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Abstract
Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of
n-dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability
must be (𝑚 − 1)-dimensional, if 𝑚 − 1 ≤ 𝑛. In particular, the maximum noise stability of a partition of m sets in
R
𝑛 of fixed Gaussian volumes is constant for all n satisfying 𝑛 ≥ 𝑚 − 1. From this result, we obtain:

(i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters 𝜌
satisfying 0 < 𝜌 < 𝜌0, where 𝜌0 > 0 is a fixed constant (that does not depend on the dimension n), when each
candidate has an equal chance of winning.

(ii) A variational proof of Borell’s inequality (corresponding to the case 𝑚 = 2).

The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i)
is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed
𝜌, with the case 𝜌 → 𝐿1− being solved recently. Item (i) is also the first evidence for the optimality of the
Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the
assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known
to be false.
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1. Introduction

1.1. An Informal Introduction

A voting method or social choice function with m candidates and n voters is a function

𝑓 : {1, . . . , 𝑚}𝑛 → {1, . . . , 𝑚}.
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From the social choice theory perspective, the input of the function f is a list of votes of n people who are
choosing between m candidates. Each of the m candidates is labelled by the integers 1, . . . , 𝑚. If the votes
are 𝑥 ∈ {1, . . . , 𝑚}𝑛, then 𝑥𝑖 denotes the vote of person 𝑖 ∈ {1, . . . , 𝑛} for candidate 𝑥𝑖 ∈ {1, . . . , 𝑚}.
Given the votes 𝑥 ∈ {1, . . . , 𝑚}𝑛, 𝑓 (𝑥) is interpreted as the winner of the election.

It is both natural and desirable to find a voting method whose output is most likely to be unchanged
after votes are randomly altered. One could imagine that malicious third parties or miscounting of votes
might cause random vote changes, so we desire a voting method f whose output is stable to such changes.
In addition to voting motivations, finding a voting method that is stable to noise has applications to the
unique games conjecture [KKMO07, MOO10, KM16], to semidefinite programming algorithms such
as MAX-CUT [KKMO07, IM12], to learning theory [FGRW12], etc. For some surveys on this and
related topics, see [O’D, Kho, Hei20].

The output of a constant function f is never altered by changes to the votes. Also, if the function
f only depends on one of its n inputs, then the output of f is rarely changed by independent random
changes to each of the votes. In these cases, the function f is rather ‘undemocratic’ from the perspective
of social choice theory. In the case of a constant function, the outcome of the election does not depend
at all on the votes. In the case of a function that only depends on one of its inputs, the outcome of the
election only depends on one voter (so f is called a dictatorship function).

Among ‘democratic’ voting methods, it was conjectured in [KKMO07] and proven in [MOO10] that
the majority voting method is the voting method that best preserves the outcome of the election. The
following is an informal statement of the main result of [MOO10].

Theorem 1.1 (Majority Is Stablest, Informal Version [MOO10, Theorem 4.4]). Suppose that we run
an election with a large number n of voters and 𝑚 = 2 candidates. We make the following assumptions
about voter behavior and about the election method.

◦ Voters cast their votes randomly and independently, with equal probability of voting for either
candidate.

◦ Each voter has a small influence on the outcome of the election. (That is, all influences from
Equation 5 are small for the voting method.)

◦ Each candidate has an equal chance of winning the election.

Under these assumptions, the majority function is the voting method that best preserves the outcome of
the election, when votes have been corrupted independently each with probability less than 1/2.

We say a vote 𝑥𝑖 ∈ {1, 2} is corrupted with probability 0 < 𝛿 < 1 when, with probability 𝛿, the vote 𝑥𝑖
is changed to a uniformly random element of {1, 2}, and with probability 1− 𝛿, the vote 𝑥𝑖 is unchanged.

For a formal statement of Theorem 1.1, see Theorem 1.8 below.
The primary interest of the authors of [KKMO07] in Theorem 1.1 was proving optimal hardness of

approximation for the MAX-CUT problem. In the MAX-CUT problem, we are given a finite undirected
graph on n vertices, and the objective of the problem is to find a partition of the vertices of the graph
into two sets that maximises the number of edges going between the two sets. The MAX-CUT problem
is MAX-SNP hard, i.e. if 𝑃 ≠ 𝑁𝑃, there is no polynomial time (in n) approximation scheme for this
problem. Nevertheless, there is a randomised polynomial time algorithm [GW95] that achieves, in
expectation, at least .87856 . . . times the maximum value of the MAX-CUT problem. This algorithm
uses semidefinite programming. Also, the exact expression for the .87856 . . . constant is

min
−1≤𝜌≤1

2
𝜋

arccos(𝜌)
1 − 𝜌

= .87856 . . .

The authors of [KKMO07] showed that, if the Unique Games Conjecture is true, then Theorem 1.1
implies that the Goemans-Williamson algorithm’s .87856 . . . constant of approximation cannot be
increased. Assuming the validity of the Unique Games Conjecture is a fairly standard in complexity
theory, though the conjecture remains open. See [O’D, Kho] and the references therein for more
discussion on this conjecture, and see [KMS18] for some recent significant progress.
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Theorem 1.1 (i.e. Theorem 1.8) gives a rather definitive statement on the two candidate voting method
that is most stable to corruption of votes. Moreover, the applcation of Theorem 1.1 gives a complete
understanding of the optimal algorithm for solving MAX-CUT, assuming the Unique Games Conjecture.
Unfortunately, the proof of Theorem 1.1 says nothing about elections with 𝑚 > 2 candidates. Moreover,
Theorem 1.1 fails to prove optimality of the Frieze-Jerrum [FJ95] semidefinite programming algorithm
for the MAX-m-CUT problem. In the MAX-m-CUT problem, we are given a finite undirected graph
on n vertices, and the objective of the problem is to find a partition of the vertices of the graph into m
sets that maximises the number of edges going between the two sets. So, MAX-CUT is the same as
MAX-2-CUT.

In order to prove the optimality of the Frieze-Jerrum [FJ95] semidefinite programming algorithm for
the MAX-m-CUT problem, one would need an analogue of Theorem 1.1 for 𝑚 > 2 voters, where the
plurality function replaces the majority function. For this reason, it was conjectured [KKMO07, IM12]
that the plurality function is the voting method that is most stable to independent, random vote corruption.

Conjecture 1.2 (Plurality Is Stablest, Informal Version [KKMO07], [IM12, Conjecture 1.9]). Suppose
we run an election with a large number n of voters and 𝑚 ≥ 3 candidates. We make the following
assumptions about voter behavior and about the election method.

◦ Voters cast their votes randomly, independently, with equal probability of voting for each candidate.
◦ Each voter has a small influence on the outcome of the election. (That is, all influences from

Equation 5 are small for the voting method.)
◦ Each candidate has an equal chance of winning the election.

Under these assumptions, the plurality function is the voting method that best preserves the outcome of
the election when votes have been corrupted independently each with probability less than 1/2.

We say that a vote 𝑥𝑖 ∈ {1, . . . , 𝑚} is corrupted with probability 0 < 𝛿 < 1 when, with probability
𝛿, the vote 𝑥𝑖 is changed to a uniformly random element of {1, . . . , 𝑚}, and with probability 1 − 𝛿, the
vote 𝑥𝑖 is unchanged.

In the case that the probability of vote corruption goes to zero, the first author proved
the first known case of Conjecture 1.2 in [Hei19], culminating in a series of previous works
[CM12, MR15, BBJ17, Hei17, MN18a, MN18b, Hei18]. Conjecture 1.2 for all fixed parameters
0 < 𝜌 < 1 was entirely open until now. Unlike the case of the majority is stablest (Theorem 1.8), Con-
jecture 1.2 cannot hold when the candidates have unequal chances of winning the election [HMN16].
This realization is an obstruction to proving Conjecture 1.2. It suggested that existing proof methods for
Theorem 1.8 cannot apply to Conjecture 1.2.

Nevertheless, we are able to overcome this obstruction in the present work.

Theorem 1.3 (Main Result, Informal Version). There exists 𝜀 > 0 such that Conjecture 1.2 holds for
𝑚 = 3 candidates, for all 𝑛 ≥ 1, when the probability of a single vote being corrupted is any number in
the range (1/2 − 𝜀, 1/2).

Theorem 1.3 is the first proven case of the plurality is stablest conjecture (Conjecture 1.2).

1.2. More Formal Introduction

Using a generalization of the central limit theorem known as the invariance principle [MOO10, IM12],
there is an equivalence between the discrete problem of Conjecture 1.2 and a continuous problem
known as the standard simplex conjecture [IM12]. For more details on this equivalence, see Section 7
of [IM12]. We begin by providing some background for the latter conjecture, stated in Conjecture 1.6.
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For any 𝑘 ≥ 1, we define the Gaussian density as

𝛾𝑘 (𝑥) : = (2𝜋)−𝑘/2𝑒−‖𝑥 ‖
2/2, 〈𝑥, 𝑦〉 : =

𝑛+1∑
𝑖=1

𝑥𝑖𝑦𝑖 , ‖𝑥‖2 : = 〈𝑥, 𝑥〉,

∀ 𝑥 = (𝑥1, . . . , 𝑥𝑛+1), 𝑦 = (𝑦1, . . . , 𝑦𝑛+1) ∈ R𝑛+1.

(1)

Let 𝑧1, . . . , 𝑧𝑚 ∈ R𝑛+1 be the vertices of a regular simplex in R𝑛+1 centred at the origin. For any
1 ≤ 𝑖 ≤ 𝑚, define

Ω𝑖 : = {𝑥 ∈ R𝑛+1 : 〈𝑥, 𝑧𝑖〉 = max
1≤ 𝑗≤𝑚

〈𝑥, 𝑧 𝑗〉}. (2)

We refer to any sets satisfying (2) as cones over a regular simplex.
Let 𝑓 : R𝑛+1 → [0, 1] be measurable and let 𝜌 ∈ (−1, 1). Define the Ornstein–Uhlenbeck operator

with correlation 𝜌 applied to f by

𝑇𝜌 𝑓 (𝑥) : =
∫
R𝑛+1

𝑓 (𝑥𝜌 + 𝑦
√

1 − 𝜌2)𝛾𝑛+1 (𝑦) d𝑦

= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
∫
R𝑛+1

𝑓 (𝑦)𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦, ∀𝑥 ∈ R𝑛+1.

(3)

𝑇𝜌 is a parametrization of the Ornstein–Uhlenbeck operator, which gives a fundamental solution of the
(Gaussian) heat equation

𝑑

𝑑𝜌
𝑇𝜌 𝑓 (𝑥) =

1
𝜌

(
− Δ𝑇𝜌 𝑓 (𝑥) + 〈𝑥,∇𝑇𝜌 𝑓 (𝑥)〉

)
, ∀ 𝑥 ∈ R𝑛+1. (4)

Here Δ : =
∑𝑛+1

𝑖=1 𝜕2/𝜕𝑥2
𝑖 and ∇ is the usual gradient on R𝑛+1. 𝑇𝜌 is not a semigroup, but it satisfies

𝑇𝜌1𝑇𝜌2 = 𝑇𝜌1𝜌2 for all 𝜌1, 𝜌2 ∈ (0, 1). We have chosen this definition because the usual Ornstein–
Uhlenbeck operator is only defined for 𝜌 ∈ [0, 1].
Definition 1.4 (Noise Stability). Let Ω ⊆ R𝑛+1 be measurable. Let 𝜌 ∈ (−1, 1). We define the noise
stability of the set Ω with correlation 𝜌 to be∫

R𝑛+1
1Ω (𝑥)𝑇𝜌1Ω (𝑥)𝛾𝑛+1 (𝑥) d𝑥 (3)

= (2𝜋)−(𝑛+1) (1 − 𝜌2)−(𝑛+1)/2
∫
Ω

∫
Ω
𝑒

−‖𝑥‖2−‖𝑦‖2+2𝜌〈𝑥,𝑦〉
2(1−𝜌2 ) d𝑥d𝑦.

Equivalently, if 𝑋 = (𝑋1, . . . , 𝑋𝑛+1), 𝑌 = (𝑌1, . . . , 𝑌𝑛+1) ∈ R𝑛+1 are (𝑛+1)-dimensional jointly Gaussian
distributed random vectors with E𝑋𝑖𝑌 𝑗 = 𝜌 · 1(𝑖= 𝑗) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛 + 1}, then∫

R𝑛+1
1Ω (𝑥)𝑇𝜌1Ω (𝑥)𝛾𝑛+1 (𝑥) d𝑥 = P((𝑋,𝑌 ) ∈ Ω ×Ω).

Maximising the noise stability of a Euclidean partition is the continuous analogue of finding a voting
method that is most stable to random corruption of votes among voting methods where each voter has
a small influence on the election’s outcome.
Problem 1.5 (Standard Simplex Problem [IM12]). Let 𝑚 ≥ 3. Fix 𝑎1, . . . , 𝑎𝑚 > 0 such that

∑𝑚
𝑖=1 𝑎𝑖 = 1.

Fix 𝜌 ∈ (0, 1). Find measurable sets Ω1, . . .Ω𝑚 ⊆ R𝑛+1 with ∪𝑚
𝑖=1Ω𝑖 = R𝑛+1 and 𝛾𝑛+1 (Ω𝑖) = 𝑎𝑖 for all

1 ≤ 𝑖 ≤ 𝑚 that maximise
𝑚∑
𝑖=1

∫
R𝑛+1

1Ω𝑖 (𝑥)𝑇𝜌1Ω𝑖 (𝑥)𝛾𝑛+1 (𝑥) d𝑥,

subject to the above constraints. (Here 𝛾𝑛+1 (Ω𝑖) : =
∫
Ω𝑖

𝛾𝑛+1 (𝑥) d𝑥 ∀ 1 ≤ 𝑖 ≤ 𝑚.)
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We can now state the continuous version of Conjecture 1.2.

Conjecture 1.6 (Standard Simplex Conjecture [IM12]). Let Ω1, . . .Ω𝑚 ⊆ R𝑛+1 maximise Problem 1.5.
Assume that 𝑚 − 1 ≤ 𝑛 + 1. Fix 𝜌 ∈ (0, 1). Let 𝑧1, . . . , 𝑧𝑚 ∈ R𝑛+1 be the vertices of a regular simplex in
R
𝑛+1 centred at the origin. Then ∃ 𝑤 ∈ R𝑛+1 such that, for all 1 ≤ 𝑖 ≤ 𝑚,

Ω𝑖 = 𝑤 + {𝑥 ∈ R𝑛+1 : 〈𝑥, 𝑧𝑖〉 = max
1≤ 𝑗≤𝑚

〈𝑥, 𝑧 𝑗〉}.

It is known that Conjecture 1.6 is false when (𝑎1, . . . , 𝑎𝑚) ≠ (1/𝑚, . . . , 1/𝑚) [HMN16]. In the
remaining case that 𝑎𝑖 = 1/𝑚 for all 1 ≤ 𝑖 ≤ 𝑚, it is assumed that 𝑤 = 0 in Conjecture 1.6.

For expositional simplicity, we separately address the case 𝜌 < 0 of Conjecture 1.6 in Section 7.

1.3. Plurality Is Stablest Conjecture

As previously mentioned, the standard simplex conjecture [IM12] stated in Conjecture 1.6 is essentially
equivalent to the plurality is stablest conjecture from Conjecture 1.2. After making several definitions,
we state a formal version of Conjecture 1.2 as Conjecture 1.7.

If 𝑔 : {1, . . . , 𝑚}𝑛 → R and 1 ≤ 𝑖 ≤ 𝑛, we denote

E(𝑔) : = 𝑚−𝑛
∑

𝜔∈{1,...,𝑚}𝑛
𝑔(𝜔)

E𝑖 (𝑔) (𝜔1, . . . , 𝜔𝑖−1, 𝜔𝑖+1, . . . , 𝜔𝑛) : = 𝑚−1
∑

𝜔𝑖 ∈{1,...,𝑚}
𝑔(𝜔1, . . . , 𝜔𝑛)

∀ (𝜔1, . . . , 𝜔𝑖−1, 𝜔𝑖+1, . . . , 𝜔𝑛) ∈ {1, . . . , 𝑚}𝑛.

Define also the ith influence of g – that is, the influence of the 𝑖𝑡ℎ voter of g – as

Inf𝑖 (𝑔) : = E[(𝑔 − E𝑖𝑔)2] . (5)

Let

Δ𝑚 : = {(𝑦1, . . . , 𝑦𝑚) ∈ R𝑚 : 𝑦1 + · · · + 𝑦𝑚 = 1, ∀1 ≤ 𝑖 ≤ 𝑚, 𝑦𝑖 ≥ 0}. (6)

If 𝑓 : {1, . . . , 𝑚}𝑛 → Δ𝑚, we denote the coordinates of f as 𝑓 = ( 𝑓1, . . . , 𝑓𝑚). For any 𝜔 ∈ Z𝑛, we
denote ‖𝜔‖0 as the number of nonzero coordinates of 𝜔. The noise stability of 𝑔 : {1, . . . , 𝑚}𝑛 → R
with parameter 𝜌 ∈ (−1, 1) is

𝑆𝜌𝑔 : =𝑚−𝑛
∑

𝜔∈{1,...,𝑚}𝑛
𝑔(𝜔)E𝜌𝑔(𝛿)

=𝑚−𝑛
∑

𝜔∈{1,...,𝑚}𝑛
𝑔(𝜔)

∑
𝜎∈{1,...,𝑚}𝑛

(
1 − (𝑚 − 1)𝜌

𝑚

)𝑛−‖𝜎−𝜔 ‖0
(

1 − 𝜌

𝑚

) ‖𝜎−𝜔 ‖0

𝑔(𝜎).

Equivalently, conditional on 𝜔, E𝜌𝑔(𝛿) is defined so that for all 1 ≤ 𝑖 ≤ 𝑛, 𝛿𝑖 = 𝜔𝑖 with probability
1−(𝑚−1)𝜌

𝑚 , and 𝛿𝑖 is equal to any of the other (𝑚 − 1) elements of {1, . . . , 𝑚} each with probability 1−𝜌
𝑚 ,

so that 𝛿1, . . . , 𝛿𝑛 are independent.
The noise stability of 𝑓 : {1, . . . , 𝑚}𝑛 → Δ𝑚 with parameter 𝜌 ∈ (−1, 1) is

𝑆𝜌 𝑓 : =
𝑚∑
𝑖=1

𝑆𝜌 𝑓𝑖 .
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Let 𝑚 ≥ 2, 𝑘 ≥ 3. For each 𝑗 ∈ {1, . . . , 𝑚}, let 𝑒 𝑗 = (0, . . . , 0, 1, 0, . . . , 0) ∈ R𝑚 be the jth unit
coordinate vector. Define the plurality function PLUR𝑚,𝑛 : {1, . . . , 𝑚}𝑛 → Δ𝑚 for m candidates and n
voters such that for all 𝜔 ∈ {1, . . . , 𝑚}𝑛.

PLUR𝑚,𝑛 (𝜔) : =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑒 𝑗 , if |{𝑖 ∈ {1, . . . , 𝑚} : 𝜔𝑖 = 𝑗}| > |{𝑖 ∈ {1, . . . , 𝑚} : 𝜔𝑖 = 𝑟}| ,

∀ 𝑟 ∈ {1, . . . , 𝑚} \ { 𝑗}
1
𝑚

∑𝑚
𝑖=1 𝑒𝑖 , otherwise.

We can now state the more formal version of Conjecture 1.2.

Conjecture 1.7 (Plurality Is Stablest, Discrete Version). For any 𝑚 ≥ 2, 𝜌 ∈ [0, 1], 𝜀 > 0, there exists
𝜏 > 0 such that if 𝑓 : {1, . . . , 𝑚}𝑛 → Δ𝑚 satisfies Inf𝑖 ( 𝑓 𝑗 ) ≤ 𝜏 for all 1 ≤ 𝑖 ≤ 𝑛 and for all 1 ≤ 𝑗 ≤ 𝑚,
and if E 𝑓 = 1

𝑚

∑𝑚
𝑖=1 𝑒𝑖 , then

𝑆𝜌 𝑓 ≤ lim
𝑛→∞

𝑆𝜌PLUR𝑚,𝑛 + 𝜀.

The main result of the present article (stated in Theorem 1.10) is ∃ 𝜌0 > 0 such that Conjecture 1.7
is true for 𝑚 = 3 for all 0 < 𝜌 < 𝜌0, for all 𝑛 ≥ 1. The only previously known case of Conjecture 1.7
was the following.

Theorem 1.8 (Majority Is Stablest, Formal, Biased Case [MOO10, Theorem 4.4]). Conjecture 1.7 is
true when 𝑚 = 2.

For an even more general version of Theorem 1.8, see [MOO10, Theorem 4.4]. In particular, the
assumption on E 𝑓 can be removed, though we know that this cannot be done for 𝑚 ≥ 3 [HMN16].

1.4. Our Contribution

The main structure theorem below implies that sets optimising noise stability in Problem 1.5 are inher-
ently low-dimensional. Though this statement might seem intuitively true, because many inequalities
involving the Gaussian measure have low-dimensional optimisers, this statement has not been proven
before. For example, Theorem 1.9 was listed as an open question in [DMN17, DMN18] and [GKR18].
Indeed, the lack of Theorem 1.9 has been one main obstruction to a solution of Conjectures 1.5 and 1.7.

Theorem 1.9 (Main Structure Theorem/Dimension Reduction). Fix 𝜌 ∈ (0, 1). Let𝑚 ≥ 2 with𝑚 ≤ 𝑛+2.
Let Ω1, . . .Ω𝑚 ⊆ R𝑛+1 maximise Problem 1.5. Then, after rotating the sets Ω1, . . .Ω𝑚 and applying
Lebesgue measure zero changes to these sets, there exist measurable sets Ω′

1, . . .Ω
′
𝑚 ⊆ R𝑚−1 such that

Ω𝑖 = Ω′
𝑖 × R𝑛−𝑚+2, ∀1 ≤ 𝑖 ≤ 𝑚.

In the case 𝑚 = 2, Theorem 1.9 is (almost) a variational proof of Borell’s inequality, because it
reduces Problem 1.5 to a 1-dimensional problem.

In the case 𝑚 = 3, Theorem 1.9 says that Conjecture 1.6 for arbitrary 𝑛 + 1 reduces to the case
𝑛 + 1 = 2, which was solved for small 𝜌 > 0 in [Hei14]. That is, Theorem 1.9 and the main result of
[Hei14] imply the following.

Theorem 1.10 (Main; Plurality Is Stablest for Three Candidates and Small Correlation). There exists
𝜌0 > 0 such that Conjecture 1.7 is true for 𝑚 = 3 and for all 0 < 𝜌 < 𝜌0.

In [Hei14] it is noted that 𝜌0 = 𝑒−20·31014
suffices in Theorem 1.10.

We can also prove a version of Theorem 1.9 when 𝜌 < 0. See Theorem 7.9 and the discussion in
Section 7. One difficulty in proving Theorem 1.9 directly for 𝜌 < 0 is that it is not a priori obvious that
a minimiser of Problem 1.5 exists in that case.
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1.5. Noninteractive Simulation of Correlated Distributions

As mentioned above, Theorem 1.9 answers a question in [DMN17, DMN18] and [GKR18]. Their
interest in Theorem 1.9 stems from the following problem. Let (𝑋,𝑌 ) ∈ R𝑛 be a random vector. Let
(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . be independent and identically distributed copies of (𝑋,𝑌 ). Suppose there are
two players A and B. Player A has access to 𝑋1, 𝑋2, . . . and player B has access to 𝑌1, 𝑌2, . . .. Without
communication, what joint distributions can players A and B jointly simulate? For details on the relation
of this problem to Theorem 1.9, see [DMN17, DMN18] and [GKR18].

1.6. Outline of the Proof of the Structure Theorem

In this section we outline the proof of Theorem 1.9 in the case 𝑚 = 2. The proof loosely follows that
of a corresponding statement [MR15, BBJ17] for the Gaussian surface area (which was then adapted
to multiple sets in [MN18a, MN18b, Hei18]), with a few key differences. For didactic purposes, we
will postpone a discussion of technical difficulties (such as existence and regularity of a maximiser) to
Subsection 2.1.

Fix 0 < 𝑎 < 1. Suppose there exists Ω,Ω𝑐 ⊆ R𝑛+1 are measurable sets maximizing∫
R𝑛+1

1Ω (𝑥)𝑇𝜌1Ω (𝑥)𝛾𝑛+1 (𝑥)𝑑𝑥,

subject to the constraint 𝛾𝑛+1 (Ω) = 𝑎. A first variation argument (Lemma 3.1) implies that Σ : = 𝜕Ω is
a level set of the Ornstein–Uhlenbeck operator applied to 1Ω. That is, there exists 𝑐 ∈ R such that

Σ = {𝑥 ∈ R𝑛+1 : 𝑇𝜌1Ω (𝑥) = 𝑐}. (7)

Because Σ is a level set, a vector perpendicular to the level set is also perpendicular to Σ. Denoting
𝑁 (𝑥) ∈ R𝑛+1 as the unit length exterior pointing normal vector to 𝑥 ∈ 𝜕Ω, (7) implies that

∇𝑇𝜌1Ω (𝑥) = −𝑁 (𝑥)‖∇𝑇𝜌1Ω (𝑥)‖. (8)

(It is not obvious that there must be a negative sign here, but it follows from examining the second
variation.) We now observe how the noise stability of Ω changes as the set is translated infinitesimally.
Fix 𝑣 ∈ R𝑛+1 and consider the variation of Ω induced by the constant vector field v. That is, let
Ψ : R𝑛+1 × (−1, 1) → R𝑛+1 such that Ψ(𝑥, 0) = 𝑥 and such that d

d𝑠 |𝑠=0Ψ(𝑥, 𝑠) = 𝑣 for all 𝑥 ∈ R𝑛+1, 𝑠 ∈
(−1, 1). For any 𝑠 ∈ (−1, 1), let Ω(𝑠) = Ψ(Ω, 𝑠). Note that Ω(0) = Ω. Denote 𝑓 (𝑥) : = 〈𝑣, 𝑁 (𝑥)〉 for all
𝑥 ∈ Σ. Then define

𝑆( 𝑓 ) (𝑥) : = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
∫
Σ
𝑓 (𝑦)𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦, ∀ 𝑥 ∈ Σ.

A second variation argument (Lemma 4.5) implies that, if f is Gaussian volume preserving – that is,∫
Σ
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥 = 0 – then

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

1Ω(𝑠) (𝑥)𝑇𝜌1Ω(𝑠) (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∫
Σ

(
𝑆( 𝑓 ) (𝑥) − ‖∇𝑇𝜌1Ω (𝑥)‖ 𝑓 (𝑥)

)
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

(9)

Somewhat unexpected, the function 𝑓 (𝑥) = 〈𝑣, 𝑁 (𝑥)〉 is almost an eigenfunction of the operator S (by
Lemma 5.1), in the sense that

𝑆( 𝑓 ) (𝑥) = 1
𝜌
𝑓 (𝑥)‖∇𝑇𝜌1Ω (𝑥)‖, ∀ 𝑥 ∈ Σ. (10)
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Equation (10) is the key fact used in the proof of the main theorem, Theorem 1.9. Equation (10) follows
from (8) and the divergence theorem (see Lemma 5.1 for a proof of (10).) Plugging (10) into (9),∫

Σ
〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0 =⇒ 1

2
d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

1Ω(𝑠) (𝑥)𝑇𝜌1Ω(𝑠) (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
( 1
𝜌
− 1

) ∫
Σ
〈𝑣, 𝑁 (𝑥)〉2

���∇𝑇𝜌1Ω (𝑥)
��� 𝛾𝑛+1 (𝑥) d𝑥.

(11)

The set

𝑉 : =
{
𝑣 ∈ R𝑛+1 :

∫
Σ
〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0

}
has dimension at least n, by the rank-nullity theorem. Because Ω maximises noise stability, the quantity
on the right of (11) must be nonpositive for all 𝑣 ∈ 𝑉 , implying that 𝑓 = 0 on Σ (except possibly on a set
of measure zero on Σ. One can show that

���∇𝑇𝜌1Ω (𝑥)
��� > 0 for all 𝑥 ∈ Σ. See Lemma 4.8.) That is, for

all 𝑣 ∈ 𝑉 , 〈𝑣, 𝑁 (𝑥)〉 = 0 for all 𝑥 ∈ Σ (except possibly on a set of measure zero on Σ). Because V has
dimension at least n, there exists a measurable discrete set Ω′ ⊆ R such that Ω = Ω′ × R𝑛 after rotating
Ω, concluding the proof of Theorem 1.9 in the case 𝑚 = 2.

Theorem 1.9 follows from the realization that all of the above steps still hold for arbitrary m in
Conjecture 1.5. In particular, the key lemma (10) still holds. See Lemmas 5.1 and 5.4.

Remark 1.11. In the case that we replace the Gaussian noise stability of Ω with the Euclidean heat
content ∫

R𝑛+1
1Ω (𝑥)𝑃𝑡1Ω (𝑥) d𝑥, ∀ 𝑡 > 0

𝑃𝑡 𝑓 (𝑥) : =
∫
R𝑛+1

𝑓 (𝑥 + 𝑦
√
𝑡)𝛾𝑛+1 (𝑦) d𝑦, ∀𝑥 ∈ R𝑛+1, ∀ 𝑓 : R𝑛+1 → [0, 1],

the corresponding operator 𝑆 from the second variation of the Euclidean heat content satisfies

𝑆( 𝑓 ) (𝑥) : = 𝑡 (𝑛+1)/2(2𝜋)−(𝑛+1)/2
∫
Σ
𝑓 (𝑦)𝑒−

‖𝑦−𝑥‖2
2𝑡 d𝑦, ∀ 𝑥 ∈ Σ,

and then the analogue of (9) for 𝑓 (𝑥) : = 〈𝑣, 𝑁 (𝑥)〉 is

𝑆( 𝑓 ) (𝑥) = 𝑓 (𝑥)‖∇𝑃𝑡1Ω (𝑥)‖, ∀ 𝑥 ∈ Σ,

so that the second variation corresponding to 𝑓 = 〈𝑣, 𝑁〉 is automatically zero. This fact is expected,
because a translation does not change the Euclidean heat content. However, this example demonstrates
that the key property of the above proof is exactly (10). More specifically, f is an ‘almost eigenfunction’
of S with ‘eigenvalue’ 1/𝜌 that is larger than 1. It seems plausible that other semigroups could also
satisfy an identity such as (10), because (10) seems related to hypercontractivity. We leave this open for
further research.

2. Existence and Regularity

2.1. Preliminaries and Notation

We say that Σ ⊆ R𝑛+1 is an n-dimensional 𝐶∞ manifold with boundary if Σ can be locally written
as the graph of a 𝐶∞ function on a relatively open subset of {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥𝑛 ≥ 0}. For any

https://doi.org/10.1017/fms.2021.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.56


Forum of Mathematics, Sigma 9

(𝑛 + 1)-dimensional 𝐶∞ manifold Ω ⊆ R𝑛+1 such that 𝜕Ω itself has a boundary, we denote

𝐶∞
0 (Ω;R𝑛+1) : = { 𝑓 : Ω → R𝑛+1 : 𝑓 ∈ 𝐶∞(Ω;R𝑛+1), 𝑓 (𝜕𝜕Ω) = 0,

∃ 𝑟 > 0, 𝑓 (Ω ∩ (𝐵(0, 𝑟))𝑐) = 0}.
(12)

We also denote 𝐶∞
0 (Ω) : = 𝐶∞

0 (Ω;R). We let div denote the divergence of a vector field in R𝑛+1. For
any 𝑟 > 0 and for any 𝑥 ∈ R𝑛+1, we let 𝐵(𝑥, 𝑟) : = {𝑦 ∈ R𝑛+1 : ‖𝑥 − 𝑦‖ ≤ 𝑟} be the closed Euclidean
ball of radius r centred at 𝑥 ∈ R𝑛+1. Here 𝜕𝜕Ω refers to the (𝑛 − 1)-dimensional boundary of Ω.

Definition 2.1 (Reduced Boundary). A measurable set Ω ⊆ R𝑛+1 has locally finite surface area if, for
any 𝑟 > 0,

sup
{∫

Ω
div(𝑋 (𝑥)) d𝑥 : 𝑋 ∈ 𝐶∞

0 (𝐵(0, 𝑟),R𝑛+1), sup
𝑥∈R𝑛+1

‖𝑋 (𝑥)‖ ≤ 1
}
< ∞.

Equivalently, Ω has locally finite surface area if ∇1Ω is a vector-valued Radon measure such that, for
any 𝑥 ∈ R𝑛+1, the total variation

‖∇1Ω‖ (𝐵(𝑥, 1)) : = sup
partitions

𝐶1 ,...,𝐶𝑚 of 𝐵 (𝑥,1)
𝑚≥1

𝑚∑
𝑖=1

‖∇1Ω (𝐶𝑖)‖

is finite [CL12]. If Ω ⊆ R𝑛+1 has locally finite surface area, we define the reduced boundary 𝜕∗Ω of
Ω to be the set of points 𝑥 ∈ R𝑛+1 such that

𝑁 (𝑥) : = − lim
𝑟→0+

∇1Ω (𝐵(𝑥, 𝑟))
‖∇1Ω‖ (𝐵(𝑥, 𝑟))

exists, and it is exactly one element of 𝑆𝑛 : = {𝑥 ∈ R𝑛+1 : ‖𝑥‖ = 1}.

The reduced boundary 𝜕∗Ω is a subset of the topological boundary 𝜕Ω. Also, 𝜕∗Ω and 𝜕Ω coincide
with the support of ∇1Ω, except for a set of n-dimensional Hausdorff measure zero.

Let Ω ⊆ R𝑛+1 be an (𝑛 + 1)-dimensional 𝐶2 submanifold with reduced boundary Σ : = 𝜕∗Ω. Let
𝑁 : Σ → 𝑆𝑛 be the unit exterior normal to Σ. Let 𝑋 ∈ 𝐶∞

0 (R𝑛+1,R𝑛+1). We write X in its components
as 𝑋 = (𝑋1, . . . , 𝑋𝑛+1), so that div𝑋 =

∑𝑛+1
𝑖=1

𝜕
𝜕𝑥𝑖

𝑋𝑖 . Let Ψ : R𝑛+1 × (−1, 1) → R𝑛+1 such that

Ψ(𝑥, 0) = 𝑥,
d
d𝑠

Ψ(𝑥, 𝑠) = 𝑋 (Ψ(𝑥, 𝑠)), ∀ 𝑥 ∈ R𝑛+1, 𝑠 ∈ (−1, 1). (13)

For any 𝑠 ∈ (−1, 1), let Ω(𝑠) : = Ψ(Ω, 𝑠). Note that Ω(0) = Ω. Let Σ (𝑠) : = 𝜕∗Ω(𝑠) , ∀ 𝑠 ∈ (−1, 1).

Definition 2.2. We call {Ω(𝑠) }𝑠∈(−1,1) as defined above a variation of Ω ⊆ R𝑛+1. We also call
{Σ (𝑠) }𝑠∈(−1,1) a variation of Σ = 𝜕∗Ω.

For any 𝑥 ∈ R𝑛+1 and any 𝑠 ∈ (−1, 1), define

𝑉 (𝑥, 𝑠) : =
∫
Ω(𝑠)

𝐺 (𝑥, 𝑦) d𝑦. (14)

Below, when appropriate, we let d𝑥 denote Lebesgue measure, restricted to a surface Σ ⊆ R𝑛+1.

Lemma 2.3 (Existence of a Maximiser). Let 0 < 𝜌 < 1 and let 𝑚 ≥ 2. Then there exist measurable sets
Ω1, . . . ,Ω𝑚 maximising Problem 1.5.
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Proof. Define Δ𝑚 as in (6). Let 𝑓 : R𝑛+1 → Δ𝑚. We write f in its components as 𝑓 = ( 𝑓1, . . . , 𝑓𝑚).
The set 𝐷0 : = { 𝑓 : R𝑛+1 → Δ𝑚} is norm closed, bounded and convex; therefore, it is weakly compact
and convex. Consider the function

𝐶 ( 𝑓 ) : =
𝑚∑
𝑖=1

∫
R𝑛+1

𝑓𝑖 (𝑥)𝑇𝜌 𝑓𝑖 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

This function is weakly continuous on 𝐷0, and 𝐷0 is weakly compact, so there exists �̃� ∈ 𝐷0 such that
𝐶 ( �̃� ) = max 𝑓 ∈𝐷0 𝐶 ( 𝑓 ). Moreover, C is convex because for any 0 < 𝑡 < 1 and for any 𝑓 , 𝑔 ∈ 𝐷0,

𝑡𝐶 ( 𝑓 ) + (1 − 𝑡)𝐶 (𝑔) − 𝐶 (𝑡 𝑓 + (1 − 𝑡)𝑔)

=
𝑚∑
𝑖=1

∫
R𝑛+1

(
𝑡 𝑓𝑖 (𝑥)𝑇𝜌 𝑓𝑖 (𝑥) + (1 − 𝑡)𝑔𝑖 (𝑥)𝑇𝜌𝑔𝑖 (𝑥)

− (𝑡 𝑓𝑖 (𝑥) + (1 − 𝑡)𝑔𝑖 (𝑥))𝑇𝜌 [𝑡 𝑓𝑖 (𝑥) + (1 − 𝑡)𝑔𝑖 (𝑥)]
)
𝛾𝑛+1 (𝑥) d𝑥

= 𝑡 (1 − 𝑡)
𝑚∑
𝑖=1

∫
R𝑛+1

(
( 𝑓𝑖 (𝑥) − 𝑔𝑖 (𝑥))𝑇𝜌 [ 𝑓𝑖 (𝑥) − 𝑔𝑖 (𝑥)]

)
𝛾𝑛+1 (𝑥) d𝑥 ≥ 0.

Here we used that ∫
R𝑛+1

ℎ(𝑥)𝑇𝜌ℎ(𝑥)𝛾𝑛+1 (𝑥) d𝑥 =
∫
R𝑛+1

(𝑇√𝜌ℎ(𝑥))2𝛾𝑛+1 (𝑥) d𝑥 ≥ 0, (15)

for all measurable ℎ : R𝑛+1 → [−1, 1].
Because C is convex, its maximum must be achieved at an extreme point of 𝐷0. Let 𝑒1, . . . , 𝑒𝑚

denote the standard basis of R𝑚, so that f takes its values in {𝑒1, . . . , 𝑒𝑚}. Then, for any 1 ≤ 𝑖 ≤ 𝑚,
define Ω𝑖 : = {𝑥 ∈ R𝑛+1 : 𝑓 (𝑥) = 𝑒𝑖}, so that 𝑓𝑖 = 1Ω𝑖 ∀ 1 ≤ 𝑖 ≤ 𝑚. �

Lemma 2.4 (Regularity of a Maximiser). Let Ω1, . . . ,Ω𝑚 ⊆ R𝑛+1 be the measurable sets maximising
Problem 1.5, guaranteed to exist by Lemma 2.3. Then the sets Ω1, . . . ,Ω𝑚 have locally finite surface
area. Moreover, for all 1 ≤ 𝑖 ≤ 𝑚 and for all 𝑥 ∈ 𝜕Ω𝑖 , there exists a neighbourhood U of x such that
𝑈 ∩ 𝜕Ω𝑖 is a finite union of 𝐶∞ 𝑛-dimensional manifolds.

Proof. This follows from a first variation argument and the strong unique continuation property for the
heat equation. We first claim that there exist constants (𝑐𝑖 𝑗 )1≤𝑖< 𝑗≤𝑚 such that

Ω𝑖 ⊇ {𝑥 ∈ R𝑛+1 : 𝑇𝜌1Ω𝑖 (𝑥) > 𝑇𝜌1Ω 𝑗 (𝑥) + 𝑐𝑖 𝑗 , ∀ 𝑗 ∈ {1, . . . , 𝑚} \ {𝑖}}, ∀1 ≤ 𝑖 ≤ 𝑚. (16)

By the Lebesgue density theorem [Ste70, 1.2.1, Proposition 1], we may assume that, for all 𝑖 ∈
{1, . . . , 𝑘}, if 𝑦 ∈ Ω𝑖 , then we have lim𝑟→0 𝛾𝑛+1 (Ω𝑖 ∩ 𝐵(𝑦, 𝑟))/𝛾𝑛+1(𝐵(𝑦, 𝑟)) = 1.

We prove (16) by contradiction. Suppose there exist 𝑐 ∈ R, 𝑗 , 𝑘 ∈ {1, . . . , 𝑚} with 𝑗 ≠ 𝑘 and there
exists 𝑦 ∈ Ω 𝑗 and 𝑧 ∈ Ω𝑘 such that

𝑇𝜌 (1Ω 𝑗 − 1Ω𝑘 ) (𝑦) < 𝑐, 𝑇𝜌 (1Ω 𝑗 − 1Ω𝑘 ) (𝑧) > 𝑐.

By (3), 𝑇𝜌 (1Ω 𝑗 − 1Ω𝑘 ) (𝑥) is a continuous function of x. And by the Lebesgue density theorem, there
exist disjoint measurable sets𝑈 𝑗 ,𝑈𝑘 with positive Lebesgue measure such that𝑈 𝑗 ⊆ Ω 𝑗 ,𝑈𝑘 ⊆ Ω𝑘 such
that 𝛾𝑛+1 (𝑈 𝑗 ) = 𝛾𝑛+1 (𝑈𝑘 ) and such that

𝑇𝜌 (1Ω 𝑗 − 1Ω𝑘 ) (𝑦′) < 𝑐, ∀ 𝑦′ ∈ 𝑈 𝑗 , 𝑇𝜌 (1Ω 𝑗 − 1Ω𝑘 ) (𝑦′) > 𝑐, ∀ 𝑦′ ∈ 𝑈𝑘 . (17)
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We define a new partition of R𝑛+1 such that Ω̃ 𝑗 : = 𝑈𝑘 ∪Ω 𝑗 \𝑈 𝑗 , Ω̃𝑘 : = 𝑈 𝑗 ∪Ω𝑘 \𝑈𝑘 and Ω̃𝑖 : = Ω𝑖

for all 𝑖 ∈ {1, . . . , 𝑚} \ { 𝑗 , 𝑘}. Then

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω̃𝑖
(𝑥)𝑇𝜌1Ω̃𝑖

(𝑥)𝛾𝑛+1 (𝑥) d𝑥 −
𝑚∑
𝑖=1

∫
R𝑛+1

1Ω𝑖 (𝑥)𝑇𝜌1Ω𝑖 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∫
R𝑛+1

1Ω̃ 𝑗
(𝑥)𝑇𝜌1Ω̃ 𝑗

(𝑥)𝛾𝑛+1 (𝑥) d𝑥 −
∫
R𝑛+1

1Ω 𝑗 (𝑥)𝑇𝜌1Ω 𝑗 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

+
∫
R𝑛+1

1Ω̃𝑘
(𝑥)𝑇𝜌1Ω̃𝑘

(𝑥)𝛾𝑛+1 (𝑥) d𝑥 −
∫
R𝑛+1

1Ω𝑘 (𝑥)𝑇𝜌1Ω𝑘 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∫
R𝑛+1

[1Ω 𝑗 − 1𝑈 𝑗 + 1𝑈𝑘 ] (𝑥)𝑇𝜌 [1Ω 𝑗 − 1𝑈 𝑗 + 1𝑈𝑘 ]𝛾𝑛+1 (𝑥) d𝑥

+
∫
R𝑛+1

[1Ω𝑘 − 1𝑈𝑘 + 1𝑈 𝑗 ]𝑇𝜌 [1Ω𝑘 − 1𝑈𝑘 + 1𝑈 𝑗 ]𝛾𝑛+1 (𝑥) d𝑥

−
∫
R𝑛+1

1Ω 𝑗 (𝑥)𝑇𝜌1Ω 𝑗 (𝑥)𝛾𝑛+1 (𝑥) d𝑥 −
∫
R𝑛+1

1Ω𝑘 (𝑥)𝑇𝜌1Ω𝑘 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

= 2
∫
R𝑛+1

[−1𝑈 𝑗 + 1𝑈𝑘 ] (𝑥)𝑇𝜌 [1Ω 𝑗 − 1Ω𝑘 ]𝛾𝑛+1 (𝑥) d𝑥

+ 2
∫
R𝑛+1

[1𝑈 𝑗 − 1𝑈𝑘 ]𝑇𝜌 [1𝑈 𝑗 − 1𝑈𝑘 ]𝛾𝑛+1 (𝑥) d𝑥
(17)∧(15)

> 0.

This contradicts the maximality of Ω1, . . . ,Ω𝑚. We conclude that (16) holds.
We now fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 and we upgrade (16) by examining the level sets of

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥), ∀ 𝑥 ∈ R𝑛+1.

Fix 𝑐 ∈ R and consider the level set

Σ : = {𝑥 ∈ R𝑛+1 : 𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐}.

This level set has Hausdorff dimension at most n by [Che98, Theorem 2.3].
From the strong unique continuation property for the heat equation [Lin90], 𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) does

not vanish to infinite order at any 𝑥 ∈ R𝑛+1, so the argument of [HS89, Lemma 1.9] (see [HL94,
Proposition 1.2] and also [Che98, Theorem 2.1]) shows that in a neighbourhood of each 𝑥 ∈ Σ, Σ can be
written as a finite union of 𝐶∞ manifolds. That is, there exists a neighbourhood U of x and there exists
an integer 𝑘 ≥ 1 such that

𝑈 ∩ Σ = ∪𝑘
𝑖=1{𝑦 ∈ 𝑈 : 𝐷𝑖𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) ≠ 0, 𝐷 𝑗𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 0, ∀1 ≤ 𝑗 ≤ 𝑖 − 1}.

Here 𝐷𝑖 denotes the array of all iterated partial derivatives of order 𝑖 ≥ 1. We therefore have

Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ) ⊇ {𝑥 ∈ R𝑛+1 : 𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐𝑖 𝑗 },

and the lemma follows. �

From Lemma 2.4 and Definition 2.1, for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, if 𝑥 ∈ Σ𝑖 𝑗 , then the unit normal vector
𝑁𝑖 𝑗 (𝑥) ∈ R𝑛+1 that points from Ω𝑖 into Ω 𝑗 is well defined on Σ𝑖 𝑗 ,

(
(𝜕Ω𝑖) ∩ (𝜕Ω 𝑗 )

)
\ Σ𝑖 𝑗 has Hausdorff

dimension at most 𝑛 − 1 and

𝑁𝑖 𝑗 (𝑥) = ±
∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)
‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖

, ∀ 𝑥 ∈ Σ𝑖 𝑗 . (18)
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In Lemma 4.5 we will show that the negative sign holds in (18) when Ω1, . . . ,Ω𝑚 maximise
Problem 1.5.

3. First and Second Variation

In this section, we recall some standard facts for variations of sets with respect to the Gaussian measure.
Here is a summary of notation.

Summary of Notation.
◦ 𝑇𝜌 denotes the Ornstein–Uhlenbeck operator with correlation parameter 𝜌 ∈ (−1, 1).
◦ Ω1, . . . ,Ω𝑚 denotes a partition of R𝑛+1 into m disjoint measurable sets.
◦ 𝜕∗Ω denotes the reduced boundary of Ω ⊆ R𝑛+1.
◦ Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚.
◦ 𝑁𝑖 𝑗 (𝑥) is the unit normal vector to 𝑥 ∈ Σ𝑖 𝑗 that points from Ω𝑖 into Ω 𝑗 , so that 𝑁𝑖 𝑗 = −𝑁 𝑗𝑖 .
Throughout the article, unless otherwise stated, we define 𝐺 : R𝑛+1 × R𝑛+1 → R to be the following
function. For all 𝑥, 𝑦 ∈ R𝑛+1,∀𝜌 ∈ (−1, 1), define

𝐺 (𝑥, 𝑦) = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)𝑒
−‖𝑥‖2−‖𝑦‖2+2𝜌〈𝑥,𝑦〉

2(1−𝜌2 )

= (1 − 𝜌2)−(𝑛+1)/2𝛾𝑛+1 (𝑥)𝛾𝑛+1 (𝑦)𝑒
−𝜌2 (‖𝑥‖2+‖𝑦‖2 )+2𝜌〈𝑥,𝑦〉

2(1−𝜌2 )

= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝛾𝑛+1 (𝑥)𝑒
−‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) .

(19)

We can then rewrite the noise stability from Definition 1.4 as∫
R𝑛+1

1Ω (𝑥)𝑇𝜌1Ω (𝑥)𝛾𝑛+1 (𝑥) d𝑥 =
∫
Ω

∫
Ω
𝐺 (𝑥, 𝑦) d𝑥d𝑦.

Our first and second variation formulas for the noise stability will be written in terms of G.
Lemma 3.1 (The First Variation [CS07]; also [HMN16, Lemma 3.1, Equation (7)]). Let 𝑋 ∈
𝐶∞

0 (R𝑛+1,R𝑛+1). Let Ω ⊆ R𝑛+1 be a measurable set such that 𝜕Ω is a locally finite union of 𝐶∞

manifolds. Let {Ω(𝑠) }𝑠∈(−1,1) be the corresponding variation of Ω. Then

d
d𝑠

���
𝑠=0

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦) d𝑦 =
∫
𝜕Ω

𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦. (20)

The following lemma is a consequence of (20) and Lemma 2.4.
Lemma 3.2 (The First Variation for Maximisers). Suppose that Ω1, . . . ,Ω𝑚 ⊆ R𝑛+1 maximise Problem
1.5. Then for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, there exists 𝑐𝑖 𝑗 ∈ R such that

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐𝑖 𝑗 , ∀ 𝑥 ∈ Σ𝑖 𝑗 .

Proof. Fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 and denote 𝑓𝑖 𝑗 (𝑥) : = 〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ𝑖 𝑗 . From Lemma 3.1, if X
is nonzero outside of Σ𝑖 𝑗 , we get

1
2

d
d𝑠

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑥)𝑇𝜌1Ω(𝑠)

𝑖
(𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∫
Ω𝑖

𝐺 (𝑥, 𝑦)
∫
Σ𝑖 𝑗

〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 d𝑥 d𝑦 +
∫
Ω 𝑗

𝐺 (𝑥, 𝑦)
∫
Σ𝑖 𝑗

〈𝑋 (𝑥), 𝑁 𝑗𝑖 (𝑥)〉 d𝑥 d𝑦

(3)∧(19)
=

∫
Σ𝑖 𝑗

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) 𝑓𝑖 𝑗 (𝑥) d𝑥.
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We used above 𝑁𝑖 𝑗 = −𝑁 𝑗𝑖 . If 𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) is nonconstant, then we can construct 𝑓𝑖 𝑗 supported in
Σ𝑖 𝑗 with

∫
𝜕∗Ω𝑖′

𝑓𝑖 𝑗 (𝑥)𝛾𝑛+1 (𝑥)𝑑𝑥 = 0 for all 1 ≤ 𝑖′ ≤ 𝑚 to give a nonzero derivative, contradicting the
maximality of Ω1, . . . ,Ω𝑚 (as in Lemma 2.4 and (17)). �

Theorem 3.3 (General Second Variation Formula [CS07, Theorem 2.6]; also [Hei15, Theorem 1.10]).
Let 𝑋 ∈ 𝐶∞

0 (R𝑛+1,R𝑛+1). Let Ω ⊆ R𝑛+1 be a measurable set such that 𝜕Ω is a locally finite union of
𝐶∞ manifolds. Let {Ω(𝑠) }𝑠∈(−1,1) be the corresponding variation of Ω. Define V as in (14). Then

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

=
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦)〈𝑋 (𝑥), 𝑁 (𝑥)〉〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑥d𝑦 +

∫
Σ

div(𝑉 (𝑥, 0)𝑋 (𝑥))〈𝑋 (𝑥), 𝑁 (𝑥)〉 d𝑥.

4. Noise Stability and the Calculus of Variations

We now further refine the first and second variation formulas from the previous section. The following
formula follows by using 𝐺 (𝑥, 𝑦) : = 𝛾𝑛+1 (𝑥)𝛾𝑛+1 (𝑦) ∀ 𝑥, 𝑦 ∈ R𝑛+1 in Lemma 3.1 and in Theorem 3.3.

Lemma 4.1 (Variations of Gaussian Volume [Led01]). Let Ω ⊆ R𝑛+1 be a measurable set such that
𝜕Ω is a locally finite union of 𝐶∞ manifolds. Let 𝑋 ∈ 𝐶∞

0 (R𝑛+1,R𝑛+1). Let {Ω(𝑠) }𝑠∈(−1,1) be the
corresponding variation of Ω. Denote 𝑓 (𝑥) : = 〈𝑋 (𝑥), 𝑁 (𝑥)〉 for all 𝑥 ∈ Σ : = 𝜕∗Ω. Then

d
d𝑠

���
𝑠=0

𝛾𝑛+1 (Ω(𝑠) ) =
∫
Σ
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

d2

d𝑠2

���
𝑠=0

𝛾𝑛+1 (Ω(𝑠) ) =
∫
Σ
(div(𝑋) − 〈𝑋, 𝑥〉) 𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

Lemma 4.2 (Extension Lemma for Existence of Volume-Preserving Variations [Hei18, Lemma 3.9]).
Let 𝑋 ′ ∈ 𝐶∞

0 (R𝑛+1,R𝑛+1) be a vector field. Define 𝑓𝑖 𝑗 : = 〈𝑋 ′, 𝑁𝑖 𝑗〉 ∈ 𝐶∞
0 (Σ𝑖 𝑗 ) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. If

∀1 ≤ 𝑖 ≤ 𝑚,
∑

𝑗∈{1,...,𝑚}\{𝑖 }

∫
Σ𝑖 𝑗

𝑓𝑖 𝑗 (𝑥)𝛾𝑛 (𝑥) d𝑥 = 0, (21)

then 𝑋 ′ |∪1≤𝑖< 𝑗≤𝑚Σ𝑖 𝑗 can be extended to a vector field 𝑋 ∈ 𝐶∞
0 (R𝑛+1,R𝑛+1) such that the corresponding

variations {Ω(𝑠)
𝑖 }1≤𝑖≤𝑚,𝑠∈(−1,1) satisfy

∀1 ≤ 𝑖 ≤ 𝑚, ∀ 𝑠 ∈ (−1, 1), 𝛾𝑛+1 (Ω(𝑠)
𝑖 ) = 𝛾𝑛+1 (Ω𝑖).

Lemma 4.3. Define G as in (19). Let 𝑓 : Σ → R be continous and compactly supported. Then∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦) 𝑓 (𝑥) 𝑓 (𝑦) d𝑥d𝑦 ≥ 0.

Proof. If 𝑔 : R𝑛+1 → R is continuous and compactly supported, then it is well known that∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦)𝑔(𝑥)𝑔(𝑦) d𝑥d𝑦 ≥ 0,

because, for example, 𝐺 (𝑥,𝑦)
𝛾𝑛+1(𝑥) 𝛾𝑛+1 (𝑦) is the Mehler kernel, which can be written as an (infinite-dimensional)

positive semidefinite matrix. That is, there exists an orthonormal basis {𝜓𝑖}∞𝑖=1 of 𝐿2 (𝛾𝑛+1) (of Hermite
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polynomials) and there exists a sequence of nonnegative real numbers {𝜆𝑖}∞𝑖=1 such that the following
series converges absolutely pointwise:

𝐺 (𝑥, 𝑦)
𝛾𝑛+1 (𝑥)𝛾𝑛+1 (𝑦)

=
∞∑
𝑖=1

𝜆𝑖𝜓𝑖 (𝑥)𝜓𝑖 (𝑦), ∀ 𝑥, 𝑦 ∈ R𝑛+1.

From Mercer’s theorem, this is equivalent to ∀ 𝑝 ≥ 1, for all 𝑧 (1) , . . . , 𝑧 (𝑝) ∈ R𝑛, for all 𝛽1, . . . , 𝛽𝑝 ∈ R,

𝑝∑
𝑖, 𝑗=1

𝛽𝑖𝛽 𝑗𝐺 (𝑧 (𝑖) , 𝑧 ( 𝑗) ) ≥ 0.

In particular, this holds for all 𝑧 (1) , . . . , 𝑧 (𝑝) ∈ 𝜕Ω ⊆ R𝑛+1. So, the positive semidefinite property carries
over (by restriction) to 𝜕Ω. �

4.1. Two Sets

For didactic purposes, we first present the second variation of noise stability when 𝑚 = 2 in
Conjecture 1.5.

Lemma 4.4 (Second Variation of Noise Stability). Let Ω ⊆ R𝑛+1 be a measurable set such that 𝜕Ω is a
locally finite union of 𝐶∞ manifolds. Let 𝑋 ∈ 𝐶∞

0 (R𝑛+1,R𝑛+1). Let {Ω(𝑠) }𝑠∈(−1,1) be the corresponding
variation of Ω. Denote 𝑓 (𝑥) : = 〈𝑋 (𝑥), 𝑁 (𝑥)〉 for all 𝑥 ∈ Σ : = 𝜕∗Ω. Then

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦 =
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦) 𝑓 (𝑥) 𝑓 (𝑦) d𝑥d𝑦

+
∫
Σ
〈∇𝑇𝜌1Ω (𝑥), 𝑋 (𝑥)〉 𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

+
∫
Σ
𝑇𝜌1Ω (𝑥)

(
div(𝑋 (𝑥)) − 〈𝑋 (𝑥), 𝑥〉

)
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

(22)

Proof. For all 𝑥 ∈ R𝑛+1, we have 𝑉 (𝑥, 0) (14)
=

∫
Ω
𝐺 (𝑥, 𝑦) d𝑦 (3)

= 𝛾𝑛+1 (𝑥)𝑇𝜌1Ω (𝑥). So, from Theorem 3.3,

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

=
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦)〈𝑋 (𝑥), 𝑁 (𝑥)〉〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑥d𝑦

+
∫
Σ
(
𝑛+1∑
𝑖=1

𝑇𝜌1Ω (𝑥)
𝜕

𝜕𝑥𝑖
𝑋𝑖 (𝑥) − 𝑥𝑖𝑇𝜌1Ω (𝑥)𝑋𝑖 (𝑥)

+ 𝜕

𝜕𝑥𝑖
𝑇𝜌1Ω (𝑥)𝑋𝑖 (𝑥))〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

That is, (22) holds. �

Lemma 4.5 (Volume-reserving Second Variation of Maximisers). Suppose thatΩ,Ω𝑐 ⊆ R𝑛+1 maximise
Problem 1.5 for 0 < 𝜌 < 1 and 𝑚 = 2. Let {Ω(𝑠) }𝑠∈(−1,1) be the corresponding variation of Ω. Denote
𝑓 (𝑥) : = 〈𝑋 (𝑥), 𝑁 (𝑥)〉 for all 𝑥 ∈ Σ : = 𝜕∗Ω. If∫

Σ
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥 = 0,
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then there exists an extension of the vector field 𝑋 |Σ such that the corresponding variation of
{Ω(𝑠) }𝑠∈(−1,1) satisfies

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

=
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦) 𝑓 (𝑥) 𝑓 (𝑦) d𝑥d𝑦 −

∫
Σ
‖∇𝑇𝜌1Ω (𝑥)‖( 𝑓 (𝑥))2𝛾𝑛+1 (𝑥) d𝑥.

(23)

Moreover,

∇𝑇𝜌1Ω (𝑥) = −𝑁 (𝑥)‖∇𝑇𝜌1Ω (𝑥)‖, ∀ 𝑥 ∈ Σ. (24)

Proof. From Lemma 3.1, 𝑇𝜌1Ω (𝑥) is constant for all 𝑥 ∈ Σ. So, from Lemma 4.1 and Lemma 4.2, the
last term in (22) vanishes; that is,

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

=
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦)〈𝑋 (𝑥), 𝑁 (𝑥)〉〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑥d𝑦

+
∫
Σ
〈∇𝑇𝜌1Ω (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

(Here ∇ denotes the gradient in R𝑛+1.) Because 𝑇𝜌1Ω (𝑥) is constant for all 𝑥 ∈ 𝜕Ω by Lemma 3.2,
∇𝑇𝜌1Ω (𝑥) is parallel to 𝑁 (𝑥) for all 𝑥 ∈ 𝜕Ω. That is,

∇𝑇𝜌1Ω (𝑥) = ±‖∇𝑇𝜌1Ω (𝑥)‖𝑁 (𝑥), ∀ 𝑥 ∈ 𝜕Ω. (25)

In fact, we must have a negative sign in (25); otherwise, we could find a vector field X supported near
𝑥 ∈ 𝜕Ω such that (25) has a positive sign, and then because G is a positive semidefinite function by
Lemma 4.3, we would have

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

≥
∫
Σ
〈∇𝑇𝜌1Ω (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 > 0,

a contradiction. In summary,

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠) (𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠) (𝑥) d𝑥d𝑦

=
∫
Σ

∫
Σ
𝐺 (𝑥, 𝑦)〈𝑋 (𝑥), 𝑁 (𝑥)〉〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑥d𝑦

−
∫
Σ
‖∇𝑇𝜌1Ω (𝑥)‖〈𝑋 (𝑥), 𝑁 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

�

4.2. More Than Two Sets

We can now generalise Subsection 4.1 to the case of 𝑚 > 2 sets.
Lemma 4.6 (Second Variation of Noise Stability, Multiple Sets). Let Ω1, . . . ,Ω𝑚 ⊆ R𝑛+1 be a partition
of R𝑛+1 into measurable sets such that 𝜕Ω𝑖 is a locally finite union of 𝐶∞ manifolds for all 1 ≤ 𝑖 ≤ 𝑚.
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Let 𝑋 ∈ 𝐶∞
0 (R𝑛+1,R𝑛+1). Let {Ω(𝑠)

𝑖 }𝑠∈(−1,1) be the corresponding variation of Ω𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.
Denote 𝑓𝑖 𝑗 (𝑥) : = 〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ). We let N denote the exterior
pointing unit normal vector to 𝜕∗Ω𝑖 for any 1 ≤ 𝑖 ≤ 𝑚. Then

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

[( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦

]
𝑓𝑖 𝑗 (𝑥) d𝑥

+
∫
Σ𝑖 𝑗

〈∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥), 𝑋 (𝑥)〉 𝑓𝑖 𝑗 (𝑥)𝛾𝑛+1 (𝑥) d𝑥

+
∫
Σ𝑖 𝑗

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)
(
div(𝑋 (𝑥)) − 〈𝑋 (𝑥), 𝑥〉

)
𝑓𝑖 𝑗 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

(26)

Proof. From Lemma 4.4,

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∫
𝜕∗Ω𝑖

∫
𝜕∗Ω𝑖

𝐺 (𝑥, 𝑦)〈𝑋 (𝑥), 𝑁 (𝑥)〉〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑥d𝑦

+
∫
𝜕∗Ω𝑖

〈∇𝑇𝜌1Ω𝑖 (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥

+
∫
𝜕∗Ω𝑖

𝑇𝜌1Ω𝑖 (𝑥)
(
div(𝑋 (𝑥)) − 〈𝑋 (𝑥), 𝑥〉

)
〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

Summing over 1 ≤ 𝑖 ≤ 𝑚 and using 𝑁𝑖 𝑗 = −𝑁 𝑗𝑖 completes the proof. �

Below, we need the following combinatorial lemma, the case 𝑚 = 3 being treated in [HMRR02,
Proposition 3.3].

Lemma 4.7 ([Hei19, Lemma 4.6]). Let 𝑚 ≥ 3. Let

𝐷1 : = {(𝑥𝑖 𝑗 )1≤𝑖≠ 𝑗≤𝑚 ∈ R(
𝑚
2 ) : ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, 𝑥𝑖 𝑗 = −𝑥 𝑗𝑖 ,

∑
𝑗∈{1,...,𝑚} : 𝑗≠𝑖

𝑥𝑖 𝑗 = 0}.

𝐷2 : = {(𝑥𝑖 𝑗 )1≤𝑖≠ 𝑗≤𝑚 ∈ R(
𝑚
2 ) : ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, 𝑥𝑖 𝑗 = −𝑥 𝑗𝑖 ,

∀1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 + 𝑥𝑘𝑖 = 0}.

Let 𝑥 ∈ 𝐷1 and let 𝑦 ∈ 𝐷2. Then
∑

1≤𝑖< 𝑗≤𝑚 𝑥𝑖 𝑗 𝑦𝑖 𝑗 = 0.

Proof. 𝐷1 is defined to be perpendicular to vectors in 𝐷2 and vice versa. That is, 𝐷1 and 𝐷2 are
orthogonal complements of each other, and in terms of vector spaces, 𝐷1 ⊕ 𝐷2 = R(

𝑚
2 ) . Consequently,

the inner product of any 𝑥 ∈ 𝐷1 and 𝑦 ∈ 𝐷2 is zero. �

Lemma 4.8 (Volume-Preserving Second Variation of Maximisers, Multiple Sets). Let Ω1, . . . ,Ω𝑚 ⊆
R
𝑛+1 be a partition of R𝑛+1 into measurable sets such that 𝜕Ω𝑖 is a locally finite union of 𝐶∞ manifolds

for all 1 ≤ 𝑖 ≤ 𝑚. Let 𝑋 ∈ 𝐶∞
0 (R𝑛+1,R𝑛+1). Let {Ω(𝑠)

𝑖 }𝑠∈(−1,1) be the corresponding variation of Ω𝑖 for
all 1 ≤ 𝑖 ≤ 𝑚. Denote 𝑓𝑖 𝑗 (𝑥) : = 〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ). We let N denote
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the exterior pointing unit normal vector to 𝜕∗Ω𝑖 for any 1 ≤ 𝑖 ≤ 𝑚. Then

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

[( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦

]
𝑓𝑖 𝑗 (𝑥) d𝑥

−
∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖( 𝑓𝑖 𝑗 (𝑥))2𝛾𝑛+1 (𝑥) d𝑥.

(27)

Also,

∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = −𝑁𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 . (28)

Moreover, ‖∇𝑇𝜌 (1Ω𝑖 −1Ω 𝑗 ) (𝑥)‖ > 0 for all 𝑥 ∈ Σ𝑖 𝑗 , except on a set of Hausdorff dimension at most 𝑛−1.

Proof. From Lemma 3.2, there exist constants (𝑐𝑖 𝑗 )1≤𝑖< 𝑗≤𝑚 such that 𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐𝑖 𝑗 for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑚, for all 𝑥 ∈ Σ𝑖 𝑗 . So, from Lemma 4.6,

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

[( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦

]
〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 d𝑥

+
∫
Σ𝑖 𝑗

〈∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥

+ 𝑐𝑖 𝑗

∫
Σ𝑖 𝑗

(
div(𝑋 (𝑥)) − 〈𝑋 (𝑥), 𝑥〉

)
〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

The last term then vanishes by Lemma 4.7. That is,

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

[( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦

]
〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 d𝑥

+
∫
Σ𝑖 𝑗

〈∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

Meanwhile, if 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 is fixed, it follows from Lemma 3.2 that

∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = ±𝑁𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 . (29)

In fact, we must have a negative sign in (29); otherwise, we could find a vector field X supported near
𝑥 ∈ Σ𝑖 𝑗 such that (25) has a positive sign, and then because G is a positive semidefinite function by
Lemma 4.3, we would have

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

≥
∫
Σ𝑖 𝑗

〈∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥), 𝑋 (𝑥)〉〈𝑋 (𝑥), 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 > 0,
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a contradiction. In summary,

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1Ω(𝑠)

𝑖
(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
𝜕Σ𝑖 𝑗

[( ∫
𝜕Ω𝑖

−
∫
𝜕Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁𝑖 𝑗 (𝑦)〉 d𝑦

]
〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 d𝑥

−
∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

�

5. Almost Eigenfunctions of the Second Variation

For didactic purposes, we first consider the case 𝑚 = 2, and we then later consider the case 𝑚 > 2.

5.1. Two Sets

Let Σ : = 𝜕∗Ω. For any bounded measurable 𝑓 : Σ → R, define the following function (if it exists):

𝑆( 𝑓 ) (𝑥) : = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
∫
Σ
𝑓 (𝑦)𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦, ∀ 𝑥 ∈ Σ. (30)

Lemma 5.1 (Key Lemma, 𝑚 = 2, Translations as Almost Eigenfunctions). Let Ω,Ω𝑐 maximise Problem
1.5 for 𝑚 = 2. Let 𝑣 ∈ R𝑛+1. Then

𝑆(〈𝑣, 𝑁〉)(𝑥) = 〈𝑣, 𝑁 (𝑥)〉 1
𝜌
‖∇𝑇𝜌1Ω (𝑥)‖, ∀ 𝑥 ∈ Σ.

Proof. Because 𝑇𝜌1Ω (𝑥) is constant for all 𝑥 ∈ 𝜕Ω by Lemma 3.2, ∇𝑇𝜌1Ω (𝑥) is parallel to 𝑁 (𝑥) for all
𝑥 ∈ 𝜕Ω. That is, (24) holds; that is,

∇𝑇𝜌1Ω (𝑥) = −𝑁 (𝑥)‖∇𝑇𝜌1Ω (𝑥)‖, ∀ 𝑥 ∈ Σ. (31)

From Definition 3, and then using the divergence theorem,

〈𝑣,∇𝑇𝜌1Ω (𝑥)〉 = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
〈
𝑣,

∫
Ω
∇𝑥𝑒

− ‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦
〉

= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2 𝜌

1 − 𝜌2

∫
Ω
〈𝑣, 𝑦 − 𝜌𝑥〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

∫
Ω

div𝑦

(
𝑣𝑒

− ‖𝑦−𝜌𝑥‖2

2(1−𝜌2 )
)

d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

∫
Σ
〈𝑣, 𝑁 (𝑦)〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦

(30)
= −𝜌 𝑆(〈𝑣, 𝑁〉)(𝑥).

(32)

Therefore,

〈𝑣, 𝑁 (𝑥)〉‖∇𝑇𝜌1Ω (𝑥)‖
(31)
= −〈𝑣,∇𝑇𝜌1Ω (𝑥)〉

(32)
= 𝜌 𝑆(〈𝑣, 𝑁〉)(𝑥).

�
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Remark 5.2. To justify the use of the divergence theorem in (32), let 𝑟 > 0 and note that we can
differentiate under the integral sign of 𝑇𝜌1Ω∩𝐵 (0,𝑟 ) (𝑥) to get

∇𝑇𝜌1Ω∩𝐵 (0,𝑟 ) (𝑥) = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
〈
𝑣,

∫
Ω∩𝐵 (0,𝑟 )

∇𝑥𝑒
− ‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦
〉

= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2 𝜌

1 − 𝜌2

∫
Ω∩𝐵 (0,𝑟 )

〈𝑣, 𝑦 − 𝜌𝑥〉𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

∫
Ω∩𝐵 (0,𝑟 )

div𝑦

(
𝑣𝑒

− ‖𝑦−𝜌𝑥‖2

2(1−𝜌2 )
)

d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

∫
(Σ∩𝐵 (0,𝑟 ))∪(Ω∩𝜕𝐵 (0,𝑟 ))

〈𝑣, 𝑁 (𝑦)〉𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦.

(33)

Fix 𝑟 ′ > 0. Fix 𝑥 ∈ R𝑛+1 with ‖𝑥‖ < 𝑟 ′. The last integral in (33) over Ω ∩ 𝜕𝐵(0, 𝑟) goes to zero as
𝑟 → ∞ uniformly over all such ‖𝑥‖ < 𝑟 ′. Also, ∇𝑇𝜌1Ω (𝑥) exists a priori for all 𝑥 ∈ R𝑛+1, and

���∇𝑇𝜌1Ω (𝑥) − ∇𝑇𝜌1Ω∩𝐵 (0,𝑟 ) (𝑥)
��� (3)
=

𝜌√
1 − 𝜌2

����
∫
R𝑛+1

𝑦1Ω∩𝐵 (0,𝑟 )𝑐 (𝑥𝜌 + 𝑦
√

1 − 𝜌2)𝛾𝑛+1 (𝑦) d𝑦
����

≤ 𝜌√
1 − 𝜌2

sup
𝑤 ∈R𝑛+1 : ‖𝑤 ‖=1

∫
R𝑛+1

|〈𝑤, 𝑦〉| 1𝐵 (0,𝑟 )𝑐 (𝑥𝜌 + 𝑦
√

1 − 𝜌2)𝛾𝑛+1 (𝑦) d𝑦.

And the last integral goes to zero as 𝑟 → ∞, uniformly over all ‖𝑥‖ < 𝑟 ′.

Lemma 5.3 (Second Variation of Translations). Let 𝑣 ∈ R𝑛+1. Let Ω,Ω𝑐 maximise Problem 1.5 for
𝑚 = 2. Let {Ω(𝑠) }𝑠∈(−1,1) be the variation of Ω corresponding to the constant vector field 𝑋 : = 𝑣.
Assume that ∫

Σ
〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0.

Then

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

1Ω(𝑠) (𝑥)𝑇𝜌1Ω(𝑠) (𝑥)𝛾𝑛+1 (𝑥) d𝑥 =
( 1
𝜌
− 1

) ∫
Σ
‖∇𝑇𝜌1Ω (𝑥)‖〈𝑣, 𝑁 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

Proof. Let 𝑓 (𝑥) : = 〈𝑣, 𝑁 (𝑥)〉 for all 𝑥 ∈ Σ. From Lemma 4.5,

1
2

d2

d𝑠2

���
𝑠=0

∫
R𝑛+1

1Ω(𝑠) (𝑥)𝑇𝜌1Ω(𝑠) (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∫
Σ

(
𝑆( 𝑓 ) (𝑥) − ‖∇𝑇𝜌1Ω (𝑥)‖ 𝑓 (𝑥)

)
𝑓 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

Applying Lemma 5.1, 𝑆( 𝑓 ) (𝑥) = 𝑓 (𝑥) 1
𝜌 ‖∇𝑇𝜌1Ω (𝑥)‖ ∀ 𝑥 ∈ Σ, proving the lemma. Note also that∫

Σ
‖∇𝑇𝜌1Ω (𝑥)‖〈𝑣, 𝑁 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥 is finite priori by the divergence theorem and (24):

∞ >

����
∫
Ω

〈
𝑣,−𝑥 + ∇〈𝑣,∇𝑇𝜌1Ω (𝑥)〉

〉
𝛾𝑛+1 (𝑥) d𝑥

���� =
����
∫
Ω

div
(
𝑣〈𝑣,∇𝑇𝜌1Ω (𝑥)〉𝛾𝑛+1 (𝑥)

)
d𝑥
����

=

����
∫
Σ
〈𝑣, 𝑁 (𝑥)〉〈𝑣,∇𝑇𝜌1Ω (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥

���� (24)
=

����
∫
Σ
‖∇𝑇𝜌1Ω (𝑥)‖〈𝑣, 𝑁 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥

���� .
�
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5.2. More Than Two Sets

Let 𝑣 ∈ R𝑛+1 and denote 𝑓𝑖 𝑗 : = 〈𝑣, 𝑁𝑖 𝑗〉 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚. For simplicity of notation in the formulas
below, if 1 ≤ 𝑖 ≤ 𝑚 and if a vector 𝑁 (𝑥) appears inside an integral over 𝜕Ω𝑖 , then 𝑁 (𝑥) denotes the
unit exterior pointing normal vector to Ω𝑖 at 𝑥 ∈ 𝜕∗Ω𝑖 . Similarly, for simplicity of notation, we denote
〈𝑣, 𝑁〉 as the collection of functions (〈𝑣, 𝑁𝑖 𝑗〉)1≤𝑖< 𝑗≤𝑚. For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, define

𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) : = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
( ∫

𝜕Ω𝑖

−
∫
𝜕Ω 𝑗

)
〈𝑣, 𝑁 (𝑦)〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦, ∀ 𝑥 ∈ Σ𝑖 𝑗 .

(34)

Lemma 5.4. (Key Lemma, 𝑚 ≥ 2, Translations as Almost Eigenfunctions). Let Ω1, . . . ,Ω𝑚 maximise
problem 1.5. Fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Let 𝑣 ∈ R𝑛+1. Then

𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) = 〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉
1
𝜌
‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 .

Proof. From Lemma 4.8 (i.e., (28)),

∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = −𝑁𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 . (35)

From Definition 3, and then using the divergence theorem,

〈𝑣,∇𝑇𝜌1Ω𝑖 (𝑥)〉 = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
〈
𝑣,

∫
Ω𝑖

∇𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦
〉

= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2 𝜌

1 − 𝜌2

∫
Ω𝑖

〈𝑣, 𝑦 − 𝜌𝑥〉𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2)𝜌
∫
Ω𝑖

div
(
𝑣𝑒

− ‖𝑦−𝜌𝑥‖2

2(1−𝜌2 )
)

d𝑦

= −(1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

∫
𝜕∗Ω𝑖

〈𝑣, 𝑁 (𝑦)〉𝑒−
‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦.

(36)

The use of the divergence theorem is justified in Remark 5.2. Therefore,

〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖
(35)
= −〈𝑣,∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)〉

(36)
= (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2𝜌

( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
〈𝑣, 𝑁 (𝑦)〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦

(34)
= 𝜌 𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥).

�

Lemma 5.5 (Second Variation of Translations, Multiple Sets). Let 𝑣 ∈ R𝑛+1. Let Ω1, . . . ,Ω𝑚 maximise
problem 1.5. For each 1 ≤ 𝑖 ≤ 𝑚, let {Ω(𝑠)

𝑖 }𝑠∈(−1,1) be the variation of Ω𝑖 corresponding to the constant
vector field 𝑋 : = 𝑣. Assume that

∫
𝜕Ω𝑖

〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0, ∀1 ≤ 𝑖 ≤ 𝑚.
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Then

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑥)𝑇𝜌1Ω(𝑠)

𝑖
(𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
( 1
𝜌
− 1

) ∑
1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

Proof. For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, let 𝑓𝑖 𝑗 (𝑥) : = 〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ. From Lemma 4.5,

1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω(𝑠) (𝑥)𝑇𝜌1Ω(𝑠) (𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

(
𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) − ‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖ 𝑓𝑖 𝑗 (𝑥)

)
𝑓𝑖 𝑗 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

Applying Lemma 5.4, 𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) = 𝑓𝑖 𝑗 (𝑥) 1
𝜌 ‖∇𝑇𝜌 (1Ω𝑖 −1Ω 𝑗 ) (𝑥)‖, proving the lemma. Note also that∑

1≤𝑖< 𝑗≤𝑚
∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥 is finite priori by the divergence theorem
because

∞ >

����
∫
Ω𝑖

〈
𝑣,−𝑥 + ∇〈𝑣,∇𝑇𝜌1Ω𝑖 (𝑥)〉

〉
𝛾𝑛+1 (𝑥) d𝑥

���� =
����
∫
Ω𝑖

div
(
𝑣〈𝑣,∇𝑇𝜌1Ω𝑖 (𝑥)〉𝛾𝑛+1 (𝑥)

)
d𝑥
����

=

����
∫
Ω𝑖

div
(
𝑣〈𝑣,∇𝑇𝜌1Ω𝑖 (𝑥)〉𝛾𝑛+1 (𝑥)

)
d𝑥
���� =

����
∫
𝜕∗Ω𝑖

〈𝑣,∇𝑇𝜌 (1Ω𝑖 ) (𝑥)〉〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥
���� .

Summing over 1 ≤ 𝑖 ≤ 𝑚 then gives

∞ >

������
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

〈𝑣,∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)〉〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥.

������
(28)
=

������
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

������ .
�

6. Proof of the Main Structure Theorem

Proof of Theorem 1.9. Let 𝑚 ≥ 2. Let 0 < 𝜌 < 1. Fix 𝑎1, . . . , 𝑎𝑚 > 0 such that
∑𝑚

𝑖=1 𝑎𝑖 = 1. Let
Ω1, . . .Ω𝑚 ⊆ R𝑛+1 be measurable sets that partition R𝑛+1 such that 𝛾𝑛+1 (Ω𝑖) = 𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑚 that
maximise Problem 1.5. These sets exist by Lemma 2.3 and from Lemma 2.4 their boundaries are locally
finite unions of 𝐶∞ 𝑛-dimensional manifolds. Define Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

By Lemma 3.2, for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, there exists 𝑐𝑖 𝑗 ∈ R such that

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐𝑖 𝑗 , ∀ 𝑥 ∈ Σ𝑖 𝑗 .

By this condition, the regularity Lemma 2.4 and the last part of Lemma 4.8,

∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = −𝑁𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 .
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Moreover, by the last part of Lemma 4.8, except for a set 𝜎𝑖 𝑗 of Hausdorff dimension at most 𝑛 − 1, we
have

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖ > 0, ∀ 𝑥 ∈ Σ𝑖 𝑗 \ 𝜎𝑖 𝑗 . (37)

Fix 𝑣 ∈ R𝑛+1 and consider the variation of Ω1, . . . ,Ω𝑚 induced by the constant vector field 𝑋 : = 𝑣.
For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, define 𝑆𝑖 𝑗 as in (34). Define

𝑉 : =
{
𝑣 ∈ R𝑛+1 :

∑
𝑗∈{1,...,𝑚}\{𝑖 }

∫
Σ𝑖 𝑗

〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0, ∀1 ≤ 𝑖 ≤ 𝑚
}
.

From Lemma 5.5,

𝑣 ∈ 𝑉 =⇒ 1
2

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑥)𝑇𝜌1Ω(𝑠)

𝑖
(𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
( 1
𝜌
− 1

) ∑
1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

Because 0 < 𝜌 < 1, (37) implies

𝑣 ∈ 𝑉 =⇒ 〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉 = 0, ∀ 𝑥 ∈ Σ𝑖 𝑗 , ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑚. (38)

The set V has dimension at least 𝑛 + 2 − 𝑚, by the rank-nullity theorem, because V is the null space of
the linear operator 𝑀 : R𝑛+1 → R𝑚 defined by

(𝑀 (𝑣))𝑖 : =
∑

𝑗∈{1,...,𝑚}\{𝑖 }

∫
Σ𝑖 𝑗

〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥, ∀1 ≤ 𝑖 ≤ 𝑚

and M has rank at most 𝑚 − 1 (because
∑𝑚

𝑖=1 (𝑀 (𝑣))𝑖 = 0 for all 𝑣 ∈ R𝑛+1). So, by (38), after rotating
Ω1, . . . ,Ω𝑚, we conclude that there exist measurable Ω′

1, . . . ,Ω
′
𝑚 ⊆ R𝑚−1 such that

Ω𝑖 = Ω′
𝑖 × R𝑛+2−𝑚, ∀1 ≤ 𝑖 ≤ 𝑚.

�

7. The Case of Negative Correlation

In this section, we consider the case that 𝜌 < 0 in Problem 1.5. When 𝜌 < 0 and ℎ : R𝑛+1 → [−1, 1] is
measurable, quantity ∫

R𝑛+1
ℎ(𝑥)𝑇𝜌ℎ(𝑥)𝛾𝑛+1 (𝑥) d𝑥

could be negative, so a few parts of the above argument do not work, namely, the existence Lemma 2.3.
We therefore replace the noise stability with a more general bilinear expression, guaranteeing existence
of the corresponding problem. The remaining parts of the argument are essentially identical, mutatis
mutandis. We indicate below where the arguments differ in the bilinear case.

When 𝜌 < 0, we look for a minimum of noise stability, rather than a maximum. Correspondingly, we
expect that the plurality function minimises noise stability when 𝜌 < 0. If 𝜌 < 0, then (3) implies that∫

R𝑛+1
ℎ(𝑥)𝑇𝜌ℎ(𝑥)𝛾𝑛+1 (𝑥) d𝑥 =

∫
R𝑛+1

ℎ(𝑥)𝑇(−𝜌)ℎ(−𝑥)𝛾𝑛+1 (𝑥) d𝑥.
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So, in order to understand the minimum of noise stability for negative correlations, it suffices to consider
the following bilinear version of the standard simplex problem with positive correlation.

Problem 7.1 (Standard Simplex Problem, Bilinear Version, Positive Correlation [IM12]). Let 𝑚 ≥ 3.
Fix 𝑎1, . . . , 𝑎𝑚 > 0 such that

∑𝑚
𝑖=1 𝑎𝑖 = 1. Fix 0 < 𝜌 < 1. Find measurable setsΩ1, . . .Ω𝑚,Ω′

1, . . .Ω
′
𝑚 ⊆

R
𝑛+1 with ∪𝑚

𝑖=1Ω𝑖 = ∪𝑚
𝑖=1Ω

′
𝑖 = R

𝑛+1 and 𝛾𝑛+1 (Ω𝑖) = 𝛾𝑛+1 (Ω′
𝑖) = 𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑚 that minimise

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω𝑖 (𝑥)𝑇𝜌1Ω′
𝑖
(𝑥)𝛾𝑛+1 (𝑥) d𝑥,

subject to the above constraints.

Conjecture 7.2 (Standard Simplex Conjecture, Bilinear Version, Positive Correlation [IM12]). Let
Ω1, . . .Ω𝑚,Ω′

1, . . .Ω
′
𝑚 ⊆ R𝑛+1 minimise Problem 1.5. Assume that 𝑚 − 1 ≤ 𝑛 + 1. Fix 0 < 𝜌 < 1. Let

𝑧1, . . . , 𝑧𝑚 ∈ R𝑛+1 be the vertices of a regular simplex in R𝑛+1 centred at the origin. Then ∃ 𝑤 ∈ R𝑛+1

such that, for all 1 ≤ 𝑖 ≤ 𝑚,

Ω𝑖 = −Ω′
𝑖 = 𝑤 + {𝑥 ∈ R𝑛+1 : 〈𝑥, 𝑧𝑖〉 = max

1≤ 𝑗≤𝑚
〈𝑥, 𝑧 𝑗〉}.

In the case that 𝑎𝑖 = 1/𝑚 for all 1 ≤ 𝑖 ≤ 𝑚, it is assumed that 𝑤 = 0 in Conjecture 7.2.
Because we consider a bilinear version of noise stability in Problem 7.1, that existence of an optimiser

is easier than in Problem 1.5.

Lemma 7.3 (Existence of a Minimiser). Let 0 < 𝜌 < 1 and let 𝑚 ≥ 2. Then there exist measurable sets
Ω1, . . .Ω𝑚,Ω′

1, . . .Ω
′
𝑚 that minimise Problem 7.1.

Proof. Define Δ𝑚 as in (6). Let 𝑓 , 𝑔 : R𝑛+1 → Δ𝑚. The set 𝐷0 : = { 𝑓 : R𝑛+1 → Δ𝑚} is norm closed,
bounded and convex; therefore, it is weakly compact and convex. Consider the function

𝐶 ( 𝑓 , 𝑔) : =
𝑚∑
𝑖=1

∫
R𝑛+1

𝑓𝑖 (𝑥)𝑇𝜌𝑔𝑖 (𝑥)𝛾𝑛+1 (𝑥) d𝑥.

This function is weakly continuous on 𝐷0×𝐷0, and 𝐷0×𝐷0 is weakly compact, so there exists �̃� , �̃� ∈ 𝐷0
such that 𝐶 ( �̃� , �̃�) = min 𝑓 ,𝑔∈𝐷 𝐶 ( 𝑓 , 𝑔). Because C is bilinear and 𝐷0 is convex, the minimum of C must
be achieved at an extreme point of 𝐷0 × 𝐷0. Let 𝑒1, . . . , 𝑒𝑚 denote the standard basis of R𝑚, so that
𝑓 , 𝑔 take their values in {𝑒1, . . . , 𝑒𝑚}. Then, for any 1 ≤ 𝑖 ≤ 𝑚, define Ω𝑖 : = {𝑥 ∈ R𝑛+1 : 𝑓 (𝑥) = 𝑒𝑖}
and Ω′

𝑖 : = {𝑥 ∈ R𝑛+1 : 𝑔(𝑥) = 𝑒𝑖}. Note that 𝑓𝑖 = 1Ω𝑖 and 𝑔𝑖 = 1Ω′
𝑖

for all 1 ≤ 𝑖 ≤ 𝑚. �

Lemma 7.4 (Regularity of a Minimiser). Let Ω1, . . . ,Ω𝑚,Ω′
1, . . . ,Ω

′
𝑚 ⊆ R𝑛+1 be the measurable sets

minimising Problem 1.5, guaranteed to exist by Lemma 7.3. Then the sets Ω1, . . . ,Ω𝑚,Ω′
1, . . . ,Ω

′
𝑚 have

locally finite surface area. Moreover, for all 1 ≤ 𝑖 ≤ 𝑚 and for all 𝑥 ∈ 𝜕Ω𝑖 , there exists a neighbourhood
U of x such that 𝑈 ∩ 𝜕Ω𝑖 is a finite union of 𝐶∞ 𝑛-dimensional manifolds. The same holds for
Ω′

1, . . . ,Ω
′
𝑚.

We denote Σ𝑖 𝑗 : = (𝜕∗Ω𝑖) ∩ (𝜕∗Ω 𝑗 ),Σ′
𝑖 𝑗 : = (𝜕∗Ω′

𝑖) ∩ (𝜕∗Ω′
𝑗 ) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚.

Lemma 7.5 (The First Variation for Minimisers). Suppose that Ω1, . . . ,Ω𝑚,Ω′
1, . . . ,Ω

′
𝑚 ⊆ R𝑛+1 min-

imise Problem 7.1. Then for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, there exists 𝑐𝑖 𝑗 , 𝑐′𝑖 𝑗 ∈ R such that

𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑐𝑖 𝑗 , ∀ 𝑥 ∈ Σ𝑖 𝑗 .

𝑇𝜌 (1Ω′
𝑖
− 1Ω′

𝑗
) (𝑥) = 𝑐′𝑖 𝑗 , ∀ 𝑥 ∈ Σ𝑖 𝑗 .
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We denote 𝑁𝑖 𝑗 (𝑥) as the unit exterior normal vector to Σ𝑖 𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Also, denote 𝑁 ′
𝑖 𝑗 (𝑥)

as the unit exterior normal vector to Σ′
𝑖 𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Let Ω1, . . . ,Ω𝑚,Ω′

1, . . . ,Ω
′
𝑚 ⊆ R𝑛+1 be

a partition of R𝑛+1 into measurable sets such that 𝜕Ω𝑖 , 𝜕Ω′
𝑖 are a locally finite union of 𝐶∞ manifolds

for all 1 ≤ 𝑖 ≤ 𝑚. Let 𝑋, 𝑋 ′ ∈ 𝐶∞
0 (R𝑛+1,R𝑛+1). Let {Ω(𝑠)

𝑖 }𝑠∈(−1,1) be the variation of Ω𝑖 corresponding
to X for all 1 ≤ 𝑖 ≤ 𝑚. Let {Ω

′ (𝑠)
𝑖 }𝑠∈(−1,1) be the variation of Ω′

𝑖 corresponding to 𝑋 ′ for all 1 ≤ 𝑖 ≤ 𝑚.
Denote 𝑓𝑖 𝑗 (𝑥) : = 〈𝑋 (𝑥), 𝑁𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ𝑖 𝑗 and 𝑓 ′𝑖 𝑗 (𝑥) : = 〈𝑋 ′(𝑥), 𝑁 ′

𝑖 𝑗 (𝑥)〉 for all 𝑥 ∈ Σ′
𝑖 𝑗 . We let

N denote the exterior pointing unit normal vector to 𝜕∗Ω𝑖 for any 1 ≤ 𝑖 ≤ 𝑚 and we let 𝑁 ′ denote the
exterior pointing unit normal vector to 𝜕∗Ω′

𝑖 for any 1 ≤ 𝑖 ≤ 𝑚.

Lemma 7.6 (Volume-Preserving Second Variation of Minimisers, Multiple Sets). Let
Ω1, . . . ,Ω𝑚,Ω′

1, . . . ,Ω
′
𝑚 ⊆ R𝑛+1 be two partitions of R𝑛+1 into measurable sets such that 𝜕Ω𝑖 , 𝜕Ω′

𝑖 are
a locally finite union of 𝐶∞ manifolds for all 1 ≤ 𝑖 ≤ 𝑚. Then

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑦)𝐺 (𝑥, 𝑦)1

Ω
′ (𝑠)
𝑖

(𝑥) d𝑥d𝑦

=
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ′
𝑖 𝑗

[( ∫
𝜕∗Ω𝑖

−
∫
𝜕∗Ω 𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 (𝑦), 𝑁 (𝑦)〉 d𝑦

]
𝑓 ′𝑖 𝑗 (𝑥) d𝑥

+
∑

1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

[( ∫
𝜕∗Ω′

𝑖

−
∫
𝜕∗Ω′

𝑗

)
𝐺 (𝑥, 𝑦)〈𝑋 ′(𝑦), 𝑁 ′(𝑦)〉 d𝑦

]
𝑓𝑖 𝑗 (𝑥) d𝑥

+
∫
Σ′
𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖( 𝑓 ′𝑖 𝑗 (𝑥))2𝛾𝑛+1 (𝑥) d𝑥

+
∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω′
𝑖
− 1Ω′

𝑗
) (𝑥)‖( 𝑓𝑖 𝑗 (𝑥))2𝛾𝑛+1 (𝑥) d𝑥.

(39)

Also,

∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥) = 𝑁 ′
𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ′

𝑖 𝑗 .

∇𝑇𝜌 (1Ω′
𝑖
− 1Ω′

𝑗
) (𝑥) = 𝑁𝑖 𝑗 (𝑥)‖∇𝑇𝜌 (1Ω′

𝑖
− 1Ω′

𝑗
) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 .

(40)

Moreover, ‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖ > 0 for all 𝑥 ∈ Σ′
𝑖 𝑗 , except on a set of Hausdorff dimension at most

𝑛−1, and ‖∇𝑇𝜌 (1Ω′
𝑖
−1Ω′

𝑗
) (𝑥)‖ > 0 for all 𝑥 ∈ Σ𝑖 𝑗 , except on a set of Hausdorff dimension at most 𝑛−1.

Equation (40) and the last assertion require a slightly different argument than previously used. To
see the last assertion, note that if there exists 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that

���∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)
��� = 0 on

an open set in Σ′
𝑖 𝑗 , then choose 𝑋 ′ supported in this open set so that the third term of (39) is zero.

Then, choose Y such that sum of the first two terms in (39) is negative. Then multiplying X by a small
positive constant, and noting that the fourth term in (39) has quadratic dependence on X, we can create
a negative second derivative of the noise stability, giving a contradiction. We can similarly justify the
positive signs appearing in (40) (as opposed to the negative signs from (28)).

Let 𝑣 ∈ R𝑛+1. For simplicity of notation, we denote 〈𝑣, 𝑁〉 as the collection of functions
(〈𝑣, 𝑁𝑖 𝑗〉)1≤𝑖< 𝑗≤𝑚 and we denote 〈𝑣, 𝑁 ′〉 as the collection of functions (〈𝑣, 𝑁 ′

𝑖 𝑗〉)1≤𝑖< 𝑗≤𝑚. For any

https://doi.org/10.1017/fms.2021.56 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.56


Forum of Mathematics, Sigma 25

1 ≤ 𝑖 < 𝑗 ≤ 𝑚, define

𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) : = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
( ∫

𝜕Ω𝑖

−
∫
𝜕Ω 𝑗

)
〈𝑣, 𝑁 (𝑦)〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦, ∀ 𝑥 ∈ Σ𝑖 𝑗′

𝑆′𝑖 𝑗 (〈𝑣, 𝑁 ′〉) (𝑥) : = (1 − 𝜌2)−(𝑛+1)/2(2𝜋)−(𝑛+1)/2
( ∫

𝜕Ω′
𝑖

−
∫
𝜕Ω′

𝑗

)
〈𝑣, 𝑁 ′(𝑦)〉𝑒−

‖𝑦−𝜌𝑥‖2

2(1−𝜌2 ) d𝑦 ∀ 𝑥 ∈ Σ𝑖 𝑗 .

(41)

Lemma 7.7. (Key Lemma, 𝑚 ≥ 2, Translations as Almost Eigenfunctions). Let Ω1, . . . ,Ω𝑚,
Ω′

1, . . . ,Ω
′
𝑚 ⊆ R𝑛+1 minimise problem 7.1. Fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. Let 𝑣 ∈ R𝑛+1. Then

𝑆𝑖 𝑗 (〈𝑣, 𝑁〉)(𝑥) = −〈𝑣, 𝑁 ′
𝑖 𝑗 (𝑥)〉

1
𝜌
‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖, ∀ 𝑥 ∈ Σ′

𝑖 𝑗 .

𝑆′𝑖 𝑗 (〈𝑣, 𝑁 ′〉) (𝑥) = −〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉
1
𝜌
‖∇𝑇𝜌 (1Ω′

𝑖
− 1Ω′

𝑗
) (𝑥)‖, ∀ 𝑥 ∈ Σ𝑖 𝑗 .

When compared to Lemma 5.4, Lemma 7.7 has a negative sign on the right side of the equality,
resulting from the positive sign in (40) (as opposed to the negative sign on the right side of (28)).
Lemmas 7.6 and 7.7 then imply the following.

Lemma 7.8 (Second Variation of Translations, Multiple Sets). Let 0 < 𝜌 < 1. Let 𝑣 ∈ R𝑛+1. Let
Ω1, . . . ,Ω𝑚 minimise Problem 1.5. For each 1 ≤ 𝑖 ≤ 𝑚, let {Ω(𝑠)

𝑖 }𝑠∈(−1,1) be the variation of Ω𝑖

corresponding to the constant vector field 𝑋 : = 𝑣. Assume that∫
𝜕Ω𝑖

〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 =
∫
𝜕Ω′

𝑖

〈𝑣, 𝑁 (𝑥)〉𝛾𝑛+1 (𝑥) d𝑥 = 0, ∀1 ≤ 𝑖 ≤ 𝑚.

Then

d2

d𝑠2

���
𝑠=0

𝑚∑
𝑖=1

∫
R𝑛+1

1Ω(𝑠)
𝑖
(𝑥)𝑇𝜌1

Ω
′ (𝑠)
𝑖

(𝑥)𝛾𝑛+1 (𝑥) d𝑥

=
(
− 1

𝜌
+ 1

) ∑
1≤𝑖< 𝑗≤𝑚

∫
Σ𝑖 𝑗

‖∇𝑇𝜌 (1Ω′
𝑖
− 1Ω′

𝑗
) (𝑥)‖〈𝑣, 𝑁𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥

+
(
− 1

𝜌
+ 1

) ∑
1≤𝑖< 𝑗≤𝑚

∫
Σ′
𝑖 𝑗

‖∇𝑇𝜌 (1Ω𝑖 − 1Ω 𝑗 ) (𝑥)‖〈𝑣, 𝑁 ′
𝑖 𝑗 (𝑥)〉2𝛾𝑛+1 (𝑥) d𝑥.

Because 𝜌 ∈ (0, 1), − 1
𝜌 + 1 < 0. (The analogous inequality in Lemma 5.5 was 1

𝜌 − 1 > 0.) Repeating
the argument of Theorem 1.9 then gives the following.

Theorem 7.9 (Main Structure Theorem/Dimension Reduction, Negative Correlation). Fix 0 < 𝜌 < 1.
Let 𝑚 ≥ 2 with 2𝑚 ≤ 𝑛 + 3. Let Ω1, . . .Ω𝑚,Ω′

1, . . .Ω
′
𝑚 ⊆ R𝑛+1 minimise Problem 7.1. Then, after

rotating the sets Ω1, . . .Ω𝑚,Ω′
1, . . .Ω

′
𝑚 and applying Lebesgue measure zero changes to these sets,

there exist measurable sets Θ1, . . .Θ𝑚,Θ′
1, . . .Θ

′
𝑚 ⊆ R2𝑚−2 such that

Ω𝑖 = Θ𝑖 × R𝑛−2𝑚+3, Ω′
𝑖 = Θ′

𝑖 × R𝑛−2𝑚+3 ∀1 ≤ 𝑖 ≤ 𝑚.
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