INVERSION THEOREMS FOR THE LAPLACE-STIELTJES TRANSFORM

Z. DITZIAN AND A. JAKIMOVSKI

1. Introduction and main results. The Laplace-Stieltjes transform $f(x)$ of the function $\alpha(t)$ is defined by

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-x t} d \alpha(t) \equiv \lim _{\boldsymbol{R} \uparrow_{\infty}} \int_{0}^{R} e^{-x t} d \alpha(t) \tag{1}
\end{equation*}
$$

where $\alpha(t)$ is a function of bounded variation in each closed interval $[0, R]$ ($R>0$) and the right-hand side of (1) is supposed to be convergent for some $x=x_{0}$. The Laplace transform $f(x)$ of the function $\phi(t)$ is defined by

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-x t} \boldsymbol{\phi}(t) d t \equiv \lim _{\boldsymbol{R} \dagger_{\infty}} \int_{0}^{R} e^{-x t} \boldsymbol{\phi}(t) d t \tag{2}
\end{equation*}
$$

where $\phi(t) \in L_{1}(0, R)$ for each $R>0$ and the right-hand side of (2) is supposed to be convergent for some $x=x_{0}$.

Improving a result due to Phragmen and Doetsch (3, pp. 286-288), D. Saltz (6) obtained the following inversion theorem for the Laplace-Stieltjes transform.

Theorem A. If $f(x)$ is the Laplace-Stieltjes transform of $\alpha(t)$, then
$\lim _{\tau_{\infty}} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{e^{n s t}}{n!} f(n s)= \begin{cases}\left(1-\frac{1}{e}\right)(\alpha(0+)-\alpha(0)) & \text { for } t=0, \\ \left(1-\frac{1}{e}\right) \alpha(t+)+\frac{1}{e} \alpha(t-)-\alpha(0) & \text { for } t>0 ;\end{cases}$
here $\alpha(t \pm)$ denotes, respectively,

$$
\lim _{h \downarrow 0}(t \pm h) .
$$

In this paper we prove a general theorem for the Laplace-Stieltjes transform. Particular cases of this theorem generalize Theorem A and also an inversion theorem for the Laplace transform due to D. V. Widder (8). Also, our theorem gives formulas for $\alpha^{(r)}(z)$ by means of the values of $f(x)$ for real x. The formal idea leading to our main result is the following. Let

$$
K(s) \equiv \sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} s} .
$$

[^0]Then we have formally for the Laplace transform $f(x)$ of $\phi(t)$

$$
\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} s x} f\left(\lambda_{n} s\right)=\int_{0}^{\infty} K(s(x-t)) \phi(t) d t
$$

If, for some function $h(s)$, the function $\Phi_{s}(t, x) \equiv h(s) K(s(x-t))$ forms (as $s \uparrow \infty$) a kernel of a suitable singular integral (4, Chapter VII), then formally

$$
\lim _{s \uparrow \infty} h(s) \sum_{n=1}^{\infty} a_{n} \exp \left(\lambda_{n} s\right) f\left(\lambda_{n} s\right)=\phi(x),
$$

which is an inversion formula for the Laplace transform. The same idea is applicable to other integral transforms.
Let $K(s)$ denote a function such that $K(-s)$ is the Laplace-Stieltjes transform of a function $\beta(t)$ satisfying $\beta(t)=0$ for $0 \leqslant t \leqslant c$ (for some $c>0$). That is

$$
K(s) \equiv \int_{c}^{\infty} e^{s t} d \beta(t) \quad(c>0)
$$

For two real numbers x, y the Kronecker symbol $\delta_{x, y}$ is defined by $\delta_{x, y}=0$ for $x \neq y$ and $\delta_{x, y}=1$ for $x=y$.

Our main result is given by the following theorem.
Theorem 1. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. Suppose that for some $z \geqslant 0$ and a certain non-negative integer r there are $2 r+2$ numbers such that

$$
\alpha(t)= \begin{cases}\sum_{k=0}^{r} \frac{1}{k!} b_{k}(t-z)^{k}+o\left((t-z)^{r}\right) & \text { as } t \downarrow z, \tag{3}\\ \sum_{k=0}^{r} \frac{1}{k!} c_{k}(t-z)^{k}+o\left((z-t)^{r}\right) & \text { as } t \uparrow z\end{cases}
$$

(for $z=0$, the second assumption of $\alpha(t)$ is not needed. In this case we define $c_{k}=0$ for $0 \leqslant k \leqslant r$). If for a function $K(s)$ and some non-negative integer q

$$
\int_{c}^{\infty} e^{s t}|d \beta(t)|<+\infty
$$

for all real s,

$$
\lim _{s \uparrow_{\infty}} K(s) \equiv-a_{0}
$$

exists, and

$$
\int_{-\infty}^{+\infty}\left|u^{q} K^{(q+1)}(u)\right| d u<+\infty
$$

then for $0 \leqslant p \leqslant \min (r, q)$
(4) $\lim _{s \uparrow_{\infty}}\left\{s^{p} \int_{c}^{\infty} e^{s z} t^{p} f(s t) d \beta(t)-\sum_{n=0}^{p}\left(b_{n}-c_{n}\right) s^{p-n} K^{(p-n)}(0)\right.$

$$
\left.+\delta_{0,2} s^{p} K^{(p)}(0) \alpha(0)\right\}
$$

$$
=-a_{0} c_{\boldsymbol{p}}-\left(1-\delta_{0, z}\right) \delta_{0, p} a_{0} \alpha(0)
$$

In particular if $p=0$ or if $p>0$ and $b_{k}=c_{k}$ for $0 \leqslant k<p$, then for $z>0$
(5) $\quad \lim _{s t_{\infty}} s^{p} \int_{c}^{\infty} e^{s z t} t^{p} f(s t) d \beta(t)=K(0) b_{p}-\left(K(0)+a_{0}\right) c_{p}+\delta_{0, p} a_{0} \alpha(0)$.

If the function $\alpha(t)$ satisfies (3) for some $z \geqslant 0$, then for $z>0$ we have $b_{0}=\alpha(z+)$ and $c_{0}=\alpha(z-)$ and for $z=0$ we have $b_{0}=\alpha(0+)$ and $c_{0}=0$. For $p=0$, conclusion (4) of Theorem 1 takes the form

$$
\lim _{s \uparrow_{\infty}} \int_{c}^{\infty} e^{s z t} f(s t) d \beta(t)=K(0) \alpha(z+)-\left(K(0)+a_{0}\right) \alpha(z-)+a_{0} \alpha(0)
$$

If $a_{0}=0$, then the right-hand side is $K(0)(\alpha(z+)-\alpha(z-))$; and if $K(0) \neq 0$ we have a formula for the jump $\alpha(z+)-\alpha(z-)$ of the function $\alpha(t)$ at the point $t=z$. If $\alpha(t)$ is continuous at the point $t=z$, then $\alpha(z+)=\alpha(z-)$ and the right-hand side is equal to $-a_{0}\left(\alpha(z)\right.$; if $a_{0} \neq 0$, then we have an inversion formula for the Laplace-Stieltjes transform.

With the function $\alpha(t)$ and a fixed point $z \geqslant 0$, associate the two functions $\alpha_{+}(t) \equiv \alpha_{+}(z ; t)$ and $\alpha_{-}(t) \equiv \alpha_{-}(z ; t)$ defined by $\alpha_{+}(z ; t)=\alpha(z+)$ for $t=z$, $\alpha_{+}(z ; t)=\alpha(t)$ for $t>z$, and $\alpha_{-}(z ; t)=\alpha(z-)$ for $t=z$,

$$
\alpha_{-}(z ; t)=\alpha(t) \text { for } 0 \leqslant t<z .
$$

When $z=0$, we define $\alpha_{+}(z ; t)$ only. It is known (2, p. 114 (36) that if $\alpha_{+}{ }^{(r)}(\boldsymbol{z})$ and $\alpha_{-}{ }^{(r)}(z)$ exist, then assumption (3) on $\alpha(t)$ at the point $t=z$ is satisfied by the constants $b_{k}=\alpha_{+}{ }^{(k)}(z), c_{k}=\alpha_{-}{ }^{(k)}(z)(0 \leqslant k \leqslant r)$. If $\alpha^{(r)}(z)$ exists for some positive integer r and for some $z>0$, then conclusion (4) of Theorem 1 takes the form

$$
\lim _{s \uparrow_{\infty}} s^{p} \int_{c}^{\infty} e^{s z t} t^{p} f(s t) d \beta(t)=-a_{0} \alpha^{(p)}(z)+\delta_{0, p} a_{0} \alpha(0)
$$

for $0 \leqslant p \leqslant \min (r, q)$. If $a_{0} \neq 0$, then we have an inversion formula for the p th derivative of $\alpha(t)$ at the point $t=z$.

Suppose the function $\beta(t)$ defining $K(s)$ is a step function with jumps a_{k} at $t=k(k=1,2, \ldots)$, that is $\beta(t)=0$ for $0 \leqslant t \leqslant 1$ and $\beta(t)=\sum_{k<t} a_{k}$ for $t>1$. Then

$$
K(s)=\sum_{n=1}^{\infty} a_{n} e^{n s} .
$$

Associate with $K(s)$ the power series

$$
H(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

if

$$
\lim _{s \uparrow_{\infty}} K(s) \equiv-a_{0}
$$

exists. In this case $K(s)=H\left(e^{s}\right)-a_{0}$. It is easy to see that for such $K(s)$ Theorem 1 can be stated in the following form.

Theorem 2. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. Suppose that (3) is satisfied for some $z \geqslant 0$ and a certain non-negative integer r. If for an entire function

$$
H(z) \equiv \sum_{n=0}^{\infty} a_{n} z^{n}
$$

and some non-negative integer q we have

$$
\lim _{x \uparrow_{\infty}} H(x)=0
$$

and

$$
\int_{0}^{\infty}\left|x^{-1}(\log x)^{q} \sum_{k=1}^{q+1} A_{k}^{(q+1)} x^{k} H^{(k)}(x)\right| d x<+\infty
$$

where by definition

$$
x^{m} \equiv \sum_{k=1}^{m} A_{k}^{(m)} x(x-1) \ldots(x-k+1)
$$

then we have for $0 \leqslant p \leqslant \min (r, q)$

$$
\begin{gathered}
\lim _{s \uparrow_{\infty}}\left\{s^{p} \sum_{n=1}^{\infty} n^{p} a_{n} e^{n z s} f(n s)-\sum_{n=0}^{p}\left(b_{n}-c_{n}\right) s^{p-n}\left[\frac{d^{p-n}}{d t^{p-n}} H\left(e^{t}\right)\right]_{t=0}\right. \\
\\
\left.\quad+\delta_{0, z} s^{p}\left[\frac{d^{p}}{d t^{p}} H\left(e^{t}\right)\right]_{t=0} \alpha(t)\right\} \\
=-a_{0} b_{p}+\delta_{0, p} a_{0} \alpha(0)
\end{gathered}
$$

It is easy to see (5, p. 205 (4)) that

$$
\frac{d^{m}}{d x^{m}} H\left(e^{x}\right)=\sum_{k=1}^{m} A_{k}^{(m)} e^{k x} H^{(k)}\left(e^{x}\right) \quad \text { for } m>0
$$

Hence for $m>0$ we have

$$
\left[\frac{d^{m}}{d x^{m}} H\left(e^{x}\right)\right]_{x=0}=\sum_{k=1}^{m} A_{k}^{(m)} H^{(k)}(1)
$$

The numbers $A_{k}^{(m)}$ are the Stirling numbers of the second kind (5, p. 168).
We now give some methods for obtaining functions $H(z)$ satisfying the assumptions of Theorem 2. By using particular functions $H(z)$ suggested by these methods, we obtain from Theorem 2 inversion and jump formulas for the Laplace-Stieltjes transform and for the Laplace transform. These include Theorem A and another known result as special cases.

First method. Let $R(z)$ be an entire function of finite order $\rho \geqslant 0$. Then for each integer $b>\rho$ and each positive number c the function $H(z) \equiv e^{-c z^{b}} R(z)$ satisfies the assumptions of Theorem 2 on the function $H(z)$ for all non-negative integers q. This follows from the fact that the derivative of an entire function of finite order is of the same order (1, p. 13, Theorem 2.4.1). By choosing
$R(z)=(z-1)^{k}, b=1$, and $c=1$, we obtain the following result from Theorem 2.

Theorem 3. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. Suppose that (3) is satisfied for some $z \geqslant 0$ and a certain non-negative integer r. Then for $k, r=0,1,2, \ldots$, we have (if empty sums are defined as equal to zero)

$$
\begin{align*}
& \lim _{s \uparrow_{\infty}}\left\{s^{r} \sum_{n=1}^{\infty} n^{\tau} a_{k, n} e^{n z s} f(n s)-\sum_{n=0}^{r-k}\left(b_{n}-c_{n}\right) s^{r-n}\left[\frac{d^{r-n}}{d t^{r-n}}\left(e^{t}-1\right)^{k} e^{-e^{t}}\right]_{t=0}\right. \tag{6}\\
& \\
& \left.\quad+\delta_{0, z} s^{r}\left[\frac{d^{r}}{d t^{r}}\left(e^{t}-1\right)^{k} e^{-e^{t}}\right]_{t=0} \alpha(0)\right\} \\
& =(-1)^{k+1}\left[b_{r}-\delta_{0, \tau} \alpha(0)\right],
\end{align*}
$$

where

$$
a_{k, n}=(-1)^{k-n} \sum_{p=0}^{\min (k, n)}\binom{k}{p} /(n-p)!.
$$

Theorem 3 reduces to Theorem A when $k=r=0$.
If we add the two consequences (6) of Theorem 3 for $r=0$ and $k=0,1$ we obtain the following result:

$$
\lim _{s \uparrow_{\infty}} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{e^{n 2 s}}{(n-1)!} f(n s)=\frac{1}{e}\left(b_{0}-c_{0}\right)+\delta_{0,2} \frac{1}{e} \alpha(0) .
$$

For $z>0$, we have $b_{0}-c_{0}=\alpha(z+)-\alpha(z-)$; that is, we have here a formula for the jump of the function $\alpha(t)$ at the point $t=z>0$. For $z=0$, we have

$$
\frac{1}{e}\left(b_{0}-c_{0}\right)+\frac{1}{e} \delta_{0.2} \alpha(0)=\frac{1}{e}(\alpha(0+)+\alpha(0))
$$

Consequence (6) of Theorem 3 with $k=r+1$ has the following form:

$$
\lim _{s \uparrow_{\infty}} s^{r} \sum_{n=1}^{\infty} n^{r} a_{r+1, n} e^{n z s} f(n s)=(-1)^{r}\left(b_{r}-\delta_{0, r} \alpha(0)\right)
$$

This is a formula for b_{r}. In particular if $\alpha^{(r)}(z)$ exists for some $z \geqslant 0$, then $b_{r}=\alpha^{(r)}(z)$ and we have an inversion formula for the r th derivative of $\alpha(t)$. For $r=0$, we have $b_{0}=\alpha(z+)$. In this case, we have an inversion formula for $\alpha(z+)$.

By Theorem 3 for $r=1$ and $k=0$ and the fact that

$$
\int_{0}^{\infty} e^{-x t} \phi(t) d t=\int_{0}^{\infty} e^{-x t} d \alpha(t)
$$

for

$$
\alpha(t)=\int_{0}^{t} \phi(u) d u \quad(t \geqslant 0)
$$

if the left-hand side exists, we obtain the following result.
Theorem 4. Let $f(x)$ be the Laplace transform of $\phi(t)$. Suppose that for some $t=z>0$ the function $\phi(t)$ is the derivative of its indefinite integral; then

$$
\lim _{s \dagger_{\infty}} s \sum_{n=1}^{\infty}(-1)^{n-1} \frac{e^{n z s}}{(n-1)!} f(n s)=\phi(z) .
$$

Theorem 4, with the additional restriction that $\phi(t)$ is continuous, was given by D. V. Widder (8).

Second method. If $R(z)$ is an entire function of finite integral order $\rho>0$ and of finite type τ, then, for each $b>\tau$, the function $H(z)=e^{-b z \rho} R(z)$ satisfies the assumptions of Theorem 2 on $H(z)$ for all non-negative integral values of q. This follows from the fact that the derivative of an entire function of finite order and type is of the same order and type ($\mathbf{1}, \mathrm{p} .13$, Theorem 2.4.1).

Third method. Let $R(z)$ be an entire function satisfying $R(x)=O\left(x^{\alpha}\right)$ ($x \uparrow \infty$) for some $\alpha \geqslant-1$. Suppose $R(z)$ has zeros z_{1}, \ldots, z_{m} of orders $\alpha_{1}, \ldots, \alpha_{m}$, respectively. If for some non-negative integer g there are integers q_{1}, \ldots, q_{m} satisfying $0 \leqslant q_{j} \leqslant \alpha_{j}(0 \leqslant j \leqslant m)$ and

$$
q_{1}+\ldots+q_{m}>q+\alpha+1
$$

then the function

$$
H(z)=\left\{\int_{z}^{0}+\int_{0}^{+\infty}\right\}(t-z)^{q}\left(t-z_{1}\right)^{-q_{1}} \ldots\left(t-z_{m}\right)^{-q_{m}} R(t) d t
$$

satisfies the assumptions of Theorem 2 on $H(z)$ for this q. For two integers m, n satisfying $2 \leqslant n \leqslant m$, the function

$$
H(z)=\int_{z}^{\infty}(t-z)^{q} t^{-n} \sin ^{m} t d t
$$

satisfies the assumptions of Theorem 2 on $H(z)$ for each q with $0 \leqslant q \leqslant n-2$. By means of the identity

$$
H(x)=\sum_{k=0}^{q}(-1)^{q}\left(\frac{q}{k}\right) x^{q-k}\left\{\int_{0}^{\infty} t^{k-n} \sin ^{m} t d t-\int_{0}^{x} t^{k-n} \sin ^{m} t d t\right\}
$$

and the theorem of residues, it is possible to obtain the coefficients of the power-series expansion of $H(x)$ explicitly.

Fourth method. It is known that for $\nu \geqslant 0$ the function

$$
H_{\nu}(z) \equiv \Gamma(\nu+1) 2^{\nu} z^{-\nu} J_{\nu}(z)=\sum_{m=0}^{\infty}(-1)^{m} \frac{\Gamma(\nu+1)}{m!\Gamma(m+\nu+1)}(z / 2)^{2 m}
$$

is an entire function, that $J_{\nu}(z)=O\left(z^{-\frac{1}{2}}\right)$ as $z \uparrow \infty$, and that

$$
\frac{d}{d z}\left[z^{-\nu} J_{\nu}(z)\right]=-z^{\nu} J_{\nu+1}(z)
$$

(9, p. $368, \S 17.5$ and p. $360, \S 17.211$). By these properties of $J_{\nu}(z)$ it follows that for two non-negative integers q, n and any real number ν with $\nu>q+n+\frac{1}{2}$, the function $H_{\nu}(z)$ satisfies the assumptions of Theorem 2 on $H(z)$ for this q. By substituting the function $z^{n} H_{\nu}(z)$ for the pairs $p=0, n=0$ and $p=0$, $n=1$ in Theorem 2, we get the following result.

Theorem 5. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. Then for $\nu>\frac{1}{2}$ we have

$$
\begin{aligned}
\lim _{s \uparrow_{\infty}} \sum_{m=1}^{\infty}(-1)^{m-1} \frac{\Gamma(\nu+1)}{m!\Gamma(m+\nu+1)} 2^{-2 m} e^{2 m z s} f(2 m s) \\
= \begin{cases}\left(1-H_{\nu}(1)\right)(\alpha(0+)-\alpha(0)) & \text { for } z=0 \\
\left(1-H_{\nu}(1)\right) \alpha(z+)+H_{\nu}(1) \alpha(z-)-\alpha(0) & \text { for } z>0\end{cases}
\end{aligned}
$$

and for each $\nu>\frac{3}{4}$ and $z>0$ we have

$$
\begin{aligned}
\lim _{s \uparrow_{\infty}} \frac{1}{J_{\nu}(1)} \sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!\Gamma(m+\nu+1)} 2^{-(2 m+\nu)} e^{(2 m+1) z s} f((2 m & +1) s) \\
& =\alpha(z+)-\alpha(z-)
\end{aligned}
$$

2. Proof of Theorem 1. In the proof of Theorem 1 we use the following six lemmas.

Lemma 1. If

$$
K(s) \equiv \int_{c}^{\infty} e^{s t} d \beta(t) \quad(c>0)
$$

exists for all real s, then

$$
\lim _{s \downarrow_{-\infty}} e^{-c s} K^{(r)}(s)=c^{\top}[\beta(c+)-\beta(c)]
$$

for $r=0,1,2, \ldots$; in particular

$$
\lim _{s \uparrow_{\infty}} s^{q} K^{(r)}(-s)=0
$$

for $q, r=0,1,2, \ldots$.
Proof. We have (7, p. 57, Theorem $5 a$ and p. 12, Theorem 6b)

$$
e^{-c s} K^{(r)}(s)=\int_{0}^{\infty} e^{s v} d\left\{\int_{c}^{c+o} u^{\tau} d \beta(u)\right\}
$$

Applying (7, p. 181, Theorem 1), with $\gamma=0$ and $A=c^{\tau}[\beta(c+)-\beta(c)]$, we have

$$
\begin{aligned}
\limsup _{s \downarrow-\infty} \mid e^{-c s} K^{(r)}(s)- & c^{r}[\beta(c+)-\beta(c)] \mid \\
& \leqslant \lim _{v \downarrow_{0}} \sup _{0}\left|\int_{c}^{c+v} u^{\tau} d \beta(u)-c^{\tau}[\beta(c+)-\beta(c)]\right|=0 .
\end{aligned}
$$

Lemma 2. If for $x \geqslant 0, g(x)$ is the $(r+1)$ th indefinite integral of a function $g^{(r+1)}(x)(r \geqslant 1)$,

$$
\lim _{x \uparrow_{\infty}} g(x) \equiv a
$$

exists and

$$
\int_{0}^{\infty} u^{r}\left|g^{(r+1)}(u)\right| d u<+\infty,
$$

then

$$
\begin{equation*}
\lim _{x \uparrow_{\infty}} x^{k} g^{(k)}(x)=0 \quad \text { for } 0<k \leqslant r, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} u^{k}\left|g^{(k+1)}(u)\right| d u<+\infty \quad \text { for } 0 \leqslant k<r \tag{8}
\end{equation*}
$$

Proof. For $0<x<y$, the inequality

$$
\int_{x}^{y}\left|g^{(r+1)}(t)\right| d t \leqslant x^{-\tau} \int_{x}^{y} t^{\tau}\left|g^{(r+1)}(t)\right| d t
$$

implies by Cauchy's theorem that

$$
\int^{\infty} g^{(r+1)}(t) d t
$$

exists. This and the relation

$$
g^{(r)}(y)-g^{(r)}(x)=\int_{x}^{y} g^{(r+1)}(t) d t \rightarrow \int_{x}^{\infty} g^{(r+1)}(t) d t \quad(y \uparrow \infty)
$$

implies that

$$
\lim _{y \uparrow_{\infty}} g^{(r)}(y)=a_{r}
$$

exists. If $a_{r} \neq 0$, then for $y>x>0$ we have

$$
g^{(r-1)}(y)-g^{(r-1)}(x)=\int_{x}^{y} g^{(r)}(t) d t \rightarrow\left(\operatorname{sgn} a_{r}\right)(+\infty) \quad(y \uparrow \infty) .
$$

Hence

$$
\lim _{\nu \uparrow_{\infty}} g^{(r-1)}(y)=\left(\operatorname{sgn} a_{r}\right) \cdot(+\infty) .
$$

Repeating this argument r times, we get

$$
\lim _{y \uparrow_{\infty}} g(y)=\left(\operatorname{sgn} a_{\tau}\right) \cdot(+\infty) .
$$

But this contradicts the assumption

$$
\lim _{y \uparrow_{\infty}} g(y)=a .
$$

Thus we have

$$
\lim _{y \uparrow_{\infty}} g^{(\gamma)}(y)=0
$$

Hence

$$
\left|x^{r} g^{(r)}(x)\right|=\left|x^{r} \int_{x}^{\infty} g^{(r+1)}(t) d t\right| \leqslant \int_{x}^{\infty} t^{r}\left|g^{(r+1)}(t)\right| d t \rightarrow 0 \quad(x \uparrow \infty)
$$

This proves (7) for $k=r$.
If $r>1$, then by the last limit relation we have

$$
\int_{x}^{y}\left|g^{(r)}(t)\right| d t \leqslant \int_{x}^{y}\left|t^{\tau} g^{(r)}(t)\right| t^{-r} d t \rightarrow 0 \quad \text { as } x, y \rightarrow \infty .
$$

Hence

$$
\int^{\infty} g^{(r-1)}(t) d t
$$

exists. Now

$$
\begin{aligned}
&\left|x^{r-1} g^{(r-1)}(x)\right|=\left|x^{r-1} \int_{x}^{\infty}\left(t^{\tau} g^{(r)}(t)\right) t^{-r} d t\right| \\
& \leqslant(r-1)^{-1} \cdot \sup _{t>x}\left|t^{\tau} g^{(r)}(t)\right| \rightarrow 0 \quad(x \uparrow \infty)
\end{aligned}
$$

This proves (7) for $k=r-1$. By repeating this argument, we prove (7) for $0<k \leqslant r$. In order to prove (8) for $k=r-1(r>0)$, observe that for $0<x<y$ both sets

$$
A \equiv\left\{t \mid g^{(r)}(t)>0, x<t<y\right\} \quad \text { and } \quad B \equiv\left\{t \mid g^{(r)}(t)<0, x<t<y\right\}
$$

are open. Hence A and B are the unions of a finite or denumerable number of pairwise disjoint open intervals $A=\cup_{n}\left(\alpha_{n}, \beta_{n}\right), B=\cup_{n}\left(\gamma_{n}, \delta_{n}\right)$; and for $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ different from x and y, we have

$$
g^{(r)}\left(\alpha_{n}\right)=\ldots=g^{(r)}\left(\delta_{n}\right)=0
$$

Now, since $g^{(r)}(u)=0$ for $u \in(x, y)-A-B$,

$$
\int_{x}^{y} u^{r-1}\left|g^{(\gamma)}(u)\right| d u=\sum_{n} \int_{\alpha_{n}}^{\beta_{n}} u^{r-1} g^{(\gamma)}(u) d u-\sum_{n} \int_{\gamma_{n}}^{\delta_{n}} u^{\tau-1} g^{(r)}(u) d u
$$

Integrating by parts, we have

$$
\int u^{r-1} g^{(r)}(u) d u=\frac{1}{r} u^{r} g^{(r)}(u)-\frac{1}{r} \int u^{r} g^{(r+1)}(u) d u
$$

Therefore

$$
\int_{x}^{y} u^{r-1}\left|g^{(r)}(u)\right| d u \leqslant \frac{1}{r}\left|x^{\tau} g^{(r)}(x)\right|+\frac{1}{r}\left|y^{\tau} g^{(r)}(y)\right|+\frac{1}{r} \int_{x}^{\infty} u^{r}\left|g^{(r+1)}(u)\right| d u
$$

By (7) this implies, letting $x, y \rightarrow \infty$, that (8) is true for $k=r-1$. Repeating this argument, we prove (8) for $0 \leqslant k<n$.

An immediate consequence of Lemma 2 is the following result.
Lemma 3. If, for real $x, g(x)$ is the $(r+1)$ th indefinite integral of a function $g^{(r+1)}(x)(r \geqslant 1)$,

$$
\lim _{x \uparrow_{\infty}} g(x) \text { and } \lim _{x \downarrow-\infty} g(x)
$$

exist, and

$$
\int_{-\infty}^{\infty}\left|u^{\tau} g^{(r+1)}(u)\right| d u<+\infty,
$$

then

$$
\lim _{x_{\infty}} x^{k} g^{(k)}(x)=\lim _{x \downarrow-\infty} x^{k} g^{(k)}(x)=0 \quad \text { for } 0<k \leqslant r
$$

and

$$
\int_{-\infty}^{+\infty}\left|u^{k} g^{(k+1)}(u)\right| d u<+\infty \quad \text { for } 0 \leqslant k<r
$$

Lemma 4. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. If for a function

$$
K(s) \equiv \int_{0}^{\infty} e^{s t} d \beta(t) \quad(\beta(t)=0 \text { for } 0 \leqslant t \leqslant c>0)
$$

we have

$$
\int_{0}^{\infty} e^{s t}|d \beta(t)|<+\infty \quad \text { for all real } s
$$

then for $r=0,1, \ldots$, all real z, and all sufficiently large s, we have
(9) $I \equiv \int_{0}^{\infty} e^{s z} t^{\tau} f(s t) d \beta(t)=s \int_{0}^{\infty} K^{(r+1)}(s z-s t) \alpha(t) d t-\alpha(0) K^{(r)}(s z)$.

Proof. The function $f(x)$ exists for some $x_{0}>0$. Hence by (7, p. 181, Theorem 1),

$$
\lim _{x \uparrow_{\infty}} f(x)=\alpha(0+)
$$

By (7, p. 57, Theorem 5a), we have

$$
\int_{0}^{\infty} e^{s t} t^{r}|d \beta(t)|<+\infty \quad \text { for all real } s
$$

Hence

$$
\int_{0}^{\infty} e^{s t z} t^{\tau}|f(s t)||d \beta(t)|<+\infty \quad \text { for } s>x_{0} / c \text { and all real } z
$$

Thus by (7, p. 41, Theorem 2.3a), for $s>x_{0} / c$ and real z,

$$
\begin{aligned}
I & =s \int_{0}^{\infty} e^{s z t} t^{r+1}\left\{\int_{0}^{\infty} e^{-s t u} \alpha(u) d u\right\} d \beta(t)-K^{(r)}(s z) \alpha(0) \\
& =s \int_{0}^{\infty} K^{(r+1)}(s z-s u) \alpha(u) d u-K^{(\tau)}(s z) \alpha(0)
\end{aligned}
$$

The change of the order of integration is justified for $s>x_{0} / c$ by Fubini's theorem (7, p. 26, Theorem 15d) since by (7, p. 39, Theorem 2.2a),

$$
|\alpha(t)| \leqslant M e^{x_{0} t} \quad(t \geqslant 0)
$$

and

$$
\begin{aligned}
& \int_{0}^{\infty} e^{s z 2} t^{\tau+1}\left\{\int_{0}^{\infty} e^{-s t u}|\alpha(u)| d u\right\}|d \beta(t)| \\
& \quad \leqslant M \int_{c}^{\infty} e^{s z t} t^{\tau+1}\left\{\int_{0}^{\infty} e^{\left(x_{0}-s t\right)} d u\right\}|d \beta(t)| \\
& \quad \leqslant M \int_{c}^{\infty} e^{s z t} t^{\tau+1}\left\{\int_{0}^{\infty} e^{\left(x_{0}-c s\right) u} d u\right\}|d \beta(t)| \\
& \quad=M\left(c s-x_{0}\right)^{-1} \int_{c}^{\infty} e^{s z t} t^{\tau+1}|d \beta(t)|<+\infty
\end{aligned}
$$

Lemma 5. Let $f(x)$ be the Laplace-Stieltjes transform of $\alpha(t)$. If a function

$$
K(s) \equiv \int_{c}^{\infty} e^{s t} d \beta(t) \quad(\beta(t)=0 \text { for } 0 \leqslant t \leqslant c>0)
$$

exists for all real s, then for $r=0,1,2, \ldots$, each real z and each $\delta>0$, we have

$$
\lim _{s \uparrow_{\infty}} s^{r+1} \int_{z+\delta}^{\infty} K^{(r+1)}(s z-s t) \alpha(t) d t=0
$$

Proof. The function $f(x)$ exists for some $x_{0}>0$. Therefore by (7, p. 39, Theorem 2.2a), $|\alpha(t)| \leqslant M e^{x_{0} t}(t \geqslant 0)$. Hence for $s>x_{0} / c$ we have

$$
\begin{aligned}
\left|s^{r+1} \int_{z+\delta}^{\infty} K^{(r+1)}(s z-s t) \alpha(t) d t\right| & \leqslant M s^{r+1} \int_{z+\delta}^{\infty}\left|K^{(r+1)}(s z-s t)\right|^{x_{0} t} d t \\
& =M e^{x_{0} z^{r}} \int_{-\infty}^{-\delta s}\left|K^{(r+1)}(u)\right| e^{-x u_{0} / s} d u
\end{aligned}
$$

(and by Lemma 1)

$$
\begin{aligned}
& \leqslant M_{1} e^{x_{0} 2} s^{r} \int_{-\infty}^{-\delta s} e^{\left(c s-x_{0}\right) u / s} d u \\
& =M_{1} s^{r+1}\left(c s-x_{0}\right)^{-1} e^{x_{0}(2+\delta)} e^{-c \delta s} \\
& \rightarrow 0 \quad(s \uparrow \infty) .
\end{aligned}
$$

Lemma 6. Suppose that for some $z>0$ the function $\alpha(t)$ is a bounded L measurable function in $[0, z]$. If the function

$$
K(s)=\int_{c}^{\infty} e^{s t} d \beta(t) \quad(c>0)
$$

exists for all real s and if for a certain non-negative integer r we have

$$
\int_{0}^{\infty}\left|u^{r} K^{(r+1)}(u)\right| d u<+\infty,
$$

then

$$
\lim _{s \uparrow_{\infty}} s^{r+1} \int_{0}^{z-\delta} K^{(r+1)}(s z-s t) \alpha(t) d t=0
$$

for each $\delta(0<\delta<z)$.
Proof. We have $|\alpha(t)| \leqslant M_{1}$ if $0 \leqslant t \leqslant z$. By substitution we obtain

$$
\begin{aligned}
\left|s^{r+1} \int_{0}^{z-\delta} K^{(r+1)}(s z-s t) \alpha(t) d t\right| & \leqslant M_{1} s^{r+1} \int_{0}^{2-\delta}\left|K^{(r+1)}(s z-s t)\right| d t \\
& =M_{1} s^{\tau} \int_{\delta s}^{z s}\left|K^{(\tau+1)}(u)\right| d u \\
& \leqslant M_{1} \delta^{-r} \int_{\delta s}^{\infty}\left|u^{r} K^{(r+1)}(u)\right| d u \\
& \rightarrow 0 \quad(s \uparrow \infty) .
\end{aligned}
$$

Proof of Theorem 1. We have $0 \leqslant p \leqslant \min (r, q)$. It is obvious that (3) continues to be true if we write p in place of r. We have

$$
\lim _{s \uparrow_{\infty}} K(-s)=0
$$

by Lemma 1 . Hence for $g(x)=K(x)$, all the assumptions of Lemma 3 are satisfied and this lemma yields

$$
\int_{-\infty}^{+\infty}\left|u^{p} K^{(p)}(u)\right| d u<+\infty
$$

Now in the conclusion (4) of our theorem, r and q do not appear explicitly (only through the restrictions on p). Hence it is enough to prove our theorem for the special case $p=q=r$.

Suppose $z>0$ and $0<\delta<z$ or $z=0$ and $\delta>0$. The function $f(x)$ exists for some $x_{0}>0$. Therefore, by Lemma 4, we have for $s>x_{0} / c$

$$
\begin{align*}
& s^{r} \int_{0}^{\infty} e^{s z t} t^{\tau} f(s t) d \beta(t) \tag{10}\\
& \quad=\left\{\int_{0}^{z-\delta}+\int_{z-\delta}^{z}+\int_{z}^{a+\delta}+\int_{z+\delta}^{\infty}\right\} s^{r+1} K^{(r+1)}(s z-s t) \alpha(t) d t \\
& -s^{r} K^{(r)}(s z) \alpha(0)
\end{align*}
$$

$$
\equiv I_{1}+I_{2}+I_{3}+I_{4}-s^{\tau} K^{(r)}(s z) \alpha(0)
$$

(for $z=0$, we define $I_{1}=I_{2}=0$). By Lemma 2 ,
(11) $\alpha(0) s^{r} K^{(r)}(s z)=\delta_{0,2} K^{(r)}(0) \alpha(0) s^{r}-\left[1-\delta_{0,2}\right] \delta_{0, r} a_{0} \alpha(0)+o(1)(s \uparrow \infty)$.

By Lemmas 5 and 6, we have for each fixed δ

$$
\begin{equation*}
\lim _{s \uparrow_{\infty}} I_{1}=\lim _{s \uparrow_{\infty}} I_{4}=0 \tag{12}
\end{equation*}
$$

Given $\epsilon>0$, choose $\delta, 0<\delta<z$, so small that we have both

$$
\left|\alpha(t)-\sum_{k=0}^{r} b_{k}(t-z)^{k} / k!\right|<\epsilon(t-z)^{r} \quad \text { for } z<t \leqslant z+\delta
$$

and

$$
\left|\alpha(t)-\sum_{k=0}^{r} c_{k}(t-z)^{k} / k!\right|<\epsilon(z-t)^{r} \quad \text { for } z-\delta \leqslant t<z .
$$

We now have

$$
\begin{aligned}
\mid I_{3} & -\sum_{k=0}^{r} b_{k} s^{r+1} \int_{z}^{z+\delta} K^{(r+1)}(s z-s t)(t-z)^{k}(k!)^{-1} d t \mid \\
& =\left|s^{r+1} \int_{z}^{z+\delta} K^{(r+1)}(s z-s t)\left\{\alpha(t)-\sum_{k=0}^{r} b_{k}(t-z)^{k} / k!\right\} d t\right| \\
& \leqslant \epsilon s^{r+1} \int_{z}^{z+\delta}(t-z)^{r}\left|K^{(r+1)}(s z-s t)\right| d t \\
& \leqslant \epsilon \int_{-\infty}^{+\infty}\left|u^{r} K^{(r+1)}(u)\right| d u .
\end{aligned}
$$

Hence

$$
\left|I_{3}-\sum_{k=0}^{\tau}(-1)^{k} b_{k} s^{\tau-k} \int_{-\delta s}^{0} K^{(r+1)}(u) u^{k}(k!)^{-1} d u\right| \leqslant \epsilon \int_{-\infty}^{+\infty}\left|u^{\tau} K^{(r+1)}(u)\right| d u
$$

Integrating the integral appearing in the k th term of the sum on the left-hand side of the last inequality by parts k times and applying Lemma 1 to each of the terms obtained, we obtain

$$
\begin{equation*}
\left|I_{3}-\sum_{k=0}^{r} b_{k} K^{(r-k)}(0) s^{r-k}+o(1)\right| \leqslant \epsilon \int_{-\infty}^{+\infty}\left|u^{r} K^{(r+1)}(u)\right| d u \quad(s \uparrow \infty) \tag{13}
\end{equation*}
$$

In a similar way, but using Lemma 3 instead of Lemma 1, we have

$$
\begin{align*}
\mid I_{2}+\sum_{k=0}^{r} c_{k} K^{(r-k)}(0) s^{r-k}+a_{0} & c_{r}+o(1) \mid \tag{14}\\
& \leqslant \epsilon \int_{-\infty}^{+\infty}\left|u^{r} K^{(r+1)}(u)\right| d u \quad(s \uparrow \infty)
\end{align*}
$$

A combination of (10) to (14) completes the proof of the theorem.

References

1. R. P. Boas, Entire functions (New York, 1954).
2. T. Chaundy, The differential calculus (Oxford, 1935).
3. G. Doetsch, Handbuch der Laplace Transformationen, Vol. 1 (Basel, 1950).
4. E. W. Hobson, The thecry of functions of a real variable, Vol. 2 (New York, 1957).
5. C. Jordan, Calculus of finite differences (New York, 1950).
6. D. Saltz, An inversion thecrem for Laplace-Stieltjes transforms, Pacific J. Math., 10 (1960), 309-312.
7. D. V. Widder, The Laplace transform (Princeton, 1946).
8. - A symbolic form of an inversion formula for the Laplace transform, Amer. Math. Monthly, 55 (1948), 489-491.
9. E. T. Whittaker and G. N. Watson, A course in modern analysis (Cambridge, 1946).

The Hebrew University and
Tel-Aviv University

[^0]: Received November 20, 1964.

