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Buoyancy-driven exchange flows are common to a variety of natural and engineering
systems, ranging from persistently active volcanoes to counterflows in oceanic straits.
Laboratory experiments of exchange flows have been used as surrogates to elucidate
the basic features of such flows. The resulting data have been analysed and interpreted
mostly through core–annular flow solutions, the most common flow configuration at
finite viscosity contrasts. These models have been successful in fitting experimental
data, but less effective at explaining the variability observed in natural systems. In this
paper, we demonstrate that some of the variability observed in laboratory experiments
and natural systems is a consequence of the inherent bistability of core–annular flow.
Using a core–annular solution to the classical problem of buoyancy-driven exchange
flows in vertical tubes, we identify two mathematically valid solutions at steady state:
a solution with fast flow in a thin core and a solution with relatively slow flow in a
thick core. The theoretical existence of two solutions, however, does not necessarily
imply that the system is bistable in the sense that flow switching may occur. Through
direct numerical simulations, we confirm the hypothesis that core–annular flow in
vertical tubes is inherently bistable. Our simulations suggest that the bistability of
core–annular flow is linked to the boundary conditions of the domain, which implies
that is not possible to predict the realized flow field from the material parameters of
the fluids and the tube geometry alone. Our finding that buoyancy-driven exchange
flows are inherently bistable systems is consistent with previous experimental data,
but is in contrast to the underlying hypothesis of previous analytical models that
the solution is unique and can be identified by maximizing the flux or extremizing
the dissipation in the system. Our results have important implications for data
interpretation by analytical models and may also have interesting ramifications for
understanding volcanic degassing.

Key words: core–annular flow, magma and lava flow, multiphase flow

† Email address for correspondence: jsuckale@stanford.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

38
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-9787-8180
http://orcid.org/0000-0002-2619-104X
mailto:jsuckale@stanford.edu
https://doi.org/10.1017/jfm.2018.382


526 J. Suckale, Z. Qin, D. Picchi, T. Keller and I. Battiato

1. Introduction
Buoyancy-driven, bidirectional flow in channels or tubes is relevant to many natural

and industrial processes. Examples include lubricated pipelining that facilitates
transport of viscous oil through pipelines by injecting lubricants like water (e.g.
Joseph et al. 1997), the flow of cement into drilling mud in wellbores (e.g. Frigaard
& Scherzer 1998), the counterflow of currents with different densities in oceanic
straits (e.g. Dalziel 1992) and magma circulation in the conduits of persistently
degassing volcanoes (e.g. Stevenson & Blake 1998).

The buoyancy-driven exchange flow between two immiscible fluids in a vertical tube
is rarely if ever stable (e.g. Joseph et al. 1997). Significant effort has been devoted
to identifying the various pertinent flow types, including the formation of bubbles,
slugs and side-by-side flow (e.g. Joseph & Renardy 1992; Brauner 1998). Here, we
investigate the flow variability associated with core–annular flow, the most commonly
observed flow regime of exchange flows in vertical pipes. The core–annular geometry
is characterized by one fluid flowing in the centre of the tube (core) surrounded by a
film of the other fluid wetting the tube walls (annulus).

Numerous authors have examined the linear stability of core–annular flow (e.g.
Joseph et al. 1997). In the vertical configuration, Hickox (1971) studied the linear
stability of Poiseuille flow in the limit of long waves, assuming the fluid viscosity
in the core is less than in the annulus. Despite the instability of the flow to long
waves, a high viscosity contrast and surface tension notably suppress the growth
rate of interface instabilities. Preziosi, Chen & Joseph (1989) focused on the linear
stability of the flow when the less viscous fluid occupies the annulus, Hu & Joseph
(1989) extended their analysis to different flow arrangements and Chen, Bai &
Joseph (1990) included the effects of gravity. Chen & Joseph (1991) considered
the nonlinear stability of core–annular flows. Bai, Chen & Joseph (1992) compared
the predictions of linear stability theory with experiments and documented new
flow types characterized by nearly stationary interface waves, termed bamboo and
corkscrew waves, that correspond approximately to the fastest-growing wavelength,
suggesting that core–annular flow reaches a metastable flow configuration despite its
inherent instability.

Our study seeks to explain the variability of core–annular flow between two
Newtonian fluids in a vertical tube at low Reynolds number. Our work is motivated
primarily by the need to better understand degassing processes in persistently active
volcanoes, the most common form of volcanism on Earth. Many persistently degassing
volcanoes have been active for periods exceeding the historical record. Although
erupting comparatively small amounts of lava, they continuously emit copious
amounts of volatiles and thermal energy, suggesting that the majority of magma
is recycled back into the plumbing system after decoupling from the gas phase near
the surface (e.g. Francis, Oppenheimer & Stevenson 1993). At steady state, the ascent
of gas-rich, buoyant magma in the conduit would therefore approximately balance
the simultaneous descent of gas-poor, dense magma, which would result in exchange
flow in the volcanic conduit (Kazahaya, Shinohara & Saito 1994; Stevenson & Blake
1998; Burton, Mader & Polacci 2007; Witham 2011).

The motivation to better understand volcanic degassing informs the parameter
range we investigate in this paper. The density contrast between the two fluids is the
consequence of gas bubbles exsolving from the magma. In the context of bidirectional
flow, it is assumed that these gas bubbles are small compared to the radius of the
conduit and remain entrained in the upwelling fluid. The resulting density difference
tends to be much less variable than the viscosity ratio between the two fluids, which
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can vary by multiple orders of magnitude. For example, exsolution of 1 wt. % water
typically increases the viscosity of the silicate melt by approximately a factor of
10 (e.g. McBirney & Murase 1984). Volatile loss also tends to be associated with
crystallization, which can further significantly increase the effective viscosity of the
degassed magma (e.g. McBirney & Murase 1984). Our main emphasis is hence on
bidirectional flow with high viscosity contrast in vertical, or close to vertical, pipes,
building on work by Joseph, Renardy & Renardy (1984), but at very low Reynolds
number.

In the volcanic context, the upwelling magma in the core is typically less viscous
than the downwelling magma in the annulus, because it is more volatile rich. This
arrangement is contrary to the typical arrangement in lubricated pipelining and tends
to be unstable at finite Reynolds number, as demonstrated theoretically (Joseph et al.
1984) and experimentally (Arakeri et al. 2000; Huppert & Hallworth 2007). However,
at the low Reynolds numbers and large viscosity contrasts likely representative of
volcanic systems, core–annular flow with the less viscous fluid in the core becomes
stable (Hickox 1971; Joseph et al. 1984; Stevenson & Blake 1998).

Another important difference between bidirectional flow in volcanic systems and
that in lubricated pipelining is the miscibility of the two fluids involved. Despite their
different properties, the upwelling and downwelling magmas in volcanic conduits are
miscible. The diffusivities of the magmas, however, are probably sufficiently low to
mimic immiscible flows. Experimental studies have shown that miscible bidirectional
flow at low diffusivity exhibits similar flow regimes as immiscible flow (Petitjeans &
Maxworthy 1996; Scoffoni, Lajeunesse & Homsy 2001), including the characteristic
corkscrew waves at the fluid interface observed in the immiscible context (e.g. Bai
et al. 1992; Hu & Patankar 1995; Renardy 1997). Linear stability analysis, however,
has suggested that even a small degree of mixing at the interface can stabilize the flow
over a wide range of conditions (Vanaparthy, Meiburg & Wilhelm 2003; Meiburg et al.
2004).

Our work builds on laboratory experiments of exchange flow in closed vertical tubes
conducted by Stevenson & Blake (1998) and Beckett et al. (2011). We focus on this
specific set of experiments because the parameter range is representative of volcanic
systems. We analyse the flow behaviour observed in the laboratory by using direct
numerical simulations to virtually reproduce the original experiments. Our numerical
model does not require closures such as drag forces, interface stresses or rise speeds
(Suckale et al. 2010a; Suckale, Nave & Hager 2010b; Qin & Suckale 2017). Instead,
these flow properties emerge self-consistently from the computation, as in analogue
experiments where the flow dynamics emerges directly from the experimental set-up
and the materials used. Direct numerical simulations hence enable us to quantify
velocities, stresses, and other flow variables at all times and locations in the flow
field and to extend experiments to scales or flow conditions not realizable in a
laboratory setting.

We link our direct numerical simulations to an analytical model of laminar
core–annular flow in a vertical tube at steady state, building on previous similar
approaches (e.g. Russell & Charles 1959; Kazahaya et al. 1994; Ullmann & Brauner
2004; Huppert & Hallworth 2007). We predict the existence of two distinct solutions
at steady-state conditions: a solution with fast flow in a thin core and a solution with
relatively slow flow in a thick core. The existence of two solutions suggests that
exchange flow in vertical tubes is a bistable problem. We test this hypothesis through
direct numerical simulations (§ 2.2) and find that the boundary conditions control
which solution is realized in a laboratory experiment (§ 3). This insight implies
that the bidirectional flow regime in vertical tubes cannot be predicted based on
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FIGURE 1. Sketch of the core–annular geometry and key variables used for a vertical
(a) and a horizontal (b) cross-section. The interface between the two fluids is depicted as
wavy to highlight the unstable nature of the flow pattern.

geometry and material parameters alone – an aspect of core–annular flow that could
have important implications for understanding the variability of magma circulation in
volcanic conduits and the resulting eruptive activity (§ 4).

2. Model description
We combine two distinct and complementary model components: an analytical

model of core–annular flow at steady state, and direct numerical simulations of
exchange flow in two dimensions. We focus on two-dimensional (2-D) numerical
simulations to afford higher resolution of the evolving interface. Whereas the
analytical model is limited to core–annular flow of immiscible fluids, our numerical
approach can capture the various flow regimes that arise for both the miscible fluids
employed in the laboratory experiments and the immiscible fluids assumed in the
analytical model.

2.1. Analytical model
2.1.1. Derivation

At low Reynolds number, the steady-state core–annular flow of two immiscible and
incompressible Newtonian fluids in a pipe of inclination α from the vertical direction
can be described by the 1-D Stokes equations along the radial coordinate r ∈ [0, R]
(see figure 1),

µd
1
r

d
dr

(
r

dud

dr

)
=

dp
dz
+ ρdg cos α, r ∈ [δ, R], (2.1a)

µa
1
r

d
dr

(
r

dua

dr

)
=

dp
dz
+ ρag cos α, r ∈ [0, δ], (2.1b)
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where the subscripts (·)d and (·)a denote the descending and ascending fluid properties,
namely dynamic viscosity µ, density ρ and vertical speed u, respectively, R is the
pipe radius, g the gravitational acceleration and δ represents the unknown location of
the interface between the ascending and descending fluids. The pressure drop is an
unknown constant to be determined. The boundary conditions are no-slip at the tube
wall,

ud(R)= 0, (2.2)

vanishing radial stress at the symmetry line in the tube centre,

dua

dr
(0)= 0, (2.3)

and continuity of velocity and shear stress across the fluid–fluid interface,

ud(δ)− ua(δ)= 0, (2.4)

µa
dua

dr
(δ)−µd

dud

dr
(δ)= 0. (2.5)

Instead of a phase flow-rate scaling (Ullmann & Brauner 2004), we define the non-
dimensional quantities

r̂=
r
R
, δ̂ =

δ

R
, û=

u
U
, (2.6a−c)

where we define U=1ρgR2/µd, the viscous rise speed due to the density difference
1ρ = ρd − ρa. Substituting (2.6) into (2.1) and dropping all hats yields the
dimensionless equations,

1
r

d
dr

(
r

dud

∂r

)
= P, r ∈ [δ, 1], (2.7a)

1
M

1
r

d
dr

(
r

dua

dr

)
= P− cos α, r ∈ [0, δ], (2.7b)

where P = (dp/dz + ρdg cosα)/(g1ρ) is the non-dimensional pressure drop and
M = µd/µa is the viscosity ratio. We integrate equations (2.7), while accounting for
appropriately non-dimensionalized boundary conditions, to obtain

ud(r) =
P
4
(r2
− 1)−

δ2

2
cos α log r, r ∈ [δ, 1], (2.8a)

ua(r) = M
P− cos α

4
(r2
− δ2)+ ui, r ∈ [0, δ], (2.8b)

where ui = ud(δ)= ua(δ) is the vertical flow speed at the interface given by

ui =
P
4
(δ2
− 1)−

δ2

2
cos α log δ. (2.9)

The ascending flux in a closed tube with incompressible fluids must exactly balance
the descending flux,

−

∫ 1

δ

2πrud(r) dr=
∫ δ

0
2πrua(r) dr= Te, (2.10)
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where Te is the dimensionless flux or Transport number (e.g. Huppert & Hallworth
2007). The Transport number is related, but not identical, to the Poiseuille number,
Ps, defined in Stevenson & Blake (1998),

Ps=
ufµd

g1ρR2
=

uf

U
, (2.11)

where uf is the (dimensional) terminal rise speed of the ascending front (see the
supplementary material available at https://doi.org/10.1017/jfm.2018.382 for details).
The Ps number therefore represents the non-dimensional rise speed, whereas the Te
number captures the non-dimensional flux, and hence

Te=
Ps
πδ2

. (2.12)

We focus on Te in our analysis, because the flux is balanced between ascending and
descending fluids and does not hinge on selecting either a characteristic rise speed
from the spatially variable function, ua(r), or a core radius, δ. To fulfil the constraint
of no net flux in the tube, we substitute (2.8) into (2.10) and solve for the driving
force P, which depends only on the dimensionless parameters of the problem (i.e. δ,
M, α):

P(δ, α,M)= δ2 2(δ2
− 1)−Mδ2

(δ4 − 1)−Mδ4
cos α. (2.13)

We can now express Te as a function of P and δ:

Te(δ, α,M)= 2π

[
P
16
(δ2
− 1)2 +

δ2

8
cos α(δ2

− 1− 2δ2 log δ)
]
. (2.14)

We note that once P and δ are defined, Te is uniquely specified. The opposite, however,
is not true. The quadratic and quartic terms in (2.14) suggest that a given flux, Te,
could be achieved for two different δ. Even though the model developed by Huppert
& Hallworth (2007) also admits multiple solutions, the authors implicitly imposed
uniqueness by maximizing the flux or, alternatively, extremizing the dissipation in
the system. In § 3, we numerically explore the validity of this uniqueness hypothesis,
characterize the differences between the two possible solutions in more detail, and
investigate whether both solutions are relevant in practice.

2.2. Numerical model
2.2.1. Governing equations

Our numerical model solves for conservation of mass and momentum. We
assume that both fluids are incompressible. The governing equations are hence
the incompressibility condition,

∇ · v = 0, (2.15)

and the variable-coefficient Navier–Stokes equation,

ρ

(
∂v

∂t
+ (v · ∇)v

)
=−∇p+∇ · [µ(∇v + (∇v)T)] + ρg, (2.16)

where v is the velocity, and p the pressure.
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Density and viscosity vary in space and time to reflect the different properties of
the two fluids. We consider the two contrasting scenarios of immiscible and miscible
fluids. The immiscible case is useful for a direct comparison with the analytical
solution, which is strictly valid only for two immiscible fluids. The miscible case
represents the experimental set-up of Stevenson & Blake (1998), which involves two
miscible fluids with low diffusivity.

2.2.2. Immiscible fluids
In the immiscible case, a sharp interface separates the two fluids. We advect the

curve, Γ , which represents this interface, with the flow field according to

∂Γ

∂t
+ (v · ∇)Γ = 0. (2.17)

The interface deforms in response to the hydrodynamic forces acting on it. The
material properties change discontinuously at the interface:

µ(x)=
{
µa in the ascending fluid
µd in the descending fluid, (2.18)

and

ρ(x)=
{
ρa in the ascending fluid
ρd in the descending fluid, (2.19)

and may entail a jump in the pressure and normal stresses at the interface:n
t1
t2

 (pI − τ )nT

=
σκ0

0

 . (2.20)

Square brackets [·] denote a jump at the fluid–fluid interface, I is the identity
tensor, τ = µ(∇v + (∇v)T) the viscous stress tensor, σ the surface tension, κ the
curvature of Γ , n the unit normal vector on Γ pointing from the ascending towards
the descending fluid and t1 and t2 the two unit tangential vectors on Γ . Solving
the Navier–Stokes equation and introducing surface tensions implies that additional
non-dimensional numbers are needed to describe the flow behaviour. We choose the
Reynolds number, Re=1ρUR/µd, the Bond number, Bo=1ρgR2/σ and the Froude
number, Fr = U2/(gR) (see the supplementary material for a summary table). All
the immiscible simulations shown in the manuscript represent the case of no surface
tension, σ = 0, but we discuss the effect of surface tension on interface instabilities
briefly in the supplementary material.

2.2.3. Miscible fluids
To allow for mixing, we introduce a continuous variable, c, which represents the

concentration of the buoyant fluid. Initially, the concentration is set to unity in the
buoyant fluid and zero in the heavy fluid. The concentration evolves over time due to
advection and diffusion,

∂c
∂t
+ v · ∇c=D∇2c, (2.21)
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FIGURE 2. Illustration of the initial conditions, boundary conditions and adaptive grid
refinement for both immiscible and miscible flow. The grid is intentionally coarse for
visualization purposes. (a,b) show immiscible fluids; (c,d) show miscible fluids.

where D is the diffusion coefficient. In their experiments, Stevenson & Blake (1998)
used miscible fluids, such as syrup, dilute syrup, glycerol and water, but did not report
the fluid diffusivities. In the absence of detailed measurements, we use a constant
diffusivity of D = 10−10 m2 s−1 in both fluids for all simulations, a value motivated
by the diffusivity measured for corn syrup in distilled water (Ray, Bunton & Pojman
2007). Miscibility adds another non-dimensional parameter, the Péclet number, which
quantifies the relative importance of advection to diffusion Pe= RU/D.

We assume that density and viscosity depend linearly on the concentration c, such
that

ρ = ρd + c(ρa − ρd) (2.22)

and

µ=µd + c(µa −µd). (2.23)

We note that additional complexity may arise in the vicinity of the interface if a
nonlinear dependence of viscosity on concentration is assumed (see the supplementary
material for details), as is the case in some prior studies (e.g. Tan & Homsy 1986;
Goyal & Meiburg 2006).

To initialize the miscible simulations, we assume that the initial concentration
field has an interface with a finite thickness of 1.51x, where 1x is the coarse grid
resolution (see § 2.2.4 and figure 2). Hence, no discontinuous material contrasts arise
in our miscible computations.

2.2.4. Numerical methods
We discretize the governing equations, (2.15) and (2.16), on a Cartesian grid

(see figure 2) using the numerical method derived, verified and validated in Qin &
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Suckale (2017). For our computations, we opt for a Cartesian set-up rather than an
axisymmetric formulation, because not all of the laboratory experiments we reproduce
exhibit an axisymmetric symmetry and because of the importance of non-axisymmetric
instabilities in core–annular flows (e.g. Hu & Patankar 1995; Renardy 1997).

Our numerical method was developed specifically for multiphase flow problems with
large viscosity contrasts at low Reynolds number (Suckale et al. 2010b, 2012). It
consists of three main components. The first is a multiphase Navier–Stokes solver
that handles substantial and discontinuous differences in the properties of material
phases by adopting an implicit implementation of the viscous term, time-step splitting,
and an approximate factorization of the sparse coefficient matrices for computational
efficiency. The second component is a level-set-based interface solver that tracks the
motion of a fluid–fluid interface through an iterative topology-preserving projection
(Qin et al. 2015). The sharp interface solver is pertinent only if the two fluids are
immiscible. In the computationally simpler case of two miscible fluids, we solve an
advection–diffusion equation for concentration.

The third component is an adaptive grid refinement algorithm that increases
resolution in the vicinity of the moving interface, where most of the salient
physical processes originate. Accurate interface advection is highly dependent on
grid resolution (e.g. Sethian 1996), particularly in flows that hinge sensitively on the
growth of interface instabilities. To maximize numerical resolution at the interface,
we adopt an adaptive mesh refinement strategy that tracks the interface position over
time. Figure 2 shows a close up of the computational domain around the interface
to schematically illustrate the grid refinement at the initial condition (figure 2a)
and at a later time (figure 2b), both shown at intentionally coarse resolution for
easier visualization. The refined zone extends as the interface is stretched by flow.
Although the computational challenges associated with tracking a diffusive interface
are less pronounced, we adopt the same grid refinement strategy for the miscible
case (figure 2c,d). For more details regarding the numerical technique, including the
various benchmarks performed to verify and validate the numerical method, please
refer to Qin & Suckale (2017) and this study’s supplementary material.

3. Results
Direct numerical simulations afford the possibility to study flow behaviour beyond

the scales, boundary conditions and material properties realizable in a laboratory
setting. To generalize the scientific insights drawn from the laboratory work by
Stevenson & Blake (1998), we start by reproducing the original experiments, proceed
to a detailed analysis of the observed flow behaviour and then generalize the
experiments by allowing for flow in and out of the tubes.

3.1. Virtual reproductions of analogue experiments
Stevenson & Blake (1998) initiated their experiments by inverting closed tubes filled
with the denser, more viscous fluid in the lower half, and the buoyant, less viscous
fluid in the upper half. We start our simulations after the inversion step, such that the
two fluids are unstably stratified with a slight cosine perturbation along their interface
(see figure 2). We have verified that an initial condition of different symmetry yields
qualitatively equivalent model outcomes, as shown in the supplementary material. To
represent the rigid glass walls of the experimental test tubes, we set all four side
boundaries to no slip (v = 0). All simulations are computed on a 40 × 4000 grid
with a fourfold refinement at the interface. At this resolution, the flow dynamics is
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I I I I III IIIII III III III

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11

FIGURE 3. Numerical reproduction of all 11 experiments performed by Stevenson &
Blake (1998) using two miscible fluids. The dense and the buoyant fluids are shown in
dark and light blue, respectively. The aspect ratio of all laboratory tubes was 1 : 100
despite different physical lengths and widths. Here and below, only the central part of the
numerical domain is shown for better visibility. All simulations are shown at t= 200× t0,
where t0 = R/U is the non-dimensional time.

well resolved, as demonstrated by a convergence test included in the supplementary
material.

We numerically reproduce all 11 analogue experiments performed by Stevenson &
Blake (1998), based on the detailed material properties they reported (see table 1).
All computations are performed for two miscible fluids with low diffusivity (i.e. D=
10−10 m2 s−1). Figure 3 shows the fully developed flows at t = 200× t0, where t0 =

R/U is the dimensionless, viscous time scale.
We generally observe the same behaviour as reported by Stevenson & Blake (1998),

which they classified into three different overturn styles. In figure 4, we illustrate
these three overturn styles in the reproduced experiments No. 8, No. 9 and No. 10.
At high viscosity ratios (M > 300), the flow configuration is characterized by stable
core–annular flow (flow regime I; figure 4a1–3). With decreasing viscosity contrast,
interface waves become more pronounced. However, at intermediate viscosity ratios
(10 < M < 300), the amplitude of interface waves remains small enough to avoid
wave bridging and disintegration of the core (flow regime II; figure 4b1–3). Rather,
the descending fluid intermittently rips off the tube wall, while the ascending fluid
forms a coherent core in the centre of the tube. Once the viscosity contrast becomes
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I II III

(a1) (a2) (a3) (b1) (b2) (b3) (c1) (c2) (c3)

FIGURE 4. Direct numerical simulations of the three primary flow regimes (I, II, III)
observed in bidirectional tube flow for different viscosity contrasts. Miscible (a2,b2,c2)
and immiscible (a3,b3,c3) flows shown in comparison to schematics (a1,b1,b2) reproduced
from Stevenson & Blake (1998) (see also online supplementary movies 1–3 showing
numerical simulations of experiments from Stevenson & Blake). Simulation snapshots are
shown at t= 200× t0.

small (M<10), wave bridging occurs, and as a consequence, both fluids sink or rise as
separate batches in the centre of the tube (flow regime III; figure 4c1–3). We note that
all three flow regimes exhibit interface waves. In agreement with the theory outlined
by Hickox (1971), the amplitude and dynamic significance of these interface waves
decrease as the viscosity contrast increases.

Figure 4 shows the results of three miscible simulations (figure 4a2,b2,c2) in
comparison to three immiscible simulations with identical fluid densities and
viscosities (figure 4a3,b3,c3). The three flow regimes appear qualitatively similar
for both miscible and immiscible fluids. Evidently, this conclusion holds true only
for sufficiently small diffusivities, in our case for D 6 10−8 m s−2 or Pe > 102

(see the supplementary material for more details), which is consistent with previous
estimates (Petitjeans & Maxworthy 1996; Scoffoni et al. 2001). Figure 4 also shows
that miscible flows tends to have less variability along the interface, which confirms
that even a small degree of miscibility notably dampens the growth rate of interface
instabilities (e.g. Meiburg et al. 2004).

The availability of an analytical solution, at least in the limit of steady core–annular
flow, provides a further opportunity to validate our numerical method beyond the
benchmarks presented in Qin & Suckale (2017). More importantly, it allows us
to evaluate the conditions under which miscible flow with low diffusivity behaves
approximately as immiscible. In figure 5, we compare the virtual reproduction of
experiment No. 8 (figure 5a) for miscible fluids with its immiscible equivalent
(figure 5b) and with the analytical solution calculated for the same flow parameters.
To compare the numerical and analytical results, we take horizontal profiles of
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FIGURE 5. Reproduction of experiment No. 8, treating the fluids as miscible (a) and
immiscible (b). Numerical speed profiles (c) taken on marked cross-sections highlighted as
red bars in (a) and (b) for miscible (yellow line) and immiscible (red line) flow compared
to the analytical solution (black line).

the vertical flow speed across the numerical domain in an area of fully developed
core–annular flow. At a given flux, the analytical model computes δ and the vertical
speed curves for both solutions, but it does not allow constraining the flux from
first principles. We thus use the flux computed from the numerical simulations as an
input to our analytical model. The flow profile of the immiscible simulation agrees
remarkably well with the analytical solution corresponding to relatively slow flow in
a thick core (figure 5c) despite the fact that the analytical solution represents steady
state whereas the numerical simulation is transient.

The vertical speed profile, however, is significantly modified by fluid miscibility
(figure 5c). The two reasons for this modification are a gradual change in the density
and viscosity and a more distributed shear stress in the interfacial zone. Despite the
small amount of mixing here, the dynamic consequences are notable in both the
increased maximum rise speed in the core and in the narrower upwelling portion
of the flow. We find that an exponential variation of viscosity with composition
magnifies this effect (see the supplementary material).

3.2. Analysis of virtual experiments
One of the main findings in Stevenson & Blake (1998) is that the Poiseuille number
in their experiments is essentially constant (i.e. Ps≈ 0.065) at finite viscosity contrast
(approximately M > 10). This behaviour stands in stark contrast to the theory of
Kazahaya et al. (1994), which predicts a monotonic increase of Ps with M. Figure 6
compares the range of experimentally determined Ps values with the numerical values
resulting from our simulations and with the theoretical values calculated from our
analytical model in 2-D and 3-D. We also show the theoretical values of Kazahaya
et al. (1994) for comparison. Because our analytical model does not allow us to
quantify the rise speed of a transient interface, we instead compute Ps from the
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FIGURE 6. Plot of the Poiseuille number, Ps, against the decadal logarithm of viscosity
ratio M, for numerical simulations (green stars), analytical model predictions (black circles
for 3-D, blue squares for 2-D), and the range of analogue experiments (grey shading)
performed by Stevenson & Blake (1998). Analytical solution of Kazahaya et al. (1994)
shown for comparison (black line). The numerical simulations shown are the reproduction
of the experiments of Stevenson & Blake (1998), also shown in figure 3, and are all
miscible.

average vertical flow speed in the core phase. For consistency, we use the same
measure to calculate Ps from the numerical results. The supplementary material
provides a comparison of these two metrics for rise speed and shows that they
produce comparable values in our simulations.

Figure 6 shows that our 3-D analytical model (black dots) agrees well with the
range of observed Ps numbers (grey shaded) reported by Stevenson & Blake (1998)
for M> 10. It also quantifies the difference between Ps in 2-D (blue squares) versus
3-D (black circles). In 3-D, the rise speed is approximately twice as fast as in 2-D.
The 2-D analytical estimates (blue squares) agree well with the 2-D numerical
estimates (green stars). All three pieces, the measured data, the analytical values and
the numerical outcomes, indicate that Ps levels off with increasing M, in contrast to
the findings of Kazahaya et al. (1994).

Stevenson & Blake (1998) hypothesized that the disconnection between observed Ps
values and model predictions of Kazahaya et al. (1994) is related to their assumption
that the interface between the ascending and descending fluid is immobile (i.e. ui= 0).
Our virtual reproductions of the analogue experiments allow us to test this hypothesis.
In figure 7, we plot vertical flow speed profiles across four different experiments:
No. 10 (figure 7a), No. 9 (figure 7b), No. 5 (figure 7c) and No. 8 (figure 7d). These
four experiments with increasing viscosity ratios represent the three different flow
regimes indicated in figure 4. We arrange the experiments in this order to highlight
the change in interface speed with increasing viscosity contrast. Our results give
clear confirmation of the hypothesis of Stevenson & Blake (1998), showing that the
interface is indeed not stationary.

A finite interface speed implies that the turning point between upward- and
downward-oriented flow shifts into one of the two fluids. At low viscosity contrast
(flow regime III), this shift may occur in either the ascending or in the descending
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FIGURE 7. Zones of flow reversal (grey shaded) in bidirectional flow experiments on
horizontal profiles of vertical speed, u(r), along cross-sections through virtual experiments
marked by red bars across reported flow patterns. (a1,a2) Profiles of experiment No. 10,
low viscosity contrast M, flow regime III. (b) Experiment No. 9, intermediate M, regime
II. (c) Experiment No. 5, high M, regime I. (d) Experiment No. 8, very high M, regime I.

fluid (see figure 7a1,a2) and is linked to transient effects. For flow regimes I and II,
the shift occurs in the ascending fluid in all simulations (figure 7b–d). This finding
implies that, at intermediate to high viscosity contrasts (i.e. M > 10), a portion of
the buoyant fluid in fact flows downwards in the tube – a phenomenon commonly
referred to as flow reversal or backflow.

To quantify flow reversal more systematically, we compute the ratio between the
flux in a given phase, Te, and the flow-reversal flux in the same phase, Terev, which
we define as

Terev =

∣∣∣∣∫ δ

δrev

2πrua(r) dr
∣∣∣∣ , (3.1)

where δrev is the point at which the vertical flow speed in the ascending fluid crosses
zero, ua(δrev) = 0. With this definition, Terev quantifies the flux of ascending fluid
that is trapped in the flow-reversal zone. Figure 8 shows the analytically predicted
flow-reversal flux as a function of dimensionless model parameters. Figure 8(a) shows
its dependence on the core radius, δ, for different viscosity contrasts. For viscosity
contrasts M > 10, the experimentally observed core radii (δ ≈ 0.6) cluster just below
the values resulting in maximum flow reversal. In figure 8(b), we plot the ratio of
flow reversal to total flux, again as a function of δ and M.

We find that at intermediate and high viscosity contrast, Terev/Te is mostly
insensitive to the viscosity ratio for sufficiently high core radius. In fact, for M ' 10
and δ ' 0.4, the flow reversal takes place in the ascending phase, and both the total
and flow-reversal flux approach the asymptotic limit of M→∞:

Te(δ, α = 0,M→∞)=
π

8
[1− 4δ2

+ (3− 4 log δ)δ4
], (3.2)

Terev(δ, α = 0,M→∞)=
π

8
δ4(2δ2 log δ − δ2

+ 1)2

(δ2 − 1)2
for δ > δrev. (3.3)
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FIGURE 8. (a) Dimensionless flow-reversal flux in the ascending phase, Terev , as a
function of the core radius δ. (b) Normalized dimensionless flow-reversal flux in the
ascending phase, Terev , scaled by the net dimensionless flux, Te, as a function of the core
radius, δ.

The insight that the interface between the two fluids is inherently dynamic does
not yet explain why Ps remains approximately constant with increasing M. To find
an explanation, we return to (2.14) in § 2.1. It states that the function Te(δ) has a
quadratic component, which suggests that two valid solutions for δ may exist for
a given flux. The existence of multiple solutions is a common feature of gravity
dominated multiphase flows, yet it does not necessarily imply that both solutions are
realized in the laboratory (e.g. Landman 1991; Brauner 1998; Ullmann et al. 2003;
Picchi & Poesio 2016), or indeed in natural systems.

In figure 9, we illustrate the two valid core–annular solutions for experiment No.
5 (see table 1). At the experimentally observed dimensionless flux, Te = 0.075, our
model predicts two solutions for the core radius, the thick-core (δthick, blue diamond)
and the thin-core solution (δthin, red triangle). The two corresponding flow profiles,
shown from the centre of the tube to the wall in figure 9(b,c), highlight that the same
overall flux can be accommodated by either a thin, rapidly ascending core with a thick
annulus, or through a thick, slowly ascending core with a thin annulus. Interestingly,
both solutions are far removed from the point of maximum flux or flooding point
(yellow ×).

Table 1 lists the two analytically computed core radii at the Te values inferred from
the reported terminal rise speeds in all 11 experiments. The solutions compatible with
Stevenson & Blake’s (1998) experimental and our numerical outcomes are printed
in bold. We find that all experiments with viscosity contrasts of M > 10 select
the thick-core solution, δthick. The thin-core solution, δthin, may be pertinent for the
experiments with small viscosity contrasts (experiments No. 3, No. 4, No. 10 and No.
11), but these cases do not exhibit stable core–annular flow, and the applicability of
the analytical model is thus questionable.

Figure 10 shows analytical flux solutions for all experiments as a function of core
radius and viscosity contrast. For each Te-δ curve in figure 10(a), we mark the solution
that is realized in experiments (δthick, red triangle; δthin, blue diamond). We show curves
for experiments No. 3, No. 4, No. 10 and No. 11 as light-grey lines to convey that our
analytical model is questionable for these cases. The experiments with M > 3 (solid
lines) all cluster around δ≈ 0.61 and Te≈ 0.075. Hence, the scatter in the Ps number
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FIGURE 9. (a) Transport number, Te, and interface speed, ui, as a function of the
dimensionless core radius, δ, for experiment No. 5 (M = 1700). (b,c) Dimensionless
velocity profiles of the thin-core, δthin, and thick-core, δthick, solutions at Te = 0.075. We
estimate Te based on the experimental rise speed.

in Stevenson & Blake (1998) (see figure 6) is not related entirely to uncertainty of
measurement but also reflects the fact that Te values at different M>3 are very similar
but not identical (see figure 10b). For experiments with a viscosity ratio close to unity
(light-grey lines), Te assumes much lower values (figure 10b), and the two possible
solutions are no longer clearly distinct.

This analysis suggests that the dichotomy in Ps number observed by Stevenson &
Blake (1998) and reproduced in figure 6 reflects a shift from thick-core core–annular
flow (flow regimes I and II) to unstable overturn flow (flow regime III). Contrary
to the thin-core solution, the thick-core solution exhibits approximately constant core
thickness over a large range of M (see figure 10a), which means that a constant Te
translates to a constant Ps (2.12). If any of the experiments exhibited the thin-core
solution, Ps would increase with M.

3.3. Simulations of persistent exchange flow
The result that only the thick-core solution is realized in core–annular flow at finite
viscosity contrast in closed tubes raises the question whether this flow configuration is
generally preferable. At very high viscosity contrast, M>10 000, the thin-core solution
entails an extremely thin core (e.g. see experiments No. 2, No. 7 and No. 8 in table 1),
which would be highly prone to wave bridging and flow collapse (e.g. Barnea 1987).
In the limit of extreme to infinite viscosity contrast, it is hence likely that the thick-
core solution is generally preferable.
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FIGURE 10. (a) Te–δ curves for all experiments listed in table 1. The plot shows 10
instead of 11 curves, because experiments No. 10 and No. 11 have the same viscosity
ratio. Numerically and experimentally realized core radii are highlighted as red triangles
(thick core) and blue diamonds (thin core). (b) Transport number, Te, against the viscosity
ratio, M, as computed from the analytical model for the experiments of Stevenson & Blake
(1998).

Determining the physical relevance of the two solutions based on core radius alone,
however, becomes unsatisfactory at high to intermediate viscosity contrast, when the
core radii become increasingly comparable. In this section, we explore the possibility
that the physically pertinent solution may be controlled not only by the material
parameters but also by the in- and outflux boundaries, an idea raised but not explored
in detail by Barnea & Taitel (1985). The experiments of Stevenson & Blake (1998)
were performed in closed test tubes, which are significantly different from natural
systems where exchange flow is typically the consequence of continued flux.

To generalize insights from closed to open systems, we perform simulations with
open boundaries at the top and the base of the model domain. All the simulations
discussed in this section are forced by a time-independent inflow condition imposed
along the base of the domain and set according to the analytical speed profile in 2-D
(see (8) and (9) in the supplementary material). This choice of boundary condition
automatically imposes a certain flux, Te. We test both thin- and thick-core influx by
applying either u|base(r)= uthin(r) or u|base(r)= uthick(r). Both solutions entail the same
flux, Te. We continue to enforce a no-slip condition (v|side = 0) along the side walls.
For the outflow condition and the initial interface position, we consider four different
cases (see figure 11).

For the first case (figure 11a1–c), we impose a fixed outflow condition along
the top boundary. We set the same analytical flow profile for the top and the base
of the domain, that is u|base(r) = u|top(r) = uthick(r) and u|base(r) = u|top(r) = uthin(r),
respectively. We also initiate the concentration field to the corresponding geometry
extended through the whole domain (see figure 11a1,b1). This choice implies that
the interface is pinned at both the top and bottom of the domain. Although this
set-up is clearly contrived, it is an interesting end-member case for understanding the
respective stability of the two solutions. Intuitively, one might expect that, if forced
by the analytical solution on both ends, the flow field in the domain will remain close
to that solution. Figure 11(c) shows that this is clearly not the case. Although both
interfaces are slightly wavy initially (figure 11a1,b1), the thick-core solution stabilizes
(figure 11a3). However, the thin-core case begins transitioning to the thick-core flow
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FIGURE 11. Snapshots of numerical simulations forced with thick- and thin-core analytical
solutions at the inlet. Material properties are identical to those in experiment No. 9 of
Stevenson & Blake (1998). Results are shown for: fixed outlet boundary, enforcing the
analytical model at the top boundary for thick- (a1–a3) and thin-core (b1–b3) solutions;
free outlet, stress-free top boundary allowing free flow through the top, starting from fully
developed bidirectional configuration (d1–e3), and with a transient front moving through
the domain (g1–h3); the same as in the previous case but with miscible fluids (k1–l3).
Horizontal profiles of vertical speed (c, f,j,m) show numerical solutions approaching either
thin- or thick-core analytical solutions depending on boundary conditions and fluid
miscibility. See also supplementary movie 4 for a simulation of (h1–h3).
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field from the top boundary downwards almost immediately after the onset of flow
(figure 11b2,b3). The speed profiles taken in the middle of the domain, where the
flow is approximately at steady state, confirm that both simulations closely approach
the analytical thick-core solution (figure 11c).

The second case (figure 11d1–f ) represents a scenario with open outflow across a
stress-free top boundary, which we enforce by setting p|top= const., and ∂v/∂z|top= 0.
The flow field across the upper boundary thus evolves over time, and the interface will
move freely with the outflow. The initial position of the interface is identical to that
in the first case (figure 11d1,e1). The emerging flow fields correspond closely to the
analytical solution imposed at the base of the domain. A thick-core inflow leads to a
stable thick-core configuration (figure 11d3) and a thin-core inflow leads to a stable
thin-core configuration (figure 11e3). This case demonstrates that the thin-core solution
is a physically relevant flow configuration, at least at a viscosity contrast of M ≈ 30.
Together with the first case, these simulations confirm that boundary conditions indeed
have a profound influence on which mathematically valid flow configuration is realized
in practice, as suggested by Barnea & Taitel (1985).

One advantage of the variable over the fixed outflow case is that we can now
consider a different initial interface position. In our third case (figure 11g1–j),
we initiate a closed interface confined to the vicinity of the lower boundary
(figure 11g1,h1), ensuring that the core radius corresponds to the analytical solution
enforced at inflow. In these simulations, the interface movement through the domain
is similar to that in the experiments (figure 11g2,h2), but the interface eventually
leaves the computational domain through the upper boundary.

Immediately after onset, both the thick- and thin-core flows approach the thick-core
solution (figure 11g2,h2). However, as soon as the interface intersects with the
upper boundary, the flow in both simulations collapses back to the thin-core solution
(figure 10g3,h3). This case demonstrates not only that the preferable flow configuration
depends on the boundary conditions, but also that a transient disruption on one
boundary, such as the passage of the interface through the top, can trigger a switch
in the flow configuration that propagates across the entire domain.

Because the analytical solution strictly applies only to the immiscible limit, we
have thus far considered only immiscible fluids in this section. In the fourth case
(figure 11k1–m), we repeat the third case with miscible fluids at high Pe. Initially,
the thin-core flow widens immediately (figure 11l2), but both flow configurations
collapse back to a thin core once the interface passes through the upper boundary
(figure 11k3,l3). The vertical speed profiles are reminiscent of the thin-core solution
but more spread out (figure 11m). The interface remains less wavy throughout, which
supports the theoretical expectation that mixing stabilizes core–annular flow against
interface waves (e.g. Meiburg et al. 2004).

4. Discussion
4.1. Theoretical implications

Laboratory experiments have provided invaluable insights into the dynamics of
buoyancy-driven exchange flows, but they inevitably simplify the more complex
flow problem they intend to represent. One aspect in which many analogue models
of exchange flow differ fundamentally from natural or industrial systems is that
bidirectional flow occurs only as transient behaviour until a steady state of complete
inversion of the two fluids is reached (Stevenson & Blake 1998; Huppert & Hallworth
2007; Beckett et al. 2011; Palma, Blake & Calder 2011). The steady state in the
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laboratory is hence very different from that in most natural or industrial problems
of interest. Our analysis suggests that this difference may be consequential, because
closed systems realize only a subset of the possible flow solutions that occur in open
systems. Experiments in closed domains may hence systematically underestimate the
dynamic variability of open-system flow.

We derive a simple analytical model that allows us to characterize the two steady-
state solutions for core–annular flow. These two solutions refer to the same magnitude
of flux, or Te, but differ in their core radii, δthick and δthin, flow speed profile, and
degree of flow reversal. We also predict the flux curve, Te(δ), based only on the
fluid properties and tube radius. The model does not require a fitting parameter to
match experimental or numerical data, but it predicts neither the total flux nor the
solution that is realized to achieve that flux. In fact, our analysis implies that it is
not possible to predict these two outcome variables based on the fluid properties and
the tube geometry alone, because the boundary conditions play an important role in
determining these variables.

Huppert & Hallworth (2007) suggested that buoyancy-driven exchange flow in
vertical pipes tends to maximize flux, which would be equivalent to maximizing Te.
This argument implies that the flux should be at the flooding point for most or all
of the experiments (figure 10a), because the non-dimensional viscous dissipation is
directly proportional to the flux magnitude Te (see the supplementary material). This
prediction, however, is at odds with both the experimental and the numerical results
discussed here. Our results confirm prior conjectures by Joseph et al. (1984) and
Beckett et al. (2011) that the viscous dissipation principle does not generally hold in
bidirectional flow.

Thus far, our finding that the boundaries and flow history select the realized
solution has been based only on direct numerical simulations in 2-D. Although the
flow regimes observed in these simulations agree both qualitatively and quantitatively
with laboratory data, interface instabilities scale differently in 2-D than in 3-D, and
extrapolating from a 2-D numerical simulation to a 3-D natural system is not trivial.

To ensure the robustness of our results, we reanalyse the laboratory experiments
by Beckett et al. (2011) to verify that both solutions are observable at high
viscosity contrast in open systems. Their laboratory set-up mimics an open-system,
buoyancy-driven exchange flow by connecting a vertical tube to fluid reservoirs at
both ends (e.g. Huppert & Hallworth 2007; Beckett et al. 2011; Palma et al. 2011).
The flow patterns that arise in this more complex geometry are more varied than
those in Stevenson & Blake (1998). By reanalysing the measured velocity profiles
from Beckett et al. (2011), we find that their experiments No. 20 (M≈ 1175), No. 15
(M≈ 377) and No. 11 (M≈ 144) correspond to the thin-core solution, that experiment
No. 9 is close to maximum flux where only one solution exists, and that experiments
No. 17 and No. 16 realize the thick-core solution. Our analysis of their data is shown
in figure 12, where we give the Te(δ) curves and identify realized solutions for all
experiments in their figure 9 (figure 12a). The experimental data of Beckett et al.
(2011) hence support our numerically derived insight that both solutions are pertinent
for understanding exchange flow in open systems at viscosity contrasts up to three
orders of magnitude.

4.2. Ramifications for volcanic systems
In its current form, our model is not yet suitable for a direct quantitative comparison
with field data from a specific volcano. Some of our insights, however, may inform
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FIGURE 12. Reappraisal of the laboratory experiments performed by Beckett et al. (2011).
(a) Te–δ curves and realized solutions for experiments No. 9, No. 11, No. 15, No. 16,
No. 17 and No. 20 based on material parameters provided in Beckett et al. (2011). (b)
Experiment No. 15 exhibits the thin-core solution despite a significant viscosity contrast of
M≈ 377. (c) Experiment No. 17 exhibits the thick-core solution at M≈ 92, demonstrating
that the viscosity contrast is not the main factor determining the respective stability of the
two core–annular solutions at intermediate to high viscosity ratio.

the interpretation of field data on a conceptual level. One pertinent insight is that
a change at either the base of a conduit or its opening in a volcanic crater could
trigger a switch in the flow regime in the conduit. The effect of different flow
regimes in the conduit on eruptive surface processes was well explored and reviewed
by Vergniolle & Mangan (2000). Our results suggest that the reverse is possible as
well: eruptive surface processes can alter the flow regime in the volcanic conduit.
For example, a disruption at the free surface, which might arise during an eruption
or other events such as mass movements in the crater, could trigger a switch in the
flow configuration that is realized in the conduit. Of course, our simplistic boundary
conditions (figure 11d1–e3 and g1–h3) do not adequately represent eruptive processes
at a free surface. Nonetheless, our results demonstrate the potentially significant role
of surface conditions in selecting a flow regime in the conduit.

We argue that the existence of two different, stable flow configurations could be
reflected in erupted field samples from persistently degassing volcanoes, potentially
from different stages of the same eruption. A switch from thick- to thin-core flow
could increase the magma ascent rate by more than an order of magnitude, which
may be detectable in microanalytical data. Our results show that if a change in the
estimated or measured ascent speed of the magma is detected, this observation does
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FIGURE 13. Comparison between the reproduction of experiment No. 5 (a) and an
additional simulation with inverted viscosity contrast 1/M (b), where the heavy and now
less viscous fluid (dark blue) forms a sinking core. (c) Horizontal speed profiles for the
inverted (yellow line) and normal (red line) viscosity contrast case.

not necessarily require additional magma supply or a change in the volatile influx at
depth. It could also be related to flow switching in the volcanic conduit.

Another potentially relevant insight of our study is the significant flow reversal
present in all three of the flow regimes identified by Stevenson & Blake (1998). This
result suggests that flow reversal might be the norm rather than the exception in
volcanic conduits. Our analytical model predicts that flow reversal occurs in the less
viscous phase, a finding that is corroborated by our simulations (see figure 13 and
additional results in the supplementary material). Typically, the buoyant, volatile-rich
magma has the lower viscosity, as was assumed in the experiment of Stevenson &
Blake (1998). In that case, flow-reversal flux is oriented downward, which raises the
question of whether the magma trapped in flow reversal is simply cycled back into
a crustal reservoir never to be sampled by eruption, or whether some magma may
circulate in the conduit for some time before being erupted. In the latter scenario,
continued cycling along with mixing between different magma batches may lead to
fundamentally different compositional evolution of both the magma and its volatile
load than would be expected from a straight decompression path.

Flow reversal may also increase mixing between volatile-poor and volatile-rich
magmatic melt, because the two fluids move in the same direction in some portion of
the conduit. As demonstrated in figure 5(b,c), even a small amount of mixing could
have important dynamic ramifications for conduit flow. As pointed out by Witham
(2011), magma mixing during conduit convection could be relevant for understanding
why observed melt-inclusion trends from persistently degassing volcanoes rarely
coincide with modelled degassing trends, as recently reviewed in Métrich & Wallace
(2008).

5. Conclusions
In this study, we reproduce, explain, and generalize laboratory experiments of

buoyancy-driven exchange flow in vertical tubes. We derive an analytical model for
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core–annular flow – the most commonly observed configuration of bidirectional flow
– that is consistent with laboratory observations and direct numerical simulations.
The primary objective of this paper is to understand the variability of core–annular
flow in the laboratory context, but our model may also provide a suitable starting
point for integrating the additional complexity needed for quantifying conduit flow in
persistently degassing volcanoes. The key finding of our analysis is that core–annular
flow is bistable at finite viscosity contrast and that the pressure and fluxes at
the boundaries of the domain, along with the transient history of the flow, play
an important role in selecting the realized flow solution. This result implies that
buoyancy-driven exchange flow is not uniquely determined by the material properties
of the fluids and geometric parameters of the tube.
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