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Abstract. Deflection of light by gravity was predicted by Einstein’s Theory of General Rela-
tivity and observationally confirmed in 1919. In the following decades, various aspects of the
gravitational lens effect were explored theoretically, among them measuring the Hubble con-
stant from multiple images of a background source, making use of the magnifying effect as a
gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only
in 1979, gravitational lensing became an observational science when the first doubly imaged
quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole
suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs,
Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing appli-
cation is the detection of extrasolar planets. Lensing has contributed significant new results
in areas as different as the cosmological distance scale, mass determination of galaxy clusters,
physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar
atmospheres and exoplanets. A guided tour through some of these applications will illustrate
how gravitational lensing has established itself as a very useful universal astrophysical tool.
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1. The History of Strong Lensing
Gravitational lensing is considered a relatively new field in astrophysics. However, the

history of light deflection is more than 200 years old (see in more detail in Wambsganss
[1998] or in Schneider, Kochanek & Wambsganss [2006]). As early as 1784, Michell con-
sidered the deflection of light by the gravity of other bodies. In 1801, Soldner published
a paper on light deflection, in which he determined – based on Newtonian mechanics –
the deflection of a light ray just passing the solar limb to

α�,Soldner =
2GM�
c2R�

= 0.87 arcsec

(with G - gravitational constant, c - velocity of light, M� - mass of the sun, R� - radius
of the sun). More than 100 years later, Einstein worked on the same problem and derived
the same value (Einstein 1911). In fact, an expedition headed by Erwin Freundlich from
Potsdam was set up to test this prediction during the solar eclipse in September 1914 on
the Crimean Peninsula. However, another eclipse had started to darken Europe, World
War I had begun and the scientists plus their equipment were captured by Russian
soldiers. No harm was done to either scientists or equipment, they were later released
and sent home, but the solar eclipse had passed and the measurement could not be made.
Only after the General Theory of Relativity was finished, Einstein published the value
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of

α�,Einstein1915 =
4GM�
c2R�

= 1.74 arcsec,

for the light deflection at the solar limb, which was measured and proven to be cor-
rect in the famous solar eclipse expeditions led by Eddington in 1919 (Dyson et al.
1920).

In the 1920s/1930s, there were a few papers dealing with lensing, e.g., Chwolson in-
vestigated the situation of double imaging. In particular he figured out that for perfect
alignment between lens and source the result would be a ring-like image (Chwolson 1924).
Einstein looked again into this issue and derived the magnifications for the double images
of a background star lensed by an intervening foreground star, but he was very sceptical
about the possibility of observing this gravitational lensing effect (Einstein 1936). Henry
Norris Russell had obtained Einstein’s 1936 paper as a preprint. It impressed him quite
a bit, so he immediately wrote a column for Scientific American entitled “A Relativis-
tic Eclipse” (Russell 1937), in which he emphasized that the “Einstein effect” provides
a perfect (but unavailable) test for General Relativity, and that the effects would be
“conspicuous to the immediate gaze”. He described the consequences of an eclipse in
the Sirius A and B system, imagining an observer sitting on a planet around the white
dwarf Sirius B, at a distance such that the angular size of Sirius B just matches the an-
gular size of Sirius A. He illustrates the image shapes and describes what we call “arcs”
today as “bright crescents” and images have “developed pointed horns”. Fritz Zwicky
immediately applied Einstein’s idea on galaxies, he was convinced that “nebulae” should
and would act as gravitational lenses, for him this appeared to be an unavoidable conse-
quence (Zwicky 1937a,b) of the light deflection theory. Zwicky recognized the potential
of applying gravitational lensing to extragalactic nebulae: he proposed that this would
offer an additional test for general relativity, that the gravitational lens effect could be
used to study fainter objects (effectively increasing the aperture of our telescopes), he
emphasized that lensing would provide a powerful method to measure the masses of the
“nebulae” (i.e. dark matter!), and he proposed that splittings up to 30 arcsecond should
be expected.

In the 1960s there was another wave of theoretical investigations of the lensing effect.
In particular, Refsdal showed that one can determine the Hubble constant from the
time delay between the images of a multiply lensed quasar (Refsdal 1964). And finally in
1979, Dennis Walsh and colleagues discovered the first doubly imaged quasar Q0957+561
(Walsh et al. 1979). Although the deflection of light at the solar limb – hailed as the
first experiment to confirm a prediction of Einstein’s theory of General Relativity –
happened already in 1919, it took more than half a century to establish this phenomenon
observationally in some other environment.

2. The Basics of Strong Lensing
The path, the size and the cross section of a light bundle propagating through space-

time, in principle, are affected by all the matter between the light source and the ob-
server. For most practical purposes one can assume that the lensing action is dominated
by a single matter inhomogeneity at some location between source and observer. This
is usually called the “thin lens approximation”: all the action of deflection is thought to
take place at a single distance. Here the basics of lensing will be briefly derived and ex-
plained in the thin lens approxmation: lens equation, Einstein radius, image positions and
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magnifications, time delay. More detailed reviews/introductions on lensing can be found
in, e.g., Schneider et al. (2006).

2.1. Lens Equation

The basic setup for such a simplified gravitational lens scenario involving a point source
and a point lens is displayed in Figure 1. The three ingredients in such a lensing situation
are the source S, the lens L, and the observer O. Light rays emitted from the source are
deflected by the lens. For a point-like lens, there will always be (at least) two images
S1 and S2 of the source. With external shear – due to the tidal field of objects outside
but near the light bundles – there can be more images. The observer sees the images in
directions corresponding to the tangents to the real incoming light paths.

Figure 1. The relations between the various angles and distances involved in the lensing setup
can be derived for α̃ � 1 and formulated in eq.(2.3), the lens equation. The symbols ‘O’, ‘L’,
and ‘S’ mean ‘observer’, ‘lens’, and ‘source’, respectively. ‘S1 ’ and ‘S2 ’ are the two apparent
positions of the doubly imaged source. The angular diameter distances DL , DS , and DLS are
between observer-lens, observer-source, and source-lens. All angles involved are small compared
to one.

In Figure 1, the corresponding angles and angular diameter distances DL , DS , DLS

are indicated. In the thin-lens approximation the hyperbolic paths are approximated by
their asymptotes. In the circular-symmetric case the deflection angle is given as

α̃(ξ) =
4GM(ξ)

c2

1
ξ
, (2.1)

where M(ξ) is the mass of the lens inside a radius ξ. In this depiction the origin is chosen
at the observer. From the diagram it can be seen that the following relation holds:

θDS = βDS + α̃DLS (2.2)
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(for θ, β, α̃ � 1; this condition is fulfilled in practically all astrophysically relevant
situations). With the definition of the reduced deflection angle as α(θ) = (DLS /DS )α̃(θ),
this lens equation can be expressed as:

β = θ − α(θ). (2.3)

For real situations, all the astrophysics is “hidden” in the deflection angle α(θ), which
can become a quite complicated function for many lensing objects or an extended mass
distributions.

2.2. Einstein Radius

For a point lens of mass M the deflection angle is given by equation (2.1). Plugging it
into equation (2.3) and using the relation ξ = DLθ (cf. Figure 1) one obtains:

β(θ) = θ − DLS

DLDS

4GM

c2θ
. (2.4)

For the special case in which the source lies exactly behind the lens (β = 0), due to the
symmetry a ring-like image occurs whose angular radius is called Einstein radius θE :

θE =
√

4GM

c2

DLS

DLDS
. (2.5)

The Einstein radius defines the angular scale for a lens situation. For a massive galaxy
with a mass of M = 1012M� at a redshift of zL = 0.5 and a source at redshift zS = 2.0
(here H = 50km sec−1 Mpc−1 is used as the value of the Hubble constant and an
Einstein-deSitter universe) the Einstein radius is

θE ≈ 1.8

√
M

1012M�
arcsec (2.6)

(note that for cosmological distances in general DLS �= DS − DL !). For a galactic mi-
crolensing scenario in which stars in the disk of the Milky Way act as lenses for bulge
stars close to the center of the Milky Way, the scale defined by the Einstein radius is

θE ≈ 0.5

√
M

M�
milliarcsec. (2.7)

It is obvious from these values that lensing by galaxies can be resolved by normal op-
tical telescopes, whereas the angular scale for lensing by stars is much smaller than the
resolution of even the best optical telescopes.

2.3. Image Positions and Magnifications

The lens equation (2.3) can be re-formulated in the case of a single point lens:

β = θ − θ2
E

θ
. (2.8)

Solving this for the image positions θ, one finds that an isolated point source always
produces two images of a background source. The positions of the images are given by
the two solutions:

θ1,2 =
1
2

(
β ±

√
β2 + 4θ2

E

)
. (2.9)
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The magnification of an image is defined by the ratio between the solid angles of the
image and the source, since the surface brightness is conserved. Hence the magnification
μ is given as

μ =
θ

β

dθ

dβ
. (2.10)

In the symmetric case above the image magnification can be written as (by using the
lens equation):

μ1,2 =

(
1 −

[
θE

θ1,2

]4
)−1

=
u2 + 2

2u
√

u2 + 4
± 1

2
. (2.11)

Here u is defined as the “impact parameter”, the angular separation between lens and
source in units of the Einstein radius: u = β/θE . The magnification of one image (the one
inside the Einstein radius) is formally negative. This means it has negative parity: it is
mirror-inverted. For β → 0 the magnification diverges: in the limit of geometrical optics
the Einstein ring of a point source has infinite magnification†! The sum of the absolute
values of the two image magnifications is the total magnification μ:

μ = |μ1 | + |μ2 | =
u2 + 2

u
√

u2 + 4
. (2.12)

Note that this value is (always) larger than one‡!

2.4. Time delay and Fermat’s Theorem
The deflection angle is the gradient of an effective lensing potential ψ (see Schneider
1985). Hence the lens equation can be rewritten as

(θ − β) − ∇θψ = 0 (2.13)

or

∇θ

(
1
2
(θ − β)2 − ψ

)
= 0. (2.14)

The term in brackets appears as well in the physical time delay function for gravitationally
lensed images:

τ(θ,β) = τgeom + τgrav =
1 + zL

c

DLDS

DLS

(
1
2
(θ − β)2 − ψ(θ)

)
. (2.15)

This time delay surface is a function of the image geometry (θ, β), the gravitational
potential ψ, and the distances DL , DS , and DLS . The first part – the geometrical time
delay τgeom – reflects the extra path length compared to the direct line between observer
and source. The second part – the gravitational time delay τgrav – is the retardation due
to the gravitational potential of the lensing mass (known and confirmed as Shapiro delay
in the solar system). From equations (2.14) and (2.15) it follows that the gravitationally
lensed images appear at locations that correspond to extrema in the light travel time,
which reflects Fermat’s principle in gravitational-lensing optics.

The (angular-diameter) distances that appear in equation (2.15) depend on the value
of the Hubble constant (Weinberg 1972); therefore, it is possible to determine the latter

† Due to the fact that physical objects have a finite size, and also because at some limit wave
optics has to be applied, in reality the magnification stays finite.

‡ This does not violate energy conservation, since this is the magnification relative to an
“empty” universe and not relative to a “smoothed out” universe.
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by measuring the time delay between different images and using a good model for the
effective gravitational potential ψ of the lens.

2.5. The Effects of strong lensing
The effects of strong lensing can be summarized in four aspects:
• change of position: This effect was used as the first confirmation of General Rel-

ativity in 1919 with the offset of stellar positions close to the solar limb (Dyson et al.
1920). However, in general this is normally not observable, because one needs a “before-
and-after”-scenario in order to compare two angular positions. There is some hope that in
the future astrometric microlensing can help measure this effect (Treyer & Wambsganss
2004).
• distortion: Extended sources that are affected by lensing are distorted; to first

order, circular sources are deformed into arclets, arcs or even Einstein rings.
• (de)magnification: Typically only the magnification effect of lensing is considered.

In stellar microlensing a few events have been measured with magnifications as large as a
factor 1000. However, since lensing does not create any photons, in order to compensate
for this, some sources will appear fainter than without lensing. The distribution, however,
is very skewed: almost all images appear slightly demagnified, whereas a small fraction
of objects are highly magnified. This means, that in fact there are no standard candles
in the universe (Wambsganss et al. 1997).
• multiple images: Multiple images of course are the most dramatic effect of lensing.

So far, we know of more than 100 multiple quasar systems, and even more galaxy clusters
that produce giant luminous arcs.

In Figure 2 all these effects are visualized assuming a particular source profile with
some internal structure.

Figure 2. Magnification pattern produced by the stars in a lensing galaxy, with a particular
source profile superposed (left); resulting configuration with distorted, offset, magnified multiple
images (right).

2.6. How can we observe strong lensing phenomena?
Depending on the mass scale of the lens, there are two very different ways to observe
strong lensing:
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• “Statically” (images): For lensing objects with masses m � 108M�, the angular
Einstein radius gets comparable to the resolution of the telescope. This means the lensing
effect can be detected by resolving the multiple images and/or the shapes of the distorted
images. This regime is occasionally called macro-lensing.

• “Dynamically” (brightness, positions): For lensing objects with masses roughly com-
parable to a solar mass, the angular Einstein radius is much smaller than the resolution
of the telescope. However, due to the relative change between the (angular) positions of
lens and source, the magnification (and also the center of light) can change with time.
The time scale of these changes (Einstein radius divided by transverse velocity) turns
out to be of order years/months/weeks and, hence, the phenomenon is detectable by
measuring the apparent brightness frequently over time (in the future, we hope to be
able also to measure the positional change of the center-of-light). This regime is called
micro-lensing.

3. The Usefulness of Strong Lensing
In this section, three examples are presented in which strong lensing is being applied:

Galaxy clusters as lenses providing a record time delay and arc statistics as a cosmological
tool, galaxies as lenses to be used as microscopes for quasar accretion disks, and finally
stars and planets as lenses in the Milky Way.

3.1. Galaxy Clusters as Lenses: Time Delays and Arc Statistics
Gravitational lensing directly measures mass density fluctuations along the lines of sight
to very distant objects. No assumptions need to be made concerning bias, the ratio of
fluctuations in galaxy density to mass density. Hence, strong lensing is a very useful tool to
study the statistics of giant luminous arcs. This was done, e.g., regarding the frequency of
giant luminous arcs predicted by various cosmological models. In Bartelmann et al. (1998)
it was stated that a Lambda-dominated flat cosmological model (Ωmatter = 0.3, ΩΛ = 0.7
known as “concordance cosmology”) would underpredict luminous arcs by about an order
of magnitude. Later, Wambsganss et al. (2004) showed that this result was based on the
assumption that the sources are all at redshift unity. The probability for arcs, however, is
a steep function of source redshift. If one allows for sources at redshift two or three (some
of the observed arcs are even at higher redshifts), then the discrepancy disappears. These
results were based on cosmological parameters derived from the WMAP-1 data. More
recently, WMAP-3 results published lower values of the normalization, σ8 , which reduces
the predicted number of arcs by a factor of 8 or 10 (Wambsganss et al., in preparation).
The most recent values for the cosmological parameters based on WMAP-5 results (in
particular the slight increase in the normalization) lead to an increase in the frequency of
arcs again. Since all three values of σ8 published by the WMAP mission agree within each
other at a level of about 2.5 σ, there is no significant discrepancy between the predicted
and measured arc frequencies. The models mainly show the strong dependence on the
normalization of the cosmology. If better statistics can be obtained from a larger number
of observed arcs, this could be used in turn to predict an interval of σ8 which is consistent
with these observations.

A second example for the usefulness of galaxy clusters as lenses was obtained in the
strongly lensing galaxy cluster SDSS J1004+4112, in which a quintuple quasar system
was discovered. By monitoring this system over many years, finally two of the three
relative time delays could be measured, and a lower limit on the third one could be
obtained (see Fohlmeister et al. 2007, 2008): the time delay between images A and B
was measured to ΔtBA = 40.6 ± 1.8 days, the wide image pair C and A has a relative
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time delay of ΔtC A = 821.6± 2.1 days, which is the longest gravitational lens time delay
on record so far. For the image pair A and D only a lower limit could be obtained:
ΔtAD > 1250 days (cf. Figure 3 and for more details the papers by Fohlmeister et al.
2007, 2008).

Figure 3. Lightcurves of the four brightest images of the multiple quasar system SDSS
J1004+4112 (after Fohlmeister et al. 2008)

3.2. Galaxies as lenses: Dark Matter and Quasar Accretions Disks
A number of quasar systems have been explored in detail for microlensing, the effects
of stellar mass objects along the line of sight to the quasar images. The most dramatic
effects have been seen in the quadruple system Q2237+0305, where four quasar images are
centered around the core of the lensing galaxy. Since its discovery, this system has shown
uncorrelated fluctuations between the images, which were interpreted as microlensing,
see Irwin et al. (1989) and Wambsganss et al. (1990). The problem was, however, the
poor coverage in time. Only with the dedicated telescope and the dedicated scientists
of the OGLE team, a good time coverage could be reached, with more than 100 data
points per year. This observing strategy resulted in a dramatic increase in data quality,
see Wozniak et al. (2000). The individual images fluctuate by as much as a factor of two
in a few months, and these fluctuations are very well resolved. In this multiple quasar
system there is no need to invoke potential dark matter objects as lenses: the four images
are seen through the central part of the lensing galaxy, which is full of ordinary main
sequence stars. The interpretation of the data is consistent with low-mass stars in the
core of the galaxy being the lenses, and the size of the quasar continuum emission region
to be of order 1015 cm or smaller (see, e.g., Wambsganss et al. (1990), Wyithe et al.
(2000))

Recently, this quasar could be monitored spectro-photometrically over an extended
period of time. Eigenbrod et al. (2008) analyzed the data with particular emphasis on
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Figure 4. Microlensing lightcurves of the quadruple quasar Q2237+0305 in six bands, clearly
indicating the dependence of the microlensing amplitude on the wavelength (from Eigenbrod
et al. 2008).

the microlensing amplitudes as a function of wavelength/filter. As can be seen in Figure
4, the amplitudes increase with decreasing wavelength: in the blue wavelength range
the microlensing effect is stronger than in the red part. This was originally predicted
by Wambsganss & Paczynski (1991). Here this effect could be analyzed quantitively
for the first time. The results show that the accretion disk in the quasar Q2237+0305
is consistent with a standard Shakura-Sunyaev accretion disk, details can be found in
Eigenbrod et al. (2008).

3.3. Stars as Lenses: In Search of extrasolar Planets

In 1991, it was suggested that a fair fraction of stellar microlensing events towards the
Galactic bulge should display signatures of binarity, and that even planetary compan-
ions should be detectable (Mao & Paczynski 1991). Starting in 1993, a number of teams
(MACHO, EROS, OGLE, MOA) monitored of order 107 stars in the bulge in order to
detect microlensing effects of intermediate stars or dark compact objects (Alcock et al.
2000; Laserre et al. 2000; Udalski et al. 1997). By now, more than 3000 microlensing
events towards the galactic bulge have been found, currently over 800 events are de-
tected per season. About 10% of them show the signature of binary lenses. This data
set allows, among other things, to study the mass distribution of the Galactic disk with
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unprecedented accuracy. But one of the main goals of these monitoring experiments is
still the detection of planets around the lensing stars.

In addition to the groups mentioned above, there are two other teams (PLANET,
MicroFUN) who specialized in following up of current stellar lensing events with good
photometric accuracy and very high temporal coverage, in order to find possible small
deviations from the smooth single-lens lightcurve, which would be the signature of a
planet. The signatures of planets are of short duration (of order hours) and typically
have small amplitudes (a few percent), as was shown, e.g., in Wambsganss (1997). But
the main aspect are: such planetary deviations at stellar microlensing lightcurves are rare:
even if all stars had planets, only a small fraction of the microlensing lightcurves would
show their signatures, due to the geometric path of the background star with respect to
the planetary caustic.

Finally, in April 2004 the first microlensing planet was announced: The MOA/OGLE/
MicroFUN teams announced their detection of a microlensing event which can be ex-
plained only with a very low mass companion to the primary star: OGLE 2003-BLG-235
or MOA 2003-BLG-53. The result is published in Bond et al. (2004). In the original
words of the authors:

“A short-duration (∼7 days) low-amplitude deviation in the light curve due to a
single-lens profile was observed in both the MOA and OGLE survey observations.
We find that the observed features of the light curve can only be reproduced using
a binary microlensing model with an extreme (planetary) mass ratio of 0.0039+11

−07
for the lensing system. If the lens system comprises a main-sequence primary, we
infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital
radius of ∼3 AU.”

By now, seven microlensing planets have been published (Bond et al. 2004, Udalski
et al. 2005, Beaulieu et al. 2006, Gould et al. 2006, Gaudi et al. 2008, Bennett et al.
2008, Dong et al. 2009). These first unambiguous microlensing planet detections prove:
Microlensing as a planet search technique has stepped out of its infancy. It is a viable
method which is complementary to other techniques. Microlensing remains the most
promising method for the detection of low-mass planets with ground-based techniques.
It has been known all along that microlensing is sensitive to the low planet mass regime,
that even Earth-mass objects are within the reach. However, even for microlensing the
sensitivity is stronger for higher mass planets. So the fact that about half of the planets
detected with microlensing are in the low planet mass regime, Neptune-mass to few Earth-
mass range, allows to draw a robust conclusion: low mass planets must be abundant (more
details see in references above).

4. The Future of Strong Lensing
In the 30 years of its existence, strong gravitational lensing has changed from an exotic

subfield in astronomy into a very useful astrophysical tool which is applied in a large
range of mass scales (20 orders of magnitude: from galaxy clusters to Earth-like planets),
distance scales (few Gigaparsec to few kiloparsec, or even microparsec, if we include the
Sun ...) and angular scales (arcminutes to microarcseconds). In the coming years, strong
lensing will definitely help measure dark matter, resolve quasar and stellar luminosity
profiles, and find many exoplanets, possibly Earth-like planets, and potentially even
moons around extrasolar planets. So my conclusion is that the future of strong lensing
is bright and promising.
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Mao, S., Paczyński, B. ApJ 374, L37 (1991)
Refsdal, S. MNRAS 128, 307 (1964)
Russel, H. N. Scientific American (February 1937)
Schneider, P., A&A 143, 413 (1985)
Schneider, P., Kochanek, C. S., & Wambsganss, J. “Gravitational Lensing: Strong, Weak, Micro”

(Saas-Fee Advanced Course 33, Editors G. Meylan, P. Jetzer, P. North (Springer-Verlag,
Berlin, 2006)

Treyer, M. & Wambsganss, J. A&A, 416, 19 (2004)
Udalski, A., Kubiak, M., & Szymanski, M. Acta Astron. 47, 319 (1997)
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