An Explicit Cell Decomposition of the Wonderful Compactification of a Semisimple Algebraic Group

Lex E. Renner

Abstract. We determine an explicit cell decomposition of the wonderful compactification of a semisimple algebraic group. To do this we first identify the $B \times B$-orbits using the generalized Bruhat decomposition of a reductive monoid. From there we show how each cell is made up from $B \times B$ orbits.

1 Introduction

The most commonly studied cell decompositions in algebraic geometry are the ones obtained by the method of [1]. If $S=k^{*}$ acts on a smooth complete variety X with finite fixed point set $F \subseteq X$, then $X=\bigsqcup_{\alpha \in F} C_{\alpha}$ where $C_{\alpha}=\left\{x \in X \mid \lim _{t \rightarrow 0} t x\right.$ $=\alpha\}$. Furthermore, each C_{α} is isomorphic to an affine space. If further, a semisimple group G acts on X extending the action of S, we may assume that each C_{α} is stable under the action of some Borel subgroup B of G with $S \subseteq B$. Thus, each C_{α} is a union of B-orbits.

In case X is the (two-sided) wonderful compactification of a semisimple group G, the above procedure has been carried out in [4]. In fact, they obtain results for a more general class of wonderful compactifications. Let G be a semisimple algebraic group, and suppose $\sigma: G \rightarrow G$ is an involution (so that $\sigma \circ \sigma=\mathrm{id}_{G}$) with $H=$ $\{x \in G \mid \sigma(x)=x\}$. The wonderful compactification of G / H (according to [4]) is the unique normal G-equivariant compactification X of G / H obtained by considering an irreducible representation $\rho: G \rightarrow G \ell(V)$ of G with $\operatorname{dim}\left(V^{H}\right)=1$ and with highest weight in general position. Then let $h \in V^{H}$ be nonzero and define

$$
X=\overline{\rho(G)[h]} \subseteq \mathbb{P}(V)
$$

the Zariski closure of the orbit of [h]. (See [4, Section 2] for details.) In this paper we restrict our attention to the special case where the group is $G \times G$ and $\sigma: G \times G \rightarrow$ $G \times G$ is given by $\sigma(g, h)=(h, g)$. It is easy to see that, in this case, the $G \times G$-variety $(G \times G) / H$ can be canonically identified with G with its two-sided G-action.

Much important work has been accomplished since [4] appeared. See [13], [12], [2], [5]. In particular Brion [2] obtains much information about the structure of X. Among other things, he finds a $B B$-decomposition $X=\bigsqcup_{x \in F} C_{x}$ from which he then

[^0]obtains a basis of the Chow ring of X of the form $\{\overline{B y(x) B}\}_{x \in F}$. He also identifies explicitly how each cell C_{x} is made up from $B \times B$-orbits.

In this paper, we identify an explicit cell decomposition of X. Our approach is somewhat different than [2]. While Brion uses the combinatorics of spherical embeddings, we use the results of [9] to construct our cells directly from $B \times B$-orbits on a reductive monoid. We first identify the $B \times B$-orbits using the results of [9] on generalized Bruhat decomposition for reductive monoids. Indeed, there is a precise monoid analogue R of the Weyl group W, so that $X=\bigsqcup_{x \in R} B x B$. We then define for each "rank-one" element $r \in R$, a cell

$$
C_{r}=\bigsqcup_{x \in \mathfrak{C}_{r}} B x B \cong K^{n_{r}}
$$

so that $X=\bigsqcup_{r \in R_{1}} C_{r}$. In particular, each \mathcal{C}_{r} is defined using standard Weyl group combinatorics. These cells are canonically indexed by the fixed points of $T \times T$ on X. Our method also yields an explicit cell decomposition for each $G \times G$-orbit.

It appears that my cell decomposition agrees with the one of [2] (although we have not actually verified this). However, the monoid approach is sufficiently important to warrant a separate direct treatment. The interested reader should consult Brion's excellent paper for more information on the $B \times B$-orbit closures and the Chow ring for X.

To complete our results we give an explicit formula for the Poincaré polynomial of X_{I}.

2 Orbit Structure of X

In this section we assemble the relevant background information about the wonderful compactification of G.

Let G be a connected, semisimple group of adjoint type defined over the algebraically closed field k. The wonderful compactification X of G can be obtained as follows:

Let $G_{1}=G \times k^{*}$, and consider normal reductive monoids M with 0 and unit group $G_{1}[6,7]$. By the results of [11], this yields a systematic procedure for constructing two-sided compactifications of G. We can easily identify X as follows:

Let $\rho: G_{1} \rightarrow G \ell(V)$ be an irreducible, faithful representation such that $\rho(1, t)(v)=t v$ for all $t \in k^{*}, v \in V$. Define

$$
\begin{aligned}
M_{1} & =\overline{\rho\left(G_{1}\right)} \subseteq \operatorname{End}(V) \quad \text { and let } \\
M & =\text { the normalization of } M_{1}
\end{aligned}
$$

Assume also that the highest weight λ of $\rho \mid G$ is regular (i.e.: if $\lambda=\Sigma m_{i} \lambda_{i}$, where $\left\{\lambda_{i}\right\}$ is the set of fundamental dominant weights, then $m_{i}>0$ for each i). Define

$$
X=X_{\lambda}=(M \backslash\{0\}) / k^{*}
$$

We assume G is of adjoint type to ensure that X is smooth. See Proposition 3.4.

Proposition 2.1 X is independent of λ.

Proof Let $T \subseteq G$ be a maximal torus. By [10, Theorem 7.1.5], M is the unique, normal monoid with polyhedral root system $\left(Z, \Phi, C_{\lambda}\right)$ where $C_{\lambda} \subseteq X(T) \oplus \mathbb{Z}=Z$ is the smallest normal cone containing $\left\{\left(w^{*}(\lambda), 1\right) \mid w \in W\right\}$. Here $w^{*}(\lambda)(t)=$ $\lambda\left(w t w^{-1}\right)$ for $t \in T \times k^{*}$. If λ^{\prime} is another regular, dominant weight, one checks that $\left(Z, \phi, C_{\lambda}\right)$ and $\left(Z, \phi, C_{\lambda^{\prime}}\right)$ are projectively equivalent polyhedral root systems in the sense of [11, Definition 3.5]. Thus, by [11, Theorem 3.7], $X_{\lambda} \cong X_{\lambda^{\prime}}$ as $G \times G$-varieties.

Proposition 2.2 X is the wonderful compactification of [4].

Proof By our definition, $X=\overline{G \cdot \tilde{h}}$ where $\tilde{h} \in \mathbb{P}(\operatorname{End}(V))$ is the class of $1_{V} \in$ $\operatorname{End}(V) \cong V \otimes V^{*}$. But this corresponds to the construction of [4] via their Proposition 1.7 and Section 2.1. Indeed $H=\{(g, g)\} \subseteq G \times G$ (so my \tilde{h} above is fixed by H under the action $\left.G \times G \times \operatorname{End}(V) \rightarrow \operatorname{End}(V),(g, y)(x)=g x y^{-1}\right)$. Thus, my \tilde{h} corresponds to their \tilde{h}. Notice also that their λ corresponds to my $\lambda \otimes \lambda^{*}$.

We now describe the orbit structure of X. We use the results of [8], [9], [10], along with our description above of X as $(M \backslash 0) / k^{*}$.

Let T be a maximal torus of G contained in the Borel subgroup B of G. Let Δ be the set of positive simple roots and let $S=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$ be the set of simple reflections. For $I \subseteq \Delta$ or S we let P_{I} be the corresponding standard parabolic.

Proposition 2.3 $X=\bigsqcup_{I \subseteq S} G e_{I} G$ where $e_{I} \in \bar{T}$ is a representative of the unique T-orbit with $P_{I}=\left\{g \in G \mid e_{I} g \in G e_{I}\right\}$.

Proof By [9, Section 3.3.1], $M=\bigsqcup_{e \in \Lambda} G e G$ where $\Lambda=\{e \in E(\bar{T}) \mid e B \subseteq B e\}$ and $E(\bar{T})=\left\{e \in \bar{T} \mid e^{2}=e\right\}$. But from [8, Theorem 4.16], $\Lambda \cong \mathcal{P}(S)=\{I \subseteq S\}$ via $e \leftrightarrow I$ where $e=e_{I}$, since for this $M, J_{0}=\phi$ because λ is a regular weight. The statement about P_{I} follows from [8, Corollary 4.12].

Let $\Lambda=\left\{e_{I} \mid I \subseteq S\right\}$. Define

$$
R=\overline{N_{G}(T)} / \sim
$$

where $x \sim y$ if $x T=y T$. Notice that for $x \in \overline{N_{G}(T)}, T x=x T$.
Proposition 2.4 $X=\bigsqcup_{x \in R} B x B$.

Proof See [9, Corollary 5.8]. R above corresponds to $\mathcal{R} \backslash\{0\}$ of [9].

Notice that

$$
R=\bigsqcup_{I \subseteq S} W e_{I} W
$$

so that also

$$
G e_{I} G=\bigsqcup_{x \in W e_{I} W} B x B .
$$

Here W is the Weyl group of G relative to T. It turns out that there is a normal form for the elements of R.

Proposition 2.5 Let $x \in R$. Then there exist unique $u, v \in W$, and $e_{I} \in \Lambda$ such that
i) $x=u e_{I} v$, and
ii) $I \subseteq\{s \in S \mid \ell(u s)>\ell(u)\}=I_{u}$.

Proof This follows from the results of [6], but we indicate a direct proof.
We can write $x=w e_{I} y$ for some $I \subseteq S$ and some $w, y \in W$. By Proposition 2.3, I is unique. From well-known results about Coxeter groups we can write $w=u c$ where $c \in W_{I}$ and $\ell(u s)>\ell(u)$ for $s \in I$. Furthermore, u and c are unique. But $c e_{I}=e_{I} c$, so we can write $x=u e_{I} v$ where $v=c y$.

We refer to the decomposition $x=u e_{I} v$ as the normal form of x.
To obtain our cell decomposition of X, we first "solve" the corresponding problem in R. Define

$$
\begin{aligned}
R_{1} & =\{x \in R \mid T x=x T=x\} \\
& =W e_{\phi} W \cong W \times W
\end{aligned}
$$

the "rank-one" elements of R. Notice that $R_{1}=X^{T \times T}$. Not surprisingly, our cells are indexed by the elements of R_{1}. Define

$$
\varphi: R \rightarrow R_{1}
$$

by $\varphi(x)=u e_{\phi} v$ if $x=u e v$ is the normal form of x.
Definition 2.6 For $r=u e_{\phi} v \in R_{1}$, define

$$
\mathcal{C}_{r}=\varphi^{-1}(r)=\left\{x \in R \mid x=u e_{I} v, \text { normal form } I \subseteq I_{u}\right\} .
$$

So $R=\bigsqcup_{r \in R_{1}} \mathcal{C}_{r}$.

3 The Cells of X and X_{I}

Definition 3.1 Let $r \in R_{1}$. Define

$$
C_{r}=\bigsqcup_{x \in \mathfrak{C}_{r}} B x B
$$

For $I \subseteq S$ define

$$
C_{I, r}=C_{r} \cap X_{I}
$$

where $X_{I}=\overline{G e_{I} G}$.
We refer to C_{r} and $C_{I, r}$ as cells. In this section we determine the structure of C_{r} and $C_{I, r}$. In particular, we find that each of these cells is isomorphic to an affine space.

Let U be the unipotent radical of B, and U^{-}the unipotent radical of B^{-}.
Proposition 3.2 Let $x \in R$ and write $x=u e_{I} v$ in normal form. Then

$$
\begin{aligned}
B x B & =(U u \cap u U)\left(e_{I} T\right)\left(v U \cap U^{-} v\right) \\
& \cong_{0}(U u \cap u U) \times e_{I} T \times\left(v U \cap U^{-} v\right)
\end{aligned}
$$

where \cong_{0} means isomorphism if char $(k)=0$, and bijection if char $(k)>0$.

Proof Let $e=e_{I}$ and notice that $e B=e C_{B}(e)=C_{B}(e) e$, since $e B \subseteq B e$. Here $C_{B}(e)=\{y \in B \mid y e=e y\}$. Notice also that $v B v^{-1}=\left(v B v^{-1} \cap B\right)\left(v B v^{-1} \cap U^{-}\right)$ (direct product of varieties) where B^{-}is the Borel subgroup opposite to B relative to T. So

$$
\begin{aligned}
e v B v^{-1} & =e\left(v B v^{-1} \cap B\right)\left(v B v^{-1} \cap U^{-}\right) \\
& =e V\left(v B v^{-1} \cap U^{-}\right) \\
& =V e\left(v B v^{-1} \cap U^{-}\right)
\end{aligned}
$$

where $V \subseteq C_{B}(e)$ is some connected subgroup with $T \subseteq V$. Indeed, $e\left(v B v^{-1} \cap B\right) \subseteq$ $e B=e C_{G}(e)$. So by [7, Theorem 6.1(iii)] we can take $V=v B v^{-1} \cap C_{G}(e)$. So we get

$$
\begin{equation*}
e v B=V e\left(v B \cap U^{-} v\right) \tag{*}
\end{equation*}
$$

We now look at Bue. Recall first that $\ell(u s)>\ell(u)$ for any $s \in I$. By [1, Proposition 2.3.3] this is the same as saying $u C_{B}\left(e_{I}\right) u^{-1} \subseteq B$, or equivalently,

$$
\begin{equation*}
C_{B}\left(e_{I}\right) \subseteq u^{-1} B u \cap B \tag{**}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
u^{-1} B u e & =\left(u^{-1} B u\right)\left(u^{-1} B u \cap U^{-}\right) e \\
& =\left(u^{-1} B u \cap B\right) e
\end{aligned}
$$

since $\left(u^{-1} B u \cap U^{-}\right) e=e$. Indeed, if $U_{\alpha} \subseteq u^{-1} B u \cap U^{-}$then $U_{\alpha} \nsubseteq C_{G}\left(e_{I}\right)$ since if $U_{\alpha} \subseteq C_{G}\left(e_{I}\right)$ then by $(* *)$ above $C_{B}\left(e_{I}\right) \varsubsetneqq C_{u^{-1} B u}\left(e_{I}\right)$ which is impossible for dimension reasons. Therefore,
$(* * *) \quad B u e=(B u \cap u B) e$.
So using $(*)$ and $(* * *)$ we obtain

$$
u^{-1} B u e v B=\left(u^{-1} B u \cap B\right) e V\left(v B \cap U^{-} v\right)=\left(u^{-1} B u \cap B\right) e\left(v B \cap U^{-} v\right)
$$

since by $(* *) V \subseteq C_{B}(e) \subseteq u^{-1} B u \cap B$. Thus, $B u e v B=(B u \cap u B) e\left(v B \cap U^{-} v\right)$ and so

$$
B u e v B=(U u \cap u U)(e T)\left(v U \cap U^{-} v\right) .
$$

Now suppose that aetb $=$ cesd where $a, c \in u^{-1} U u \cap U$ and $b, d \in v U v^{-1} \cap U^{-}$and $s, t \in T$. So c^{-1} aet $=e s d b^{-1}$. But c^{-1} aet $\in U e T \subseteq \bar{B}$ and $e s d b^{-1} \in e T U^{-} \subseteq \overline{B^{-}}$, while $\bar{B} \cap \overline{B^{-}}=\bar{T}$. Thus c^{-1} aet $\in \bar{T}$ and so $c^{-1} a e \bar{\in} \bar{T}$. But then $c^{-1} a e=e$ because $c^{-1} a \in U$.

However, if $g e=e$ then $g \in B^{-}$and hence $c^{-1} a \in U \cap U^{-}=\{1\}$. Similarly $b=d$, and thus es $=e t$ as well. This proves that

$$
m:(U u \cap u U) \times e T \times\left(v U \cap U^{-} v\right) \rightarrow B u e v B
$$

$m(y, e t, z)=y e t z$, is bijective. If char $(k)=0$ then by Zariski's Main Theorem, m is an isomorphism.

Proposition 3.3 If $r=u e_{\phi} v$ then

$$
\begin{aligned}
C_{r} & =(U n \cap u U)\left(Z_{u}\right)\left(v U \cap U^{-} v\right) \\
& \cong_{0}(U u \cap u U) \times Z_{u} \times\left(v U \cap U^{-} v\right)
\end{aligned}
$$

where $Z_{u}=\bigsqcup_{I \subseteq I_{u}} e_{I} T \subseteq \bar{T}$.

Proof

$$
\begin{aligned}
C_{r} & =\bigsqcup_{u e_{I} v \in \mathcal{C}_{r}}(U u \cap u U)\left(e_{I} T\right)\left(v U \cap U^{-} v\right) \\
& =(U u \cap u U)\left(\bigsqcup_{I \subseteq I_{u}} e_{I} T\right)\left(v U \cap U^{-} v\right)
\end{aligned}
$$

So apply Proposition 3.2.
Proposition 3.4 $Z_{u} \subseteq \bar{T}$ is a subvariety isomorphic to $k^{i(u)}$ where $i(u)=\left|I_{u}\right|$.

Proof We may assume here that $u=1$, so that $Z_{1}=\bigsqcup_{I \subseteq S} e_{I} T$. Any other Z_{u} is a T-orbit closure of Z_{1} of the required dimension.

By the proof of Proposition 2.1 X can be obtained from the reductive monoid M whose polyhedral root system is $\left(Z, \Phi, C_{\lambda}\right)$ where $Z=X(T) \oplus \mathbb{Z}$ and C_{λ} is the smallest normal cone of Z containing $\left\{\left(u^{*}(\lambda), 1\right) \mid w \in W\right\}$. We may also assume that $\left(Z, \Phi, C_{\lambda}\right)$ is integral in the sense of [11, Definition 2.1]. If $T_{1}=T \times k^{*} \subseteq G(M)=$ $G \times k^{*}$ is the maximal torus of $G(M)$ corresponding to $T \subseteq G$, then $\pi^{-1}\left(Z_{1}\right)=$ $\left\{x \in \overline{T_{1}} \mid x e_{\phi} \neq 0\right\}$, where $\pi: M \backslash 0 \rightarrow X$ is the canonical projection. One checks that

$$
\mathcal{O}\left(\pi^{-1}\left(Z_{1}\right)\right)=k\left[C_{\lambda}\right][1 / \chi]
$$

where $\chi=\delta \lambda$ (multiplicative notation) corresponds to $(1, \lambda) \in Z=X(T) \oplus \mathbb{Z}$. (So $\delta: T \times k^{*} \rightarrow k^{*}$ is the projection). Now if $s_{\alpha} \in S$ then $s_{\alpha}(\chi)=\alpha^{-k} \chi$ for
some $k>0$, since λ is regular. So $s_{\alpha}(\chi) \chi^{-1}=\alpha^{-k} \in \mathcal{O}\left(\pi^{-1}\left(Z_{1}\right)\right)$. Thus $\alpha^{-1} \in$ $\mathcal{O}\left(\pi^{-1}\left(Z_{1}\right)\right)$ since $\mathcal{O}\left(\pi^{-1}\left(Z_{1}\right)\right)$ is integrally closed in $\mathcal{O}\left(T \times k^{*}\right)$. It follows that $\mathcal{O}\left(\pi^{-1}\left(Z_{1}\right)\right)=k\left[\alpha_{1}^{-1}, \ldots, \alpha_{\ell}^{-1}, \chi, \chi^{-1}\right]$ since G is of adjoint type and C_{λ} is integral. Thus $\mathcal{O}\left(Z_{1}\right)=k\left[\alpha_{1}^{-1}, \ldots, \alpha_{\ell}^{-1}\right]$. Here ℓ is the rank of G.

Theorem 3.5 Let $r=u e_{\phi} v \in R_{1}$. Then there is a bijective morphism

$$
m: k^{n_{r}} \rightarrow C_{r}
$$

where $n_{r}=\ell\left(w_{0}\right)-\ell(u)+i(u)+\ell(v)$. Here $w_{0} \in W$ is the longest element, so that $\ell\left(w_{0}\right)=\left|\Phi^{+}\right|$.

Proof We have from Propositions 3.3 and 3.4 that $\operatorname{dim}\left(C_{r}\right)=\operatorname{dim}(U u \cap u U)+$ $\operatorname{dim}\left(Z_{u}\right)+\operatorname{dim}\left(v U \cap U^{-} v\right)$. One checks easily that $\operatorname{dim}(U u \cap u U)=\ell\left(w_{0}\right)-\ell(u)$ and that $\operatorname{dim}\left(v U \cap U^{-} v\right)=\ell(v)$. Also, from Proposition $3.4 \operatorname{dim}\left(Z_{u}\right)=i(u)$.

We now consider the cell decomposition for $X_{I}=\overline{G e_{I} G}$. Recall from [4] that X_{I} is a smooth, spherical $G \times G$-subvariety of X and therefore must have a $B \times B$ equivariant cell decomposition of its own. This is straightforward since $X^{T \times T} \subseteq X_{I}$. Given $r \in R_{1}$ and $I \subseteq S$ recall that

$$
C_{I, r}=C_{r} \cap X_{I}
$$

Clearly, $X_{I}=\bigsqcup_{r \in R_{1}} C_{I, r}$. But we can say more.
Theorem 3.6 Let $r=u e_{\phi} v \in R_{1}$. Then there is a bijective morphism

$$
m: k^{n_{I, r}} \rightarrow C_{I, r}
$$

where $n_{I, r}=\ell\left(w_{0}\right)-\ell(u)+\left|I \cap I_{u}\right|+\ell(v)$.

Proof By inspection $C_{I, r}=\bigsqcup_{J \subseteq I \cap I_{u}} B u e_{J} v B$ and so $C_{I, r}=(U u \cap u U)\left(Z_{I, u}\right)$ $\left(v U \cap U^{-} v\right)$ where $Z_{I, u}=\bigsqcup_{J \subseteq I \cap I_{u}} e_{J} T$. So the proof proceeds as in 3.4 and 3.5.

Remark 3.7 We have defined C_{r} via 3.1. However there is a direct definition in terms of the monoid M. Let $r \in R_{1}$. Then we can write $r=e r$ for some unique, rank-one idempotent $e \in E_{1}(R)=E(\bar{T}) \cap R_{1}$. It turns out that if

$$
\tilde{C}_{r}=\{y \in M \mid e B y=e B e y \subseteq r B\}
$$

then $C_{r}=\tilde{C}_{r} / k^{*}$.

4 Betti Numbers of X_{I}

If Y is a smooth projective algebraic variety, then it is of interest to calculate the Betti numbers of Y,

$$
\beta_{i}(Y)=\operatorname{dim}_{F}\left(H^{i}(Y ; F)\right),
$$

for some appropriate (Weil) cohomology theory. It is well known that one can calculate $\beta_{i}(Y)$ using the Weil zeta function of any smooth reduction of Y to the algebraic closure of a finite field. If further, Y has a cell decomposition into affine spaces then we obtain

$$
\beta_{i}(Y)= \begin{cases}\text { the number of cells of dimension } i / 2, & i \text { even } \\ 0, & i \text { odd. }\end{cases}
$$

In our situation we do not yet know that our cells are affine spaces (unless char (k) $=0$), but the bijection of Theorem 3.6 will remain a bijection after suitable reduction to a finite field. Let

$$
P(X, t)=\sum_{i \geq 0}(-1)^{i} \beta_{i}(X) t^{i}
$$

be the Poincaré polynomial of X.

Theorem 4.1

$$
P\left(X_{I}, t\right)=\left(\sum_{u \in W} t^{2\left(\ell\left(w_{0}\right)-\ell(u)+\left|I_{u} \cap I\right|\right)}\right)\left(\sum_{v \in W} t^{2 \ell(v)}\right)
$$

References

[1] A. Bialynicki-Birula, Some theorems on actions of algebraic groups. Ann. of Math. 98(1973), 480-497.
[2] M. Brion, The behaviour at infinity of the Bruhat decomposition. Comment. Math. Helv. 73(1998), 137-174.
[3] R. Carter, Finite groups of Lie type; conjugacy classes and complex characters. John Wiley and Sons New York, 1985.
[4] C. DeConcini and C. Procesi, Complete symmetric varieties. Lecture Notes in Math. 996, Springer, 1973, 1-44.
[5] C. DeConcini and T. A. Springer, Compactification of symmetric varieties. J. Transform. Groups 4(1999), 273-300.
[6] E. A. Pennell, M. S. Putcha and L. E. Renner, Analogue of the Bruhat-Chevalley order for reductive monoids. J. Algebra 196(1997), 339-368.
[7] M. S. Putcha, Linear algebraic monoids. Cambridge University Press Cambridge, UK, 1988.
[8] M. S. Putcha and L. E. Renner, The system of idempotents and the lattice of \mathcal{D}-classes of reductive algebraic monoids. J. Algebra 116(1988), 385-399.
[9] L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids. J. Algebra 101(1986), 303-338.
[10] \longrightarrow, Classification of semisimple algebraic monoids. Trans. Amer. Math. Soc. 292(1985), 193-223.
[11] \longrightarrow, Classification of semisimple varieties. J. Algebra 122(1989), 275-287.
[12] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties. Geom. Dedicata 35(1990), 389-436.
[13] E. Strickland, A vanishing theorem for group compactifications. Math. Ann. 277(1987), 165-171.

Department of Mathematics
The University of Western Ontario
London, Ontario
N6A 5B7

[^0]: Received by the editors March 5, 2001; revised October 14, 2001.
 AMS subject classification: 14L30, 14M17, 20 M 17.
 (C)Canadian Mathematical Society 2003.

