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Summary

DNA fingerprint is a pattern of a variable number of bands (DNA fragments) with different sizes
on a Southern gel for each individual, generated by one or many VNTR loci. Genetic divergence
between individuals within and between populations can be studied in terms of number of shared
bands between individuals. Using a population genetic model we show that the expectations of
measures of genetic distance between populations based on band sharing data from DNA
fingerprint patterns are functions of composite parameters M = ANv, and time of divergence (t)
between populations, where N is the effective size of the populations, and v, the mutation rate. The
expected genetic distance remains linear with time of divergence at least up to N generations as
long as the average heterozygosity at the DNA fingerprint loci remains at or below 90%. Neither
incomplete knowledge of the allele frequencies at each locus, nor the unknown number of loci
underlying DNA fingerprint pattern, compromise these evolutionary dynamics of DNA fingerprint
patterns. Applications of this theory to data on three human populations, and review of literature
indicate that co-migration of alleles, and the presence of syntenic loci underlying the fingerprint
pattern have little impact of the reliability of evolutionary conclusions from DNA fingerprint
studies.

1. Introduction

Evolutionary studies of closely related populations or
species are efficient when the genetic alterations
between the contrasting units (groups) are large
enough to make them genetically somewhat distinct
from each other. With a low substitution rate (e.g.
1 x 10~9 per site per generation; Nei, 1987), long
segments of DNA sequences may be required for
short-term evolutionary studies, which makes the
approach of utilizing DNA sequences currently not
quite efficient (Saitou & Nei, 1986). However, variable
number of tandem repeat (VNTR) loci which are
characterized by high mutation rates (up to 0-001, or
005 per locus per generation; Jeffreys et al. 1988) may
lessen this problem to some extent. Due to the high
rate of mutation leading to changes in the number of
repeats of a short DNA sequence, VNTR loci are
characterized by high heterozygosities and large
numbers of alleles per locus (Nakamura et al. 1987;
Wong et al. 1987). Because of their hypervariability,
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VNTR loci have been extremely useful in gene
mapping, in forensic identification of individuals, in
determining relatedness of individuals, and in evol-
utionary studies of genetically close populations or
species.

DNA fingerprint is a pattern of a variable number
of bands (DNA fragments) with different sizes on a
Southern gel for each individual, generated by one or
many VNTR loci (Jeffreys et al. 1985 a, b, c; Wong et
al. 1986, 1987). Such patterns, detected by hybrid-
ization with a single multilocus probe (MLP), or
combination of patterns from hybridization with
several single locus probes (SLPs), provide op-
portunities for microevolutionary studies. Population
relationships are studied by using population fre-
quency distributions generated by SLPs which have
characteristics parallel to the traditional isozyme and
RFLP loci (Chakraborty et al. 1992). A single MLP,
which detects many hypervariable VNTR loci sim-
ultaneously in the genome, has features that are
somewhat different from the SLPs. First, the number
of loci underlying the MLP is unknown, and the allele
frequencies at each locus are not available. This
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makes genetic distance computations troublesome,
since all measures of genetic distances rely on the
allele frequency data for each locus in all populations
(Chakraborty & Rao, 1991). Second, the fingerprint
data of the MLPs are often marred with technical
limitations such as the incomplete resolution of bands
of nearly similar sizes and co-migration of fragments
produced by alleles at different loci. These technical
problems introduce complications in the statistical
interpretation of DNA fingerprint data from a single
MLP. Although these issues have been mentioned by
others (see, e.g., Lynch, 1988) to argue that standard
population genetic principles may not apply to DNA
fingerprinting data, there had been some attempts
that demonstrate that, properly interpreted, DNA
fingerprint data provide information regarding several
critical population genetic parameters that are useful
for evolutionary studies (Jeffreys et al. 1988; Stephens
et al. 1992; Jin & Chakraborty, 1993). In addition, the
MLPs have the merit of being efficient and cost
effective in the sense that through their use it is easy to
type many individuals at many loci in a short period
of time, and with relatively low cost. Therefore, a
formal statistical method of calibrating evolutionary
changes from MLP data by taking into account their
limitations is a worthwhile exercise.

Several efforts have been made to utilize MLP data
since the first demonstration of the utility of MLPs in
genetic studies (Jeffreys et al. 19%5a, b, c). Lynch
(1990,1991) proposed an empirical similarity measure-
ment for population genetic studies using DNA
fingerprint data from MLPs. Although a very similar
approach was followed by Yuhki & O'Brien (1990)
and Gilbert et al. (1990, 1991), the lack of theoretical
support makes it less appealing.

The purpose of this research is to provide a
statistical basis for measurement of genetic distances
between populations using the DNA fingerprint data,
based on a population genetic model. First, we
consider a model where the allele frequencies at each
underlying locus are known, through which we study
the population dynamics of summary measures such
as number of shared bands between individuals within
a population, as well as that of the number of shared
bands between individuals of different populations.
Drift expectations of such summary measures are
studied under a specific mutation model (the infinite
allele model; Wright, 1949; Kimura & Crow, 1964).
Second, we show that the drift expectation of the
number of shared alleles (bands) between individuals
from two populations is a function of the composite
parameter (M = 4Nv) and t/2N, where N is the
effective population size, v, the mutation rate, and t is
the divergence time of the two populations. These
demonstrate that the genetic distance based on the
number of shared alleles (bands) between individuals
is approximately equivalent to Nei's genetic distance
(Nei, 1972, 1987), even though the present approach
does not explicitly utilize the entire allele frequency

data from both populations. Numerical illustrations
from the data on several SLP loci studied in three
human racial groups are provided to indicate that the
loss of information from this approach is not
substantial in comparison with the evaluation of Nei's
genetic distances from allele frequency data. Finally,
we show that even though, for the analysis of SLP
data, such data summarization based on the allele
frequency distribution is not required, this approach
allows an application of this theory to use fingerprint
data from MLPs for population genetic studies. The
basic assumption required for such application is to
view the MLP as a collection of several SLPs where
the co-migration of alleles at different loci are
neglected as in other studies (Lynch, 1988, 1990,
1991; Li et al. 1993). Finally, we indicate the possible
effects of co-migration and incomplete resolution of
similar size fragments on the evaluation of genetic
distances based on the number of shared bands
(alleles).

2. Theory

(i) The mutation model

VNTR loci can be classified into three groups based
on the size of the repeat unit: microsatellites (1-2 base
pair (bp) repeat unit), short tandem repeat (STR,
3-5 bp repeat unit), and minisatellite (15-70 bp repeat
unit) (Shriver et al. 1993). Although the exact
molecular mechanisms of copy number alterations of
core units at VNTR loci are still unknown, several
mechanisms (e.g. replication slippage, unequal sister
chromatid exchange) have been suggested based on
the experimental as well as population genetic evi-
dence. The minisatellite loci are presumably the major
determinants of DNA fingerprint patterns revealed by
a MLP. Allelic variations at such loci have been
explained by unequal exchanges between long tandem
repeat arrays. This results in a very large number of
different sized alleles, as the infinite-allele model
(IAM) assumes (Clark, 1989; Flint et al. 1989;
Chakraborty et al. 1991; Shriver et al. 1993). In this
research, we use the infinite-allele model as the
underlying mutation mechanism of minisatellite
VNTR loci to investigate the population dynamics of
our summary statistics.

(ii) The distribution of the number of shared alleles
{bands) between individuals within and between
populations

Chakraborty & Jin (1993) showed that the number of
shared alleles (bands) can be used as a summary
measure to describe kinship relationships between
individuals for DNA fingerprinting data generated
either by a combination of several SLPs or by a MLP.
They also showed that the number of shared alleles
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(bands) between two individuals drawn randomly
from a population (n J at /-th locus has the following
distribution,

0 l -
(1)

where am is the sum of the w-th power of allele
frequencies of /-th locus being considered, i.e.

(2)

where xt(l) is the frequency of /-th allele at /-th locus
and k is the number of alleles at /-th locus. The drift
expectation of nw can thus be written as

E[nJ=4E(a2)-4E(a (3)

By following the same approach, the distribution of
the number of shared alleles (bands) two individuals
one of which is drawn from population 1 while the
other is drawn from population 2, («„), at /-th locus is
given by

l-4b
(4)

in which

(5)

where x((l), y((l) are the allele frequencies of z-th allele
(i = 1,2, ...,k) at /-th locus from population 1 and
population 2, respectively. The drift expectation of the
number of shared alleles (bands) between population
1 and population 2, nb, can be written as

£[n J = 4E(b11) - 2E(b12) - 2E(b21) + E(b22). (6)

(iii) The dynamics of the number of shared alleles
{bands) between individuals within populations

Following Li & Nei (1975), we start with a ^-allele
model so that the results under the infinite-allele
model are obtained by letting k^-co. Consider a
randomly mating diploid population of effective size
N. Assume that N is sufficiently large so that 1 /N2 and
higher powers of \/N are negligible compared with
\/N. Following Kimura (1968), we assume that there
are k possible allelic states at a locus and each allele
mutates at the rate of v per generation to any one of
the k — 1 other allelic types with equal probability. All
mutations are assumed neutral in this analysis.

Following Li & Nei (1975), let

be the (m,n,p,q)-th moments of xt(t), x}(t), yt(t), and
y,(t). The allele frequencies x((t), xjij), yt(t), and yt(t)
satisfy the following recurrence equations:

x((t + \) =

where SXf(t) and £J^(0 are the deviations of allele
frequencies Xt(t) and Y((t) at /-th generation due to
random drift, and

i(t) = (\-c)xi(t) + d,

i(t) = (\-c)yi(t) + d,

d=v/{k-\),

c = kv/{k-\),

and

E\SXt{t)) = EiSX^t)] = E[SY((t)] =

(7)

= 0,

= -Xt(t)X£t)/2N,

E[SY((t)dYj(t)] = -Y((t)Yj(t)/2N,

E[SX((t)SYt(t)] = ElSX((t)SY}(t)] = 0.

By approximating / C " P 9 - / C , P 9
 by rf/*m

we have the following differential equation

(8)

where A = 4Nc, B = 4Nd, and the terms involving
\/N2 and higher-order terms are neglected. The
solution of the equation (8) can be obtained step by
step, starting from /if000, /$_„„, /*«> 10, and
Note that 01.

)—-r\e (9)

and i4\ 00, i4lAi>, i4l.n can be obtained by replacing
x((0) with x,(0), yt(0), and j / 0 ) , respectively.

Using the solutions of equation (8), E[a2(t)], E[a3(t)],
Ela^t)] can be expressed in terms of parameters t, v,
N, and M (see Appendix equations (A 1)-{A 3)), so

1-2
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Fig. 1. Relationship between expectations of measures of genetic distance between populations and time of divergence
(t/2N), in units of 2N generations for various values of average heterozygosity (H). In the top three panels, the solid
lines represent the expected genetic distance based on DNA fingerprinting band (allele) sharing data, E[D(t)] (equation
(15), and the dashed lines are expectations of Nei's minimum distance (equation (16)), while in the bottom three panels
E[Dt(t)] (equation (18)) are shown by solid lines, and Nei's standard distance by dashed lines.

that the expectation of the number of shared alleles
(bands) between individuals within population (nw{t))
at t-th generation after divergence is given by

36a2(0)

M + 6

18

(M+5)(M+6)

(M+3)(M+5)(M + 6)

4(M+3)
M + 6

6a2(0) 4 _
"M+4 (M+2)(M+4)J"

-~\e'<

4(M + 3 M l ) r

(M + 4)(M+5)L

2(2M2 + 6M+3)

a-(2r+l/2N)t

(10)

If the initial population (i.e., / = 0) is at equilibrium,
we have

as obtained by Li and Nei (1975). Even otherwise, at
?->oo, equation (10) obtains the limit

£ [ « , ( « > ) ] = , . .. . l i f , „ . l i r , . . . ( 1 1 )

(iv) The dynamics of the number of shared alleles
(bands) between individuals between populations

With the same approach, the expectation of the
number of shared alleles (bands) between individuals
one of which comes from population 1 and the other
from population 2 can be obtained by replacing the
expectation of bmn of equation (6) by the solutions of
equation (8) (see Appendix equations (A 4)-(A 7)).
This becomes

xe

xe
,-(3v+l/2N) t

4(M+1)2

" (M+2)2 (12)
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When the ancestral population before the diver-
gence is at equilibrium (i.e. t = 0), we have 6n(0) =
a2(0),Z>12(0) = b21(0) = a3(0),622(0) = a4(0). Therefore,

2M

whose drift expectations is approximately given by

(M+l)(M+2)2(M+3)

(M + 2)5 " l ;

(v) Genetic distance

Equation (13) indicates that as t tends to oo, the drift
expectation of nb(t) approaches zero. In contrast, at
t = 0, E[nb(t)] = E[nw(oo)] when the initial population
before splitting is at mutation-drift equilibrium. The
genetic distance based on the number of shared alleles
(bands) between individuals, therefore, can be denned
as

(14)

where nwl and nw2 are the number of shared alleles
(bands) within population 1 and population 2,
respectively, and each of them can be estimated as the
average number of shared bands of all pairwise
comparisons of DNA fingerprints of the individuals in
that population. Since under the assumption that the
initial population is at mutation-drift equilibrium
before split, E[(nwX + nw2)/2] = E[nw(oo)] is a constant,
the expectation of D(t) can be written as

E\D{t)] = -E[nb(t)]

2M
(M+l)(M+2)2(M+3)

L £ J'

[1-e ,-(M+l) 5

(15)

where M = ANv, and T = t/2N.
This makes the properties of the distance measure

based on the number of shared bands (alleles) similar
to that of Nei's minimum genetic distance, since Nei's
minimum genetic distance has the drift expectation

-e- (16)

where Jx(co) is the probability of gene identity within
an equilibrium population (Nei, 1987). Because of the
feature that equations (15) and (16) both reach an
asymptote depending upon the within-population
genetic diversity, the asymptote being ^^^(oo)] for
E[D(t)], and Jx(co) for Dm(t), we may also define an
index of genetic dissimilarity based on the number of
shared bands (alleles) by

2n.(Q

M

> + 6M+3)(M+2y

2(M+l)2(M+3)
'{M+2)(2Mi (18)

by using equations (11) and (13).
Figure 1 shows some numerical computations on

the expected distance between populations as func-
tions of their time of divergence, for different levels of
heterozygosity values within populations. The solid
lines in these diagrams are the relationships for the
expectations of D{t) and D{(t) given by equations (15)
and (18), while the dashed lines are for the expectation
of Nei's minimum distance by equation (16) (com-
pared with £>(0) and Nei's standard distance (com-
pared with Dt(t)).

These computations indicate several important
features of the proposed distance functions (equations
(14) and (17)). First, both measures of genetic distances
are not completely proportional to the time of
divergence. However, the deviation from linearity
with the time of divergence starts approximately at a
point of time when Nei's distance statistics also fall off
from the linear time-dependence. Second, the pro-
portionality with time of divergence holds for a time
period that depends on the degree of heterozygosity
(H). When H is larger, the linearity holds for a shorter
time of divergence. Third, for H ^ 90 % (as in the case
of many STR and VNTR loci), D(t) and Dt{i) appears
to hold the linear relationship quite adequately for
t ^ N generations.

When M is large (say, M ^ 2), the second term of
equation (18) is the dominant component of drift
expectation of D((t). In the context of hypervariable
loci, since most SLPs and polymorphic loci in MLPs
show levels of heterozygosity (H) 70% or above
(Nakamura et al. 1987; Wong et al. 1987; Armour et
al. 1990; Edwards et al. 1992), and hence M =
H/(l—H)^2, we may approximate the drift ex-
pectation of Dt{t) by

(M+2)(2M
[1-e- (19)

for the study of population differentiation with
fingerprint data. Figure 2 shows the effect of such
approximations for different levels of heterozygosity,
while the dotted lines are using the approximation of
equation (19). These computations indicate that while
equation (19) underestimates the expected genetic
distance, even for H at the level of 50%, the
approximation is fairly accurate for times of di-
vergence of the order of 3./V.

(17)
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Fig. 2. Effect of approximation (equation (19)) on the
expected genetic distance, E[Dt(t)], based on band (allele)
sharing data from DNA fingerprinting patterns for
different levels of average heterozygosity (H) and times of
divergence (t/2N) measured in units of 2N generations.
The solid lines are exact expectations (equation (18))
while the dotted lines represent their respective
approximate values (equation (19)).

(vi) Genetic distance from DNA fingerprint data

The DNA fingerprint generated by a single MLP or a
group of SLPs is a combination of patterns of many
VNTR loci. Viewing MLP as a collection of several
SLPs where the co-migration of alleles at different loci
are neglected, our previous definition of genetic
distance based on the number of shared bands within
and between population (equation (14)) holds for
multiple loci. This is so because the number of shared
bands both for within and between populations are
additive across loci, which makes our genetic distance
applicable to DNA fingerprint data.

On the other hand, Dt(t) is not additive across loci.
This may compromise the applicability of Dt{i) for
DNA fingerprint data. However, it can be shown that
as long as the divergence time if) is relatively small,
the linearity between Dt{t) and t still holds.

Table 1. Comparison of Dt with Nefs distances by
using STR data

5-locit
C-B
C-A
B-A

7-locif
C-B
C-A
B-A

D2: Nei

015265
011603
013815

015027
009765
014299

's standard distance.

015482
010989
014224

0-14957
0-11355
014139

015272
010479
014779

014622
010844
014579

Dm: Nei's minimum distance/average homozygosity.
C, Caucasians; B, Blacks; A, Asians.
t See text for a listing of the loci.

3. Numerical results

Recently, Edwards et al. (1991) described several
short tandem repeat (STR) loci, each of which
demonstrates considerable degrees of polymorphism
within populations. The population genetic character-
istics of five of these loci were previously described
(Edwards et al. 1992) in Caucasians (200 individuals),
American Blacks (200 individuals), and Asians (80
individuals) currently residing in Houston, Texas.
Two more STR loci have now been typed recently for
the same individuals from the populations mentioned
above.

Using 7-locus (TH01, RENA4 FARB, HPRTB,
ARA, CD4, and PLA2A1) genotype data we com-
puted the pairwise numbers of shared bands within
and between populations and then the numerical
values of the genetic distance based on the measure of
similarity index (Dt) (see Table 1). For comparison,
the allele frequencies from each locus are also used to
compute Nei's minimum and standard genetic dis-
tances, using the estimation procedure suggested by
Nei (1978). Since two of the seven loci are X-linked
(HPRTB, and ARA), we first computed Dt for the five
autosomal loci from all individuals. We also computed
the distances for all seven loci by using female
individuals only. Note that for the estimation of Nei's
minimum distance, a standardization was carried out
by dividing Nei's minimum distance with the average
homozygosity of two populations compared in order
to make Nei's minimum distance range from 0 to 1 so
that it would be comparable with other distance
measurements.

The computations in Table 1 show that even
though the measures of genetic distance based on
allele sharing data consider only a summary measure
of genotype data (number of bands shared between
individuals), such data summarization does not
compromise the evaluation of evolutionary distances
between populations, since the computed distance
values are virtually identical to the ones obtained by
Nei's method of estimation of genetic distances.

4. Discussion and conclusions

The statistic Dt(t) has a similarity in appearance with
indices that have been proposed to study restriction
fragment length polymorphism (RFLP) data (Nei &
Li, 1979; Lynch, 1990, 1991), but we might note that
these concepts are somewhat different, since our
proposed statistic (equation (14)) is based on pairwise
comparison of individuals, at the level of within as
well as between populations, so that genetic dis-
similarity between random samples of individuals
within and between populations are being contrasted
here, in the spirit of the formulation of Nei's distance
indices (Nei, 1972). On the contrary, Nei & Li (1979),
and Lynch (1990, 1991) were attempting to normalize
band (allele) sharing between individuals in terms of
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numbers of bands (alleles) present in the individuals
under comparison. Therefore, conceptually, our pro-
posed statistic is different from the ones suggested
before in the context of analysing DNA fingerprint
data.

Throughout our derivations, we equated bands to
alleles, while in principle for DNA fingerprint data,
co-migration of fragment sizes resulting from alleles
at different loci remains a viable possibility. Fur-
thermore, the underlying minisatellite loci reflecting
the DNA fingerprinting pattern may be linked, so that
Li & Nei's (1975) theory may not be strictly applicable.
While a rigorous study of these possibilities is
impossible without hard data on the extent of co-
migration and linkage relationships between the
underlying loci, applicability of our theory may be
intuitively justified. First, by a position by position
analysis of fragment sizes, Krawczak & Bockel (1992),
and Bockel et al. (1992) showed that the problem of
co-migration may be examined by postulating
' position-specific genetic factors' (F), an unobservable
variable. When F takes values larger than zero, an
individual's DNA fingerprint pattern would exhibit
the presence of a band in that position. The relative
frequencies of presence of bands at specific positions
(x, in the terminology of Bockel et al. 1992), in turn,
predicts how large the values of F can be in any DNA
fingerprint database in population surveys. In general,
values of x do not exceed 0-15 to 0-25, so that the
probability of F ^ 2 is less than 0-035, under the
assumption that F is distributed as a Poisson variate.
This suggests that co-migration of alleles at different
loci is not a very common phenomenon. Furthermore,
there is no evidence that alleles of specific frequencies
would be more likely to co-migrate than the ones that
form distinctly different bands. Therefore, as long as
the co-migrating alleles represent a random sample of
all alleles (a reasonable assumption to work with), our
theory of expected genetic distance should apply
without any systematic bias in evolutionary predic-
tions. Of course, the variance of genetic distance
(particularly, the stochastic component, or the intra-
locus component) would be under-predicted by
neglecting the effect of co-migration. Since we have
not derived the variance of distance measures in the
present work, we conclude that the effect of co-
migration is not critical for the conclusions reached in
this work.

Similarly, the problem of linkage of underlying loci
cannot be rigorously examined without a full dis-
section of all loci underlying a MLP used. Such data
are lacking. Nevertheless, attempts to locate dispersal
of hypervariable minisatellite loci in the genome
indicate that they are located on chromosomal bands
that are identifiable from in situ hybridization of
metaphase chromosomes (Royle et al. 1988; Zischler
et al. 1989). Therefore, in terms of physical distances
such loci are generally located far apart from each
other, so that the effect of linkage disequilibrium

between bands (alleles) can be neglected. This is so,
because they are also separated by large recombination
distances, so that for all practical purposes they may
be assumed independent. We might add that even
when the allele frequencies are dependent, the expected
genetic distance should not be affected, since ex-
pectation of sums of powers of allele frequencies is not
altered even when the alleles at different loci are
dependent.

In summary, this work shows that DNA fingerprint
data allow a calibration of genetic divergence between
populations or taxa that are evolutionarily close
enough, because even divergence between them would
be reflected in their fingerprint profiles caused by the
high rate of mutation. Linearity with time of di-
vergence holds for taxa that are separated from each
other up to N generations, as long as the average
heterozygosity approximates 90%, as is the case of
most minisatellite loci. Evolutionary studies involving
such hypervariable loci are important for other reasons
as well. It is now well-established that genomes of
several organisms have such interspersed hyper-
variable regions which involve genetic alterations due
to copy number variation of tandemly repeated short
sequences. For example, the minisatellite core
sequences (such as 33-6 and 33-15) appear to have
been conserved over evolution in plants, mammals,
apes, and human (see citations in Kelly et al. 1989).
Most contemporary methods (e.g. RFLP markers,
RAPD markers, or DNA sequence analysis) of
studying genetic relationships between taxa rely on
genetic alterations caused by nucleotide substitutions.
In comparison, polymorphisms in DNA fingerprinting
are caused by mechanisms different from them so that
the value of DNA fingerprint patterns for comparative
taxonomic analysis cannot be denigrated. The theory
presented here demonstrates that neither the effects of
co-migration, linkage and incomplete resolution, nor
the unknown number of loci compromise such
inference substantially. Of course, further studies are
needed to examine the sampling properties of such
summary measures of genetic divergence, from which
the limiting features of DNA fingerprint protocols
may be empirically established.

This work was supported by US Public Health Service Re-
search Grants GM-41399 and GM-45861 from the
National Institutes of Health, and grant 92-IJ-CX-K024
from the National Institute of Justice. The opinions, of
course, are those of authors and do not constitute an en-
dorsement of the granting agencies.
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Appendix

The expectations of am{t) and bmn(t) in equations (3)
and (6) can be written in the form of the solutions of
equation (8) under the infinite-allele model. Here 2
stands for the summation over all alleles.
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