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S O M E F U R T H E R E X T E N S I O N S O F 
H A R D Y ' S I N E Q U A L I T Y 

BY 

LING-YAU CHAN 

1. Introduction. Let p > l , r^ 1, and let fix) be a non-negative function 
defined in [0, °°). The following inequality is due to G. H. Hardy [5, Ch. IX]: 

(1.1) J°° *- rFp(x) dx < ( rTY|) P JT x-r(xf(x)Y dx, 

where F(x) = $of(t) dt or = $™fit)dt according as r>\ or r < l . 
This inequality has important applications in analysis, especially in the study 

of Fourier series, and has been generalized in various directions by a number of 
authors (see for example, [l]-[3], [6]-[9]). The case when p < 0 has also been 
discussed, for example, in [1]. 

It is easy to see that (1.1) breaks down when r= 1, as in this case the left 
hand side of (1.1) is infinite unless fix) is almost everywhere zero, while the 
integral on the right hand side may be finite. Recently, on splitting [0, °o), the 
interval of integration, into [0,1] and [1, o°), the author [3] has proved the 
following four corresponding inequalities for r= 1 and p > l : 

(1.2) [ x _ 1 ( [ f(t)dtj dx<pp | x~\x log x f(x))p dx, 

(1.3) J ' x - ^ J " f(t) dtj dx^pp^ x-\x(-\ogx)f(x))p dx, 

(1.4) |°° X'1 ( J ' f(t) dt/log xj dx < ( - ^ Y ) P 1°° x-\xfix)f dx, 

(1.5) [ x _ 1 ( f fit)dt/i-logx)J dx^(^-X Ï x-\xfix)Y dx. 

The object of this paper is to obtain four-fold generalizations of (1.2)-(1.5), 
in which the Lebesgue integral is replaced by Lebesgue-Stieltjes integrals, the 
factor log is replaced by logr, the power p on the left hand sides is replaced by q 
and the range l < p < o o is extended to -oo<p<oo (p^O). Namely, we shall 
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prove inequalities such as the following: 

[December 

(1.6) 

and 

(1.7) 

g~1(x)(log g(x)TrF«(x) dg(x) 

gp-1(x)(log g(x)) [ ("- r+1)p/q]"7P(x) dg(x) 
q/p 

g-1(x)( | logg(x)|rF"(x)dg(x) 

< A gp-1(x)(|log g(x)l)1 ,[(q-r + l ) p /q ] - l fp fix) dg(x) 
q/P 

where g_1(x) denotes (g(x))~\ F(x) is an integral of /(x) and A > 0 depends on 
p, q and r only. In fact, as in [3], we shall prove more precise inequalities in 
which the ranges of integration are sub-intervals of [1, °°) and [0,1], which 
reduce to (1.6) and (1.7) on passing to the limits. 

2. Main results. Throughout this paper we let p, q, and r be real numbers, 
A = (\q/(r- l) |) (p"1Wp(|p/(r- 1)|) and 8 = [(q - r + l ) p / q ] - 1 (provided that these 
quantities are finite). We let /(x) be a non-negative measurable function 
defined on [0, oo), and let g(x) be a continuous non-decreasing function defined 
in [0,oo), such that g(0) = 0, g (x )^0 when x^O, g ( l ) = l , g ( x ) ^ l when 
x ^ l and g(oo) = oo. We shall also let, provided that the integrals in question 
exist, 

F;(X): f(t)dg(t), 0£(X) = gp-1(0/p(0(| iogg(0|) ,S+[(r-l)/q] dg(t), 

where i = 1, 2, 3, 4, and Et's are intervals in [0, oo) defined as follows: 

Ei = [x, oo)(l < x < oo), [1, x ] ( K x < o o ) , 

E3 = [0, x](0 < x < 1) and E4 = [x, 1](0 < x < 1). 

THEOREM 1. For l < p < q < o o or - o ° < q < p < 0 , r^ 1, we haue 

(2.1) g-1(x)(log g{x))-'Ff(x) dg(x)<A g^1(x)(logg(x))7P(x)cig(x) 
q/P 

where i = l when (r-l)/q<0 and i = 2 when (r—l)./q>0. 

More precisely, if the integral on the right hand side of (2.1) is finite, then 
0*(x) (i = l when (r~l)/q<0 and i = 2 when ( r - l ) / q > 0 ) is finite for every 
x G (l,oo), (log g(x))(1~r)/q0t(x) -» 0 as x -* 1+ and as x -> oo; in this case, for 
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(2.2) g - 'Wdog g(x))-'F&x) dg(x) 

< A 

when (r - l)/q < 0, and 

gP-1(x)(logg(x))8/"(x) dg(x) + 0og g C c ^ - ^ C c ) 
iq/p 

g-1(x)(log g (x) )"^ (x) dg(x) 

< A { f gp-1(x)(log g(x))8f (x) dg(x) + (log g(c))(1-r)/«02(c) 
q / p 

(2.3) 

when (r-1)1 q > 0 , where (log g(c))(1~r)/q0i(c) (i = 1 when ( r - l)/q < 0 and i - 2 
when (r - l)/q > 0) at c = 1 and at c = <» are interpreted respectively as their 
limits as c —> 1+ and as c —> °°. 

THEOREM 2. For l < p < q < o o or - o o < q < p < 0 , r^ 1, we fiaue 

(2.4) [ * g-^xX-log g(x))-'F?(x) dg(x) 

gp-i(x)(-iogg(x))r(x)dg(x)j , 
where i = 3 when ( r - l ) / q < 0 and i = 4 when ( r - l ) / q > 0 . 

More precisely, if the integral on the right hand side of (2.4) is finite, then 
6i(x) (i = 3 when ( r - l ) / q < 0 and i = 4 when ( r - l ) / q > 0 ) is finite for every 
x e (0,1), (-log g(x))(1_r)/q^(x) -* 0 as x -» 0+ and as x -> 1 - ; in this case, for 
0 < c ^ 1 we have 

(2.5) f * g-\x)(rlog g(x))-'F§(x) dg(x) 

< A [ J g'-HxX-log g(x)) sf(*) dg(x) + (-log g(c))(1-rV"03(c)} 

when ( r - l ) / q < 0 , and 

(2.6) fC g ^ x X - l o g g(x))-ri^(x) dg(x) 
Jo 

^ A ^ g ' -^xX-log g(x))ôf(*) dg(x) + (-log g(c)) ( 1-^e4(c) 

when ( r - l ) / q > 0 , where (-log g(c))a~ryqdi(c) (i = 3 when ( r - l ) / q < 0 and 
i = 4 when (r — l)/q > 0) at c = 0 and at c = 1 are interpreted respectively as 
their limits as c —» 0 + and as c —» 1 - . 

q / p 

q / p 
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THEOREM 3. When 0 < q < p ^ l , Theorems 1 and 2 hold with the inequality 
signs in (2.1)-(2.6) reversed. 

If, in particular, g(t)=t and K p = q<o°, then (2.1) and (2.4) reduce to 
(1.2) and (1.3) when r = 0, and reduce to (1.4) and (1.5) when r = p. 

Theorems 1-3 break down when r = l . Take Theorem 1 as an example. 
When r = 1, the left hand side of (2.1) is always infinite (unless /(x) is almost 
everywhere zero, in the case when q > 0 ) , while the integral on the right hand 
side may be finite. Nevertheless, if we decompose [1, oo)? the interval of 
integration in (2.1), into [1, c0] and [c0, °°), where l < c 0 < ° ° , g(c0) = e and 
g(x)^ e when x ^ c 0 , then for l < p < q < o o o r - œ < q < p < 0 w e have 

(2.7) 

and 

g" 1(x)(log g(x))~1(loglog g(x))-rF«5(x) dg(x) 

< A 
W P 

g"-1(x)(log g(x))p-1(log log g(x))6/"(x) dg(x) , 

(2.8) J '" g-1(x)(log gix^H-log log g(x))-'Fg(x) dg(x) 

W p 

A gp-1(x)(logg(x))p-1(-loglogg(x))ô /pW^g(x) , 

where r+ 1, F5(x) = £ / ( t ) dg(f) or = £0/(f)dg(f) according as ( r - l ) / q < 0 or 
(r -1)1 q > 0, and F6(x) = ft /(*) dg(r) or = £> /( r) dg(t) according as (r - l)/q < 0 
or ( r - l ) / q > 0 . If 0 < q < p < l , then (2.7) and (2.8) hold with the inequality 
signs reversed. 

Again, both (2.7) and (2.8) break down when r = l ; and for this case 
additional inequalities involving (log log log g(x))~r, (log(-log log g(x)))~r 

( r^ 1), etc., can be obtained by further decomposing the intervals [1, c0] and 
[c0, oo) into [1, c j , [cl9 c0], [c0, c2] and [c2, oo), where 1 < cx < c0 < c2 < °o, g(C l) = 
e1/e, g(x) ^ e1/e when x ^ cl9 g(c2) = ee and g(x) ^ ee when x ^ c2. To avoid too 
much complication, however, we shall not go further in this direction, except 
that in the next section we shall state how (2.7) and (2.8) can be proved. 

3. Proofs of theorems. 

LEMMA. Let -oo < a < 5 < oo and - œ < a < ( 3 < o o . Suppose that£(x) and TJ(X) 

are continuous and non-decreasing, a < £ ( X ) < T J ( X ) < / 3 for a < x < b , and that 
k(t) is non-decreasing for a < f < / 3 . Suppose also that h(x, t) is non-negative 
and measureable for a < x < b and a < t < /3. Let x(x, f) be defined by 

CM)-{J; 
. ^, when a < x < 6 and £ ( X ) < £ < T J ( X ) , 

otherwise. 
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(i) when 1 < p < q < oo 0r - o o < q < p < 0 we have 

(3.1) (x) 
•n(x) 

h1/p(x, r)dA(0 
'€(x) 

•n(x) 

dA(f) 
'€(x) 

(l-p)q/p 

dg(x) 

f fP / fb \p/q Wp 

=M ( X(x,0g-1(x)h*p(x, t)dg(x)) dA(0 ; 

(ii) when 0 < q < p < l ; (3.1) fio/ds with the inequality sign reversed. 

Proof. First let l < p < q < o o . We have by Holder's inequality 

J
-T I (X ) 

€(x) 
h1/p(x,t)dk(t): 

-n(x) 

h(x, t)dA(0 
' l (x) 

}l/pf p(x) ^jl-l/p 

<*A(t) . 
U£(x) J 

Hence 

J'b //"n(x) \ q / p ( x ) \(l-p)q/p 

g - ' M f i 1 / p ( M ) d A ( 0 ) ( | dA(0) dg(x) 
a V^(x) 

F€(x) 

fb / fnOO W P 

< g-Hx)! h(x,r)dA(t) dg(x) 

rb / r3 \q/P 

= J y ^(jcOg-^^x) h(x,r)dA(t)j dg(x) 

( Ç& / Çb \R/q Wp 

^(J (J xter)g-1(x)feq/p(x,t)dg(x)j dA(t)j , 

where the last inequality follows from the generalized form of Minkowski's 
inequality ([10,p. 19]). This proves the Lemma for the case l < p < q < o o . 

For other cases we only have to observe that here Holder's inequality is 
reversed when - o o < p < l (cf. [5, §2.8, §9.13]) and the generalized form of 
Minkowski's inequality is reversed when 0 < q / p < l . 

Proof of Theorem 1. Let a = l, |3 = oo, A(f) = [q/(r-l)](log g(t))(r-1)/q and 
h(x, t)= g p(0f(0( log g(0)8+10og g(x)) [ ( ( 1- r ) / p )-1^. 

We shall prove the theorem for the case (r - l)/q < 0 only, as the proof for 
(r — l)/q > 0 follows almost exactly the same lines. 

Suppose that ( r - l ) / q < 0 , and that the integral on the right hand side of 
(2.1) is finite. As (log g(x))(r_1)/q is non-increasing, when x > l we have 

«iW^Oog g(x))('-1)/q f gp-WP(00og g(0)s dg(t) 
•'x 

<(log g(x)r-lv" [ g ^ W W O o g g(0 s dg(r)<œ. 

Hence O^x) is finite for every x e (1, <»), and (log g(x))(1~r)/q0i(x) -» 0 as 
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Let a = 1, l < b < o ° ? £(x) = x and r)(x) = ™. We have 

when l < x < b and x<£<°o, M ) = C ; otherwise. 

Straightforward calculation shows that 

J 'b / r-n(x) 

g_1(x)( 

h1/p(x,t)dk(t) 
TI(X) \ ( l -p )q /p 

<*A(0 dg(x) 

b 

= (q/ ( l - r ) ) ( 1 - p W p | g-^xXlog g(x))- r(| /(0dg(0)qdg(x). 

the last quantity is by Lemma (i) not exceeding 

r t> \ via ~i q/p f f°° /fb \p/q 1' 
{J (J x U 0 g~l(x) h«/p(x, t) dg(x)j d\(t)\ 

= { j " ( { ' g-1(x)(logg(x))»1-^-1 dg(x)J'q 

x gp-x(0 rcooog g(0)8+[(r-1)/q] dg(t) 

+ I" (J" g-1(x)(log g W ) " 1 - ^ 1 dg(x))P/q 

x gp-T(t)f (0 (log gCO)8^'-1^ dg(0) 
r rb W P 

= [p/d-r)][J g^WW(log g(r))sdg(r) + (loggW)*™^) J 

We have therefore proved (2.2) for l < c < o o . 

Now consider the case when c = 1 or c = <». We have already proved that 
(log g(x))(1_r)/q01(x) —» 0 as x -» oo, so that the case c = oo of (2.2) is proved. In 
order to prove that (log g(x)) ( 1 _ r ) A ,0iOO-»0asx-> 1+, we suppose that e>0 
is arbitrarily fixed. For K x < x ' < o o w e have 

(log g(x)) (1- r ) /^1(x) 

= dug g(x)) (1- r^(|X + J )gp-1(0/P(0(lOg g(f))^(r-l)A,] d g ( r ) 

^/x + J^say. 

We recall that g(x) is continuous and non-decreasing, g(x) —» 1 as x —> 1+, 
so that (log g(x))(1_r)/q is non-decreasing and —> 0 as x -* 1+. since 
(log g(x))(1~r)/q is non-decreasing, 

j r
1 ^ J x g p - w ( o a o g g(0)s dg(o< |x gp-i(o/p(oaog g«)8 dg«. 

Hence / x < 8 when x' is sufficiently closed to 1. Having fixed x', as 
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(log g(x)) ( w ) / q -» 0 as x -> 1 + , we have 

J2= (log g(x)) (1"^ [ gp-1(0/P(00og g(f))8+C<r-1)/<,] dg(0<£ 

when x is sufficiently closed to 1. Hence J1 + J2<2e when x is sufficiently 
closed to 1, or (log g(x))a~r)/q6l(x) —» 0 as x—>1 + . We have therefore also 
proved (2.2) for c = 1, hence for l < c < o o . (2.1) is the special case of (2.2) in 
which c = oo. 

In order to prove Theorem 1 for ( r - l ) / q > 0 , we apply Lemma (i) with 
K a < ° ° , b = °°, | (x) = l, TJ(X) = X, the same a, |3, h(x, t), and À(f) as for 
( r - l ) / q < 0 . 

In order to prove Theorem 2 for the case ( r - l ) / q < 0 , we apply 
Lemma (i) with a = 0, (3 = 1, A( f ) - [ -q / ( r - l ) ] ( - log g(r))(r"1)/q, fe(x,t) = 
g p (0 / p (OHogg(0) ô + 1 Hogg(x) ) [ ( ( 1 -^ ) - 1 ] p / q , b = l, 0 < a < l , | ( x ) - 0 , and 
TJ(X) = X. For the case ( r - l ) / q > 0 we apply Lemma (i) with a = 0, 0 < f e < l , 
£(x) = x, rj(x) = l, the same a, |3, A(f), and 7i(x, t) as for ( r - l ) / q < 0 

The proof of Theorem 3 is also omitted, as it is exactly the same as those of 
Theorems 1 and 2, except that part (ii) of the Lemma is applied instead of part 

(i). 
We now come to the proofs of (2.7) and (2.8). Set Gt(x) = 

g-1(x)(log g(x))-1(|loglog g ( x ) | r FKx) (i = 5, 6), 

H(x)= gp-1(x)(log g(x))p-1(|loglog g ( x ) | ) r U ) . 

In order to prove (2.7) for the case ( r - l ) / q < 0 , we apply Lemma (i) with 
a = c09 0 = oo, A(t) = [q/(r-l)](loglogg(0) ( r-1) /q , h(x, t)= gp (t)F (t)(log g(0)p 

x (log log g(0)8+1(log log g(x))C((1-r)/p)-1]p/«(log g(x))-p/«, a = c0, c0 < b <oo, 
£(x) = x and rj(x) = oo. For the case ( r - l ) / q > 0 , we apply Lemma (i) with 
c 0 < a < ° ° , b = °°, | (x) = c0, TJ(X) = X, the same a, |3, \(t), and h(x, t) as for 
( r - l ) / q < 0 . In fact the results obtained are as follows: 

fb f rb W P 

(2.7a) G 5 (x)dg(x)<A H(x) dg(x) + [log log g(b)](1-rW^5(6) 
"'Co '""'Co ' 

if ( r - l ) / q < 0 , c0<b<™, where d5(b) 

= [ H(x)[loglogg(x)] ( r- lw"dg(x), 
while b 

poo f poo _ -jq/p 

(2.7b) G5(x) dg(x)<A{j"°°H(x) dg(x) + [loglog g(a)] (1- r ) /" ë5(a)}" 

if ( r - l ) / q > 0 , c 0 <a<oo , where 05(a) 

= f a H(x)[log log g(x)]<r-1)/q dg(x). 
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In order to prove (2.8) for the case ( r - l ) / q < 0 , we apply Lemma (i) 
with a = l, 0 = co, A(r) - [ -q / ( r - l ) ] ( - loglogg( t ) ) ( r - 1 ) / q , h(x, t) = g p (0 / p (0 
x (log g(0)p(-log log g(0) s + 1(-log log g(x))f«i-')/p)-i^ (log g(x))-p*, 1 < a < c0, 
b = c0, Ç(x) = l and T)(X) = X. For the case ( r - l ) / q > 0 , we apply Lemma (i) 
with 1 < b <c0, a = 1, f (x) = x, TJ(X) = c0, the same a, |3, À(f), and fc(x, f) as for 
( r - l ) / q < 0 . The results obtained here are: 

(2.8a) ° G6(x) dg(x) < A ° H(x) dg(x) + [-log log g(a)](1-r)A,06(a) j 

if ( r - l ) / q < 0 , Ka<c0, where (96(a) 

= [aH(x)[~log log g(x)f-1) /q dg(x), 
and h 

rb c rb _ w p 
(2.8b) J G 6 (x )dg (x )<A | J H(x)dg(x) + [-loglogg(b)] ( 1-^06(fe)J 

if ( r - l ) / q > 0 , Kb<c0, where 06(b) 

= [C°H(x)[-log log g(x)f-1) /q dg(x). 

The inequality (2.7) follows from (2.7a) by letting b -> <*>, or from (2.7b) by 
letting a —> c0+. Similarly (2.8) follows from (2.8a) by letting a -» 1+, or from 
(2.8b) by letting b -> c0~. 

As before the reverse inequalities to (2.7a)-(2.8b) for the case 0 < q < p < l 
follow by using Lemma (ii) instead of Lemma (i) at the appropriate place. 
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