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An Explicit Cell Decomposition
of the Wonderful Compactification
of a Semisimple Algebraic Group

Lex E. Renner

Abstract. We determine an explicit cell decomposition of the wonderful compactification of a semi-
simple algebraic group. To do this we first identify the B X B-orbits using the generalized Bruhat
decomposition of a reductive monoid. From there we show how each cell is made up from B X B-
orbits.

1 Introduction

The most commonly studied cell decompositions in algebraic geometry are the ones
obtained by the method of [1]. If S = k* acts on a smooth complete variety X with
finite fixed point set F C X, then X = | | . Co where C, = {x € X | lim, o tx
= a}. Furthermore, each C,, is isomorphic to an affine space. If further, a semisimple
group G acts on X extending the action of S, we may assume that each C, is stable
under the action of some Borel subgroup B of G with S C B. Thus, each C,, is a union
of B-orbits.

In case X is the (two-sided) wonderful compactification of a semisimple group G,
the above procedure has been carried out in [4]. In fact, they obtain results for a
more general class of wonderful compactifications. Let G be a semisimple algebraic
group, and suppose 0: G — G is an involution (so that o o ¢ = idg) with H =
{x € G| o(x) = x}. The wonderful compactification of G/H (according to [4]) is the
unique normal G-equivariant compactification X of G/H obtained by considering an
irreducible representation p: G — G£(V) of G with dim(V*) = 1 and with highest
weight in general position. Then let & € VH be nonzero and define

X = p(G)[h] € P(V),

the Zariski closure of the orbit of [h]. (See [4, Section 2] for details.) In this paper we
restrict our attention to the special case where the groupis G x Gando: G x G —
G x Gisgiven by o(g, h) = (h,g). Itis easy to see that, in this case, the G x G-variety
(G x G)/H can be canonically identified with G with its two-sided G-action.

Much important work has been accomplished since [4] appeared. See [13], [12],
[2], [5]. In particular Brion [2] obtains much information about the structure of X.

Among other things, he finds a BB-decomposition X = | | C, from which he then
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obtains a basis of the Chow ring of X of the form {By(x)B}.cr. He also identifies
explicitly how each cell C, is made up from B x B-orbits.

In this paper, we identify an explicit cell decomposition of X. Our approach is
somewhat different than [2]. While Brion uses the combinatorics of spherical em-
beddings, we use the results of [9] to construct our cells directly from B x B-orbits
on a reductive monoid. We first identify the B x B-orbits using the results of [9] on
generalized Bruhat decomposition for reductive monoids. Indeed, there is a precise
monoid analogue R of the Weyl group W, so that X = | |,_, BxB. We then define for
each “rank-one” element r € R, a cell

Cr=| | BxB=K™
x€C,

so that X = | | .p C,. In particular, each C, is defined using standard Weyl group
combinatorics. These cells are canonically indexed by the fixed points of T x T on X.
Our method also yields an explicit cell decomposition for each G x G-orbit.

It appears that my cell decomposition agrees with the one of [2] (although we have
not actually verified this). However, the monoid approach is sufficiently important
to warrant a separate direct treatment. The interested reader should consult Brion’s
excellent paper for more information on the B x B-orbit closures and the Chow ring
for X.

To complete our results we give an explicit formula for the Poincaré polynomial
OfX].

2 Orbit Structure of X

In this section we assemble the relevant background information about the wonder-
ful compactification of G.

Let G be a connected, semisimple group of adjoint type defined over the alge-
braically closed field k. The wonderful compactification X of G can be obtained as
follows:

Let G; = Gxk*, and consider normal reductive monoids M with 0 and unit group
G (6, 7]. By the results of [11], this yields a systematic procedure for constructing
two-sided compactifications of G. We can easily identify X as follows:

Let p: Gi — Gl(V) be an irreducible, faithful representation such that
p(1,t)(v) =tvforallt € k*,v € V. Define

M; = p(G;) € End(V) andlet

M = the normalization of M.

Assume also that the highest weight A of p|G is regular (i.e.: if A\ = Xm;\;, where
{Ai} is the set of fundamental dominant weights, then m; > 0 for each i). Define

X=X\=(M\{o}h/k".

We assume G is of adjoint type to ensure that X is smooth. See Proposition 3.4.
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Proposition 2.1 X is independent of \.

Proof Let T C G be a maximal torus. By [10, Theorem 7.1.5], M is the unique,
normal monoid with polyhedral root system (Z, ®,C,) whereC\ C X(T) ®7Z = Z
is the smallest normal cone containing {(w*(\),1) | w € W}. Here w*(A\)(¢) =
Awtw™!) for t € T x k*. If ) is another regular, dominant weight, one checks
that (Z,¢,C,) and (Z, ¢,C)/) are projectively equivalent polyhedral root systems
in the sense of [11, Definition 3.5]. Thus, by [11, Theorem 3.7], X, = X,/ as
G X G-varieties. |

Proposition 2.2 X is the wonderful compactification of [4].

Proof By our definition, X = G- h where h € IP’(End(V)) is the class of 1y €
End(V) 2 V ® V*. But this corresponds to the construction of [4] via their Propo-
sition 1.7 and Section 2.1. Indeed H = {(g,¢)} € G x G (so my h above is fixed by
H under the action G x G x End(V) — End(V), (g, y)(x) = gxy~'). Thus, my h
corresponds to their /1. Notice also that their A corresponds to my A ® \*. ]

We now describe the orbit structure of X. We use the results of [8], [9], [10], along
with our description above of X as (M \ 0)/k*.

Let T be a maximal torus of G contained in the Borel subgroup B of G. Let A
be the set of positive simple roots and let S = {s, | &« € A} be the set of simple
reflections. For I C A or S we let P; be the corresponding standard parabolic.

Proposition2.3 X = | | 1cs GetGwhereey € T is a representative of the unique T-orbit
withP; = {g € G| e;g € Gey}.

Proof By [9, Section 3.3.1], M = | |,., GeG where A = {e € E(T) | eB C Be} and
E(T) = {e € T | ¥ = e}. But from [8, Theorem 4.16], A = P(S) = {I C S} via
e < I where e = e, since for this M, J, = ¢ because A\ is a regular weight. The
statement about P; follows from [8, Corollary 4.12]. |

Let A = {e; | I C S}. Define
R = Ng(T)/ ~

where x ~ y if xT = yT. Notice that for x € Ng(T), Tx = xT.
Proposition 2.4 X = | | ., BxB.

Proof See [9, Corollary 5.8]. R above corresponds to R \ {0} of [9]. [ |
Notice that
R=| |Wew
ICs
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so that also
GeG= | | BxB.

xEWe W

Here W is the Weyl group of G relative to T. It turns out that there is a normal form
for the elements of R.

Proposition 2.5 Letx € R. Then there exist unique u,v € W, and e; € A such that

i) x = uev, and
i) IC{seS|lus) >} =1,

Proof This follows from the results of [6], but we indicate a direct proof.

We can write x = weyy for some I C S and some w, y € W. By Proposition 2.3,
I is unique. From well-known results about Coxeter groups we can write w = uc
where ¢ € Wy and ¢(us) > £(u) for s € I. Furthermore, u and c are unique. But
cer = ey, SO we can write x = ueyv where v = cy. |

We refer to the decomposition x = ueyv as the normal form of x.

To obtain our cell decomposition of X, we first “solve” the corresponding problem

in R. Define

Ri={xeR|Tx=xT=x}
= We,W =W x W

the “rank-one” elements of R. Notice that R; = X7*T. Not surprisingly, our cells are
indexed by the elements of R;. Define

p:R— R
by w(x) = ueyv if x = uev is the normal form of x.
Definition 2.6 For r = ueyv € Ry, define
€, = ¢ (r) = {x € R| x = ue;v, normal form I C I,,}.

SoR =g Cr
3 The Cells of X and X;

Definition 3.1 Letr € R;. Define

Cr=| | BxB.
Xeer
For I C S define
C[’r =C,NX;
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where X; = Ge;G.
We refer to C, and Cj, as cells. In this section we determine the structure of C, and
Cr,r. In particular, we find that each of these cells is isomorphic to an affine space.
Let U be the unipotent radical of B, and U ~ the unipotent radical of B~.

Proposition 3.2 Let x € R and write x = ueyv in normal form. Then

BxB = (UunuU)(e;T)(vUNUv)
= (UunuU) xefT x (vUNU )

where =, means isomorphism if char (k) = 0, and bijection if char (k) > 0.

Proof Let e = ¢; and notice that eB = eCp(e) = Cpg(e)e, since eB C Be. Here
Cp(e) = {y € B | ye = ey}. Notice also that vBv~! = (vBv"' N B)(vBv" ! NU")
(direct product of varieties) where B~ is the Borel subgroup opposite to B relative to
T. So
evBv ! =e(vBv 'NB)wBy ' NU™)
=eV(wBv ' NU™)
=Ve(vBv ' NU™)

where V' C Cjp(e) is some connected subgroup with T C V. Indeed, e(vBv~! N B) C
eB = eCg(e). So by [7, Theorem 6.1(iii)] we can take V = vBv~! N Cg(e). So we get

() evB = Ve(vBNU v).

We now look at Bue. Recall first that £(us) > f(u) for any s € I. By [1, Proposi-
tion 2.3.3] this is the same as saying uCg(e;)u~"! C B, or equivalently,

(%) Cpler) C u 'BunB.
Thus,

uw 'Bue = (u'Bu)(u'BunU e
= (u"'Bun Be
since (u”'Bun U~ )e = e. Indeed, if U, C u"'Bun U~ then U, € Cgle;) since
if U, C Cgl(er) then by (xx) above Cg(ey) g C,—1p.(er) which is impossible for
dimension reasons. Therefore,
(% * *) Bue = (Bu N uB)e.

So using (x) and (* * *) we obtain

1 'BuevB = (u"'Bun B)eV(vBNU v) = (u 'Bun B)e(vBNU "v)
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since by (x*) V C Cp(e) € u~'Bu N B. Thus, BuevB = (Bu N uB)e(vBN U~ v) and
)
BuevB = (UuNuU)(eT)(vUNU v).

Now suppose that aetb = cesd where a,c € u 'UunU and b,d € vUy~' NU~ and
s,t € T. Soc 'aet = esdb~". But ¢ 'aet € UeT C Band esdb™' € eTU~ C B—,
while BN B~ = T. Thus ¢ 'aet € T and so ¢ 'ae € T. But then ¢~ 'ae = e because
clacU.

However, if g¢ = e then g € B~ and hence c™'a € UN U~ = {1}. Similarly
b = d, and thus es = et as well. This proves that

m: (UunuU) x eT x (vUNU™v) — BuevB,

m(y, et,z) = yetz, is bijective. If char (k) = 0 then by Zariski’s Main Theorem, m is
an isomorphism. u

Proposition 3.3 Ifr = ueyv then

C,=UnnuU)Z,)(vUNU )
= (UunuU) x Z, x (vUNU v)

where Z, = | o, erT C T.

Proof
Cr= || WunuU)(eD)(UNU )
ueveC,
=(Uun uU)( |_| ezT) wUnuv)
ICl,
So apply Proposition 3.2. ]

Proposition 3.4 Z, C T is a subvariety isomorphic to k'™ where i(u) = |I,|.

Proof We may assume here that u = 1, so that Z; = | |,~ge;T. Any other Z, is a
T-orbit closure of Z; of the required dimension.

By the proof of Proposition 2.1 X can be obtained from the reductive monoid M
whose polyhedral root system is (Z, @, C,) where Z = X(T)@®7Z and C), is the smallest
normal cone of Z containing { (u*(A),1) | w € W}. We may also assume that
(Z,®,C)) is integral in the sense of [11, Definition 2.1]. If T} = T x k* C G(M) =
G x k* is the maximal torus of G(M) corresponding to T C G, then 771(Z;) =
{x € Ty | xey, # 0}, where 7: M \ 0 — X is the canonical projection. One checks
that

0(x1(2) = KCI1/x]

where x = dA (multiplicative notation) corresponds to (1,A) € Z = X(T) & Z.
(So 6: T x k* — k* is the projection). Now if s, € S then s,(x) = aky for
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some k > 0, since A is regular. So s,(X\)x ™' = a™* € O(77(Z))). Thusa™! €
O(7=1(Z,)) since O(7~'(Z))) is integrally closed in O(T x k*). It follows that
o(r ' (2z)) = kleg ', ..., a; ", x, x "' since Gis of adjoint type and C), is integral.
Thus O(Z;) = k[afl, cee a[l]. Here / is the rank of G. [ |

Theorem 3.5 Letr = ueyv € R,. Then there is a bijective morphism
m: k" — C,
where n, = {(wy) — £(u) +i(u) + £(v). Here wy € W is the longest element, so that

Uwp) = |D7].

Proof We have from Propositions 3.3 and 3.4 that dim(C,) = dim(Uu N uU) +
dim(Z,) + dim(vU N U~ v). One checks easily that dim(Uu N uU) = £(wy) — £(u)
and that dim(vU N U~ v) = £(v). Also, from Proposition 3.4 dim(Z,,) = i(u). [ |

We now consider the cell decomposition for X; = Ge;G. Recall from [4] that
X; is a smooth, spherical G x G-subvariety of X and therefore must have a B x B-
equivariant cell decomposition of its own. This is straightforward since X7*T C X;.
Givenr € R; and I C Srecall that

C]J = Cr ﬂXI

Clearly, X; = | | Cr,. But we can say more.

reR;

Theorem 3.6 Let r = ueyv € Ry. Then there is a bijective morphism
m: k" — Cp,

where ny, = £(wy) — L(u) + |[I N L,| + £(v).

Proof By inspection C;, = |—|/CmIU BuejvB and so C;, = (Uu N uU)(Z;,)
(vU N U~v) where Z;, = U}leu e;T. So the proof proceeds as in 3.4 and 3.5.
- [

Remark 3.7 We have defined C, via 3.1. However there is a direct definition in terms
of the monoid M. Let r € Ry. Then we can write r = er for some unique, rank-one
idempotent e € E;(R) = E(T) N R;. It turns out that if

C,={y € M| eBy = eBey C rB}

then C, = C, /k*.
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4 Betti Numbers of X;

If Y is a smooth projective algebraic variety, then it is of interest to calculate the Betti
numbers of Y,

Bi(Y) = dimg(H'(Y; F))

for some appropriate (Weil) cohomology theory. It is well known that one can calcu-
late 3;(Y') using the Weil zeta function of any smooth reduction of Y to the algebraic
closure of a finite field. If further, Y has a cell decomposition into affine spaces then
we obtain

the number of cells of dimension i/2, i even

filY) = i odd.

b

In our situation we do not yet know that our cells are affine spaces (unless char (k)
= 0), but the bijection of Theorem 3.6 will remain a bijection after suitable reduction
to a finite field. Let

P(X,t) =Y (1) B;(0¢

i>0

be the Poincaré polynomial of X.

Theorem 4.1
P(X,, 1) = ( Z tz(f(wo)—e(u>+|1mu)) (Z tzé(v))
uew veW
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