
Canad. Math. Bull. Vol. 46 (1), 2003 pp. 140–148

An Explicit Cell Decomposition
of the Wonderful Compactification
of a Semisimple Algebraic Group

Lex E. Renner

Abstract. We determine an explicit cell decomposition of the wonderful compactification of a semi-

simple algebraic group. To do this we first identify the B × B-orbits using the generalized Bruhat

decomposition of a reductive monoid. From there we show how each cell is made up from B × B-

orbits.

1 Introduction

The most commonly studied cell decompositions in algebraic geometry are the ones
obtained by the method of [1]. If S = k∗ acts on a smooth complete variety X with
finite fixed point set F ⊆ X, then X =

⊔

α∈F Cα where Cα = {x ∈ X | limt→0 tx

= α}. Furthermore, each Cα is isomorphic to an affine space. If further, a semisimple
group G acts on X extending the action of S, we may assume that each Cα is stable
under the action of some Borel subgroup B of G with S ⊆ B. Thus, each Cα is a union
of B-orbits.

In case X is the (two-sided) wonderful compactification of a semisimple group G,

the above procedure has been carried out in [4]. In fact, they obtain results for a
more general class of wonderful compactifications. Let G be a semisimple algebraic
group, and suppose σ : G → G is an involution (so that σ ◦ σ = idG) with H =

{x ∈ G | σ(x) = x}. The wonderful compactification of G/H (according to [4]) is the

unique normal G-equivariant compactification X of G/H obtained by considering an
irreducible representation ρ : G → G`(V ) of G with dim(V H) = 1 and with highest
weight in general position. Then let h ∈ V H be nonzero and define

X = ρ(G)[h] ⊆ P(V ),

the Zariski closure of the orbit of [h]. (See [4, Section 2] for details.) In this paper we

restrict our attention to the special case where the group is G × G and σ : G × G →
G×G is given by σ(g, h) = (h, g). It is easy to see that, in this case, the G×G-variety
(G × G)/H can be canonically identified with G with its two-sided G-action.

Much important work has been accomplished since [4] appeared. See [13], [12],
[2], [5]. In particular Brion [2] obtains much information about the structure of X.

Among other things, he finds a BB-decomposition X =
⊔

x∈F Cx from which he then
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An Explicit Cell Decomposition of a Compactification 141

obtains a basis of the Chow ring of X of the form {By(x)B}x∈F . He also identifies
explicitly how each cell Cx is made up from B × B-orbits.

In this paper, we identify an explicit cell decomposition of X. Our approach is
somewhat different than [2]. While Brion uses the combinatorics of spherical em-
beddings, we use the results of [9] to construct our cells directly from B × B-orbits
on a reductive monoid. We first identify the B × B-orbits using the results of [9] on

generalized Bruhat decomposition for reductive monoids. Indeed, there is a precise
monoid analogue R of the Weyl group W , so that X =

⊔

x∈R BxB. We then define for
each “rank-one” element r ∈ R, a cell

Cr =

⊔

x∈Cr

BxB ∼= Knr

so that X =
⊔

r∈R1
Cr. In particular, each Cr is defined using standard Weyl group

combinatorics. These cells are canonically indexed by the fixed points of T ×T on X.

Our method also yields an explicit cell decomposition for each G × G-orbit.
It appears that my cell decomposition agrees with the one of [2] (although we have

not actually verified this). However, the monoid approach is sufficiently important

to warrant a separate direct treatment. The interested reader should consult Brion’s
excellent paper for more information on the B × B-orbit closures and the Chow ring
for X.

To complete our results we give an explicit formula for the Poincaré polynomial

of XI .

2 Orbit Structure of X

In this section we assemble the relevant background information about the wonder-
ful compactification of G.

Let G be a connected, semisimple group of adjoint type defined over the alge-
braically closed field k. The wonderful compactification X of G can be obtained as

follows:
Let G1 = G×k∗, and consider normal reductive monoids M with 0 and unit group

G1[6, 7]. By the results of [11], this yields a systematic procedure for constructing
two-sided compactifications of G. We can easily identify X as follows:

Let ρ : G1 → G`(V ) be an irreducible, faithful representation such that
ρ(1, t)(v) = tv for all t ∈ k∗, v ∈ V . Define

M1 = ρ(G1) ⊆ End(V ) and let

M = the normalization of M1.

Assume also that the highest weight λ of ρ|G is regular (i.e.: if λ = Σmiλi , where
{λi} is the set of fundamental dominant weights, then mi > 0 for each i). Define

X = Xλ = (M \ {0})/k∗.

We assume G is of adjoint type to ensure that X is smooth. See Proposition 3.4.
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Proposition 2.1 X is independent of λ.

Proof Let T ⊆ G be a maximal torus. By [10, Theorem 7.1.5], M is the unique,
normal monoid with polyhedral root system (Z, Φ,Cλ) where Cλ ⊆ X(T) ⊕ Z = Z

is the smallest normal cone containing {(w∗(λ), 1) | w ∈ W}. Here w∗(λ)(t) =

λ(wtw−1) for t ∈ T × k∗. If λ ′ is another regular, dominant weight, one checks
that (Z, φ,Cλ) and (Z, φ,Cλ ′) are projectively equivalent polyhedral root systems
in the sense of [11, Definition 3.5]. Thus, by [11, Theorem 3.7], Xλ

∼= Xλ ′ as

G × G-varieties.

Proposition 2.2 X is the wonderful compactification of [4].

Proof By our definition, X = G · h̃ where h̃ ∈ P
(

End(V )
)

is the class of 1V ∈
End(V ) ∼= V ⊗ V ∗. But this corresponds to the construction of [4] via their Propo-
sition 1.7 and Section 2.1. Indeed H = {(g, g)} ⊆ G × G (so my h̃ above is fixed by

H under the action G × G × End(V ) → End(V ), (g, y)(x) = gxy−1). Thus, my h̃

corresponds to their h̃. Notice also that their λ corresponds to my λ ⊗ λ∗.

We now describe the orbit structure of X. We use the results of [8], [9], [10], along

with our description above of X as (M \ 0)/k∗.

Let T be a maximal torus of G contained in the Borel subgroup B of G. Let ∆

be the set of positive simple roots and let S = {sα | α ∈ ∆} be the set of simple
reflections. For I ⊆ ∆ or S we let PI be the corresponding standard parabolic.

Proposition 2.3 X =
⊔

I⊆S GeIG where eI ∈ T̄ is a representative of the unique T-orbit

with PI = {g ∈ G | eIg ∈ GeI}.

Proof By [9, Section 3.3.1], M =
⊔

e∈Λ
GeG where Λ = {e ∈ E(T̄) | eB ⊆ Be} and

E(T̄) = {e ∈ T̄ | e2
= e}. But from [8, Theorem 4.16], Λ ∼= P(S) = {I ⊆ S} via

e ↔ I where e = eI , since for this M, J0 = φ because λ is a regular weight. The

statement about PI follows from [8, Corollary 4.12].

Let Λ = {eI | I ⊆ S}. Define

R = NG(T)/ ∼

where x ∼ y if xT = yT. Notice that for x ∈ NG(T), Tx = xT.

Proposition 2.4 X =
⊔

x∈R BxB.

Proof See [9, Corollary 5.8]. R above corresponds to R \ {0} of [9].

Notice that

R =

⊔

I⊆S

WeIW
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so that also
GeIG =

⊔

x∈WeIW

BxB.

Here W is the Weyl group of G relative to T. It turns out that there is a normal form

for the elements of R.

Proposition 2.5 Let x ∈ R. Then there exist unique u, v ∈ W , and eI ∈ Λ such that

i) x = ueIv, and

ii) I ⊆ {s ∈ S | `(us) > `(u)} = Iu.

Proof This follows from the results of [6], but we indicate a direct proof.
We can write x = weI y for some I ⊆ S and some w, y ∈ W . By Proposition 2.3,

I is unique. From well-known results about Coxeter groups we can write w = uc

where c ∈ WI and `(us) > `(u) for s ∈ I. Furthermore, u and c are unique. But
ceI = eIc, so we can write x = ueIv where v = cy.

We refer to the decomposition x = ueIv as the normal form of x.

To obtain our cell decomposition of X, we first “solve” the corresponding problem
in R. Define

R1 = {x ∈ R | Tx = xT = x}

= WeφW ∼= W ×W

the “rank-one” elements of R. Notice that R1 = XT×T . Not surprisingly, our cells are
indexed by the elements of R1. Define

ϕ : R → R1

by ϕ(x) = ueφv if x = uev is the normal form of x.

Definition 2.6 For r = ueφv ∈ R1, define

Cr = ϕ−1(r) = {x ∈ R | x = ueIv, normal form I ⊆ Iu}.

So R =
⊔

r∈R1
Cr .

3 The Cells of X and XI

Definition 3.1 Let r ∈ R1. Define

Cr =

⊔

x∈Cr

BxB.

For I ⊆ S define
CI,r = Cr ∩ XI
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where XI = GeIG.
We refer to Cr and CI,r as cells. In this section we determine the structure of Cr and

CI,r . In particular, we find that each of these cells is isomorphic to an affine space.
Let U be the unipotent radical of B, and U− the unipotent radical of B−.

Proposition 3.2 Let x ∈ R and write x = ueIv in normal form. Then

BxB = (U u ∩ uU )(eIT)(vU ∩U−v)

∼=0 (U u ∩ uU ) × eIT × (vU ∩U−v)

where ∼=0 means isomorphism if char (k) = 0, and bijection if char (k) > 0.

Proof Let e = eI and notice that eB = eCB(e) = CB(e)e, since eB ⊆ Be. Here
CB(e) = {y ∈ B | ye = ey}. Notice also that vBv−1

= (vBv−1 ∩ B)(vBv−1 ∩ U−)
(direct product of varieties) where B− is the Borel subgroup opposite to B relative to

T. So

evBv−1
= e(vBv−1 ∩ B)(vBv−1 ∩U−)

= eV (vBv−1 ∩U−)

= Ve(vBv−1 ∩U−)

where V j CB(e) is some connected subgroup with T ⊆ V . Indeed, e(vBv−1 ∩ B) ⊆
eB = eCG(e). So by [7, Theorem 6.1(iii)] we can take V = vBv−1 ∩CG(e). So we get

(∗) evB = Ve(vB ∩U−v).

We now look at Bue. Recall first that `(us) > `(u) for any s ∈ I. By [1, Proposi-

tion 2.3.3] this is the same as saying uCB(eI)u−1 ⊆ B, or equivalently,

(∗∗) CB(eI) ⊆ u−1Bu ∩ B.

Thus,

u−1Bue = (u−1Bu)(u−1Bu ∩U−)e

= (u−1Bu ∩ B)e

since (u−1Bu ∩ U−)e = e. Indeed, if Uα ⊆ u−1Bu ∩ U− then Uα * CG(eI) since
if Uα ⊆ CG(eI) then by (∗∗) above CB(eI) $ Cu−1Bu(eI) which is impossible for

dimension reasons. Therefore,

(∗ ∗ ∗) Bue = (Bu ∩ uB)e.

So using (∗) and (∗ ∗ ∗) we obtain

u−1BuevB = (u−1Bu ∩ B)eV (vB ∩U−v) = (u−1Bu ∩ B)e(vB ∩U−v)
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since by (∗∗) V ⊆ CB(e) ⊆ u−1Bu ∩ B. Thus, BuevB = (Bu ∩ uB)e(vB ∩U−v) and
so

BuevB = (U u ∩ uU )(eT)(vU ∩U−v).

Now suppose that aetb = cesd where a, c ∈ u−1U u ∩U and b, d ∈ vU v−1 ∩U− and
s, t ∈ T. So c−1aet = esdb−1. But c−1aet ∈ U eT ⊆ B̄ and esdb−1 ∈ eTU− ⊆ B−,

while B̄ ∩ B− = T̄. Thus c−1aet ∈ T̄ and so c−1ae ∈ T̄. But then c−1ae = e because
c−1a ∈ U .

However, if ge = e then g ∈ B− and hence c−1a ∈ U ∩ U−
= {1}. Similarly

b = d, and thus es = et as well. This proves that

m : (U u ∩ uU ) × eT × (vU ∩U−v) → BuevB,

m(y, et, z) = yetz, is bijective. If char (k) = 0 then by Zariski’s Main Theorem, m is
an isomorphism.

Proposition 3.3 If r = ueφv then

Cr = (U n ∩ uU )(Zu)(vU ∩U−v)

∼=0 (U u ∩ uU ) × Zu × (vU ∩U−v)

where Zu =
⊔

I⊆Iu
eIT ⊆ T̄.

Proof

Cr =

⊔

ueI v∈Cr

(U u ∩ uU )(eIT)(vU ∩U−v)

= (U u ∩ uU )
(

⊔

I⊆Iu

eIT
)

(vU ∩U−v)

So apply Proposition 3.2.

Proposition 3.4 Zu ⊆ T̄ is a subvariety isomorphic to ki(u) where i(u) = |Iu|.

Proof We may assume here that u = 1, so that Z1 =
⊔

I⊆S eIT. Any other Zu is a

T-orbit closure of Z1 of the required dimension.
By the proof of Proposition 2.1 X can be obtained from the reductive monoid M

whose polyhedral root system is (Z, Φ,Cλ) where Z = X(T)⊕Z and Cλ is the smallest
normal cone of Z containing

{(

u∗(λ), 1
)

| w ∈ W
}

. We may also assume that

(Z, Φ,Cλ) is integral in the sense of [11, Definition 2.1]. If T1 = T × k∗ ⊆ G(M) =

G × k∗ is the maximal torus of G(M) corresponding to T ⊆ G, then π−1(Z1) =

{x ∈ T1 | xeφ 6= 0}, where π : M \ 0 → X is the canonical projection. One checks
that

O
(

π−1(Z1)
)

= k[Cλ][1/χ]

where χ = δλ (multiplicative notation) corresponds to (1, λ) ∈ Z = X(T) ⊕ Z.
(So δ : T × k∗ → k∗ is the projection). Now if sα ∈ S then sα(χ) = α−kχ for
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some k > 0, since λ is regular. So sα(χ)χ−1
= α−k ∈ O

(

π−1(Z1)
)

. Thus α−1 ∈

O
(

π−1(Z1)
)

since O
(

π−1(Z1)
)

is integrally closed in O(T × k∗). It follows that

O
(

π−1(Z1)
)

= k[α−1
1 , . . . , α−1

` , χ, χ−1] since G is of adjoint type and Cλ is integral.

Thus O(Z1) = k[α−1
1 , . . . , α−1

` ]. Here ` is the rank of G.

Theorem 3.5 Let r = ueφv ∈ R1. Then there is a bijective morphism

m : knr → Cr

where nr = `(w0) − `(u) + i(u) + `(v). Here w0 ∈ W is the longest element, so that

`(w0) = |Φ+|.

Proof We have from Propositions 3.3 and 3.4 that dim(Cr) = dim(U u ∩ uU ) +
dim(Zu) + dim(vU ∩ U−v). One checks easily that dim(U u ∩ uU ) = `(w0) − `(u)
and that dim(vU ∩U−v) = `(v). Also, from Proposition 3.4 dim(Zu) = i(u).

We now consider the cell decomposition for XI = GeIG. Recall from [4] that
XI is a smooth, spherical G × G-subvariety of X and therefore must have a B × B-
equivariant cell decomposition of its own. This is straightforward since XT×T ⊆ XI .

Given r ∈ R1 and I ⊆ S recall that

CI,r = Cr ∩ XI .

Clearly, XI =
⊔

r∈R1
CI,r . But we can say more.

Theorem 3.6 Let r = ueφv ∈ R1. Then there is a bijective morphism

m : knI,r → CI,r

where nI,r = `(w0) − `(u) + |I ∩ Iu| + `(v).

Proof By inspection CI,r =
⊔

J⊆I∩Iu
Bue JvB and so CI,r = (U u ∩ uU )(ZI,u)

(vU ∩ U−v) where ZI,u =
⊔

J⊆I∩Iu
e JT. So the proof proceeds as in 3.4 and 3.5.

Remark 3.7 We have defined Cr via 3.1. However there is a direct definition in terms
of the monoid M. Let r ∈ R1. Then we can write r = er for some unique, rank-one
idempotent e ∈ E1(R) = E(T̄) ∩ R1. It turns out that if

C̃r = {y ∈ M | eBy = eBey ⊆ rB}

then Cr = C̃r/k∗.
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4 Betti Numbers of XI

If Y is a smooth projective algebraic variety, then it is of interest to calculate the Betti
numbers of Y ,

βi(Y ) = dimF

(

Hi(Y ; F)
)

,

for some appropriate (Weil) cohomology theory. It is well known that one can calcu-
late βi(Y ) using the Weil zeta function of any smooth reduction of Y to the algebraic
closure of a finite field. If further, Y has a cell decomposition into affine spaces then

we obtain

βi(Y ) =

{

the number of cells of dimension i/2, i even

0, i odd.

In our situation we do not yet know that our cells are affine spaces (unless char (k)
= 0), but the bijection of Theorem 3.6 will remain a bijection after suitable reduction
to a finite field. Let

P(X, t) =

∑

i≥0

(−1)iβi(X)t i

be the Poincaré polynomial of X.

Theorem 4.1

P(XI , t) =

(

∑

u∈W

t2(`(w0)−`(u)+|Iu∩I|)
)(

∑

v∈W

t2`(v)
)
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