some integral inequalities, Proc. Roy. Soc. Edinburgh 75A, 13 (1975/76), 157-164.
5. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd Ed., Cambridge, 1959.
6. C. O. Imoru, On some integral inequalities related to Hardy's, Canad. Math. Bull. 20 (3) (1977), 307-312.
7. L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. 31 (1970), 279-285.
8. J. Németh, Generalizations of the Hardy-Littlewood inequality, Acta Sci. Math. 32 (1971), 295-299; "II', ibid. 35 (1973), 127-134.
9. D. T. Shum, On integral inequalities related to Hardy's, Canad. Math. Bull. 14 (1971), 225-230.
10. A. Zygmund, Trigonometric series, vol. I, 2nd ed., Cambridge, 1968.

Dept. of Industrial Engineering
University of Hong Kong.

