INDUCTIVE AND PROJECTIVE LIMITS OF NORMED SPACES

by JOHN S. PYM

(Received 15 May, 1967)

Let $\{U_i, u_{ij}\}$ be an inductive system of normed linear spaces U_i and continuous linear maps u_{ij} : $U_j \rightarrow U_i$. (We write j < i if u_{ij} : $U_j \rightarrow U_i$.) An inductive limit of the system with respect to a class (\mathbb{N} , \mathbb{N}) of spaces A in \mathbb{N} and maps f in \mathbb{N} is a space $U_{\mathbb{N}}$ in \mathbb{N} and a system u_i : $U_i \rightarrow U_{\mathbb{N}}$ of maps in \mathbb{N} such that (i) $u_i \circ u_{ij} = u_j$ whenever j < i, and that (ii) if A is any space in \mathbb{N} and f_i : $U_i \rightarrow A$ is any system of maps in \mathbb{N} for which $f_i \circ u_{ij} = f_j$ (j < i), then there is a unique map f: $U_{\mathbb{N}} \rightarrow A$ in \mathbb{N} such that $f_i = f \circ u_i$ for each i. If \mathbb{N} is the class of all vector spaces and \mathbb{N} is the class of linear maps, we obtain the algebraic inductive limit, which we denote simply by U. The usual choice is to take \mathbb{N} to be the class of locally convex spaces and \mathbb{N} the class of continuous linear maps; the inductive limit U_L then always exists $[1, \S 16 \ C]$. If \mathbb{N} is again the continuous linear mappings but \mathbb{N} contains only normed spaces, the corresponding inductive limit U_N may not always exist. However, if in addition we require that \mathbb{N} contains just contractions (norm-decreasing linear mappings), then an inductive limit U_C will exist if every u_{ij} is a contraction [2]. We shall give a condition under which these limits coincide (as far as possible), and consider the corresponding condition for projective limits.

Theorem 1. If U_N exists, it is isomorphic (as a locally convex space) with U_L .

Proof. As U_N is a locally convex space, there is a unique map $f\colon U_L\to U_N$ such that the composite maps $U_i\to U_L\to U_N$ are the canonical maps into U_N . We find a continuous linear inverse for f. Let p be any continuous seminorm on U_L , and let $U_p=U_L/p^{-1}(0)$ be the normed quotient space. The continuous maps $U_i\to U_L\to U_p$ provide a continuous map $g_p\colon U_N\to U_p$, and the maps g_p yield a continuous linear map g of g into the projective limit of the spaces g viz. g itself [1, § 16 g 16]. It is easy to see that the maps g are identity maps.

We shall say that $\{U_i, u_{ij}\}$ is countably directed (resp. directed) if, for any countable (resp. finite) set $\{i_1, i_2, \ldots\}$, there is a j such that $i_n \prec j$ for every n. If the system is directed and each u_{ij} is an injection, then the canonical maps $u_i \colon U_i \to U$ are injections. It is shown in [2] that if, in addition, u_{ij} is a contraction for each i, j, then $||x|| = \inf_i ||u_i^{-1}(x)||_i$ (where $||\cdot||_i$ denotes the norm in U_i) defines a seminorm in U_i , and U_c is the quotient of U by the subspace $\{x \colon ||x|| = 0\}$.

THEOREM 2. Let $\{U_i, u_{ij}\}$ be countably directed, and let each u_{ij} be a contraction and an injection. Then, for each x, there is an i such that $||x|| = ||u_i^{-1}(x)||_i$. Further, $||\cdot||$ is a norm on U, and U_N and U_C both exist and are isomorphic to $(U, ||\cdot||)$. If each U_i is a Banach space, so also is $(U, ||\cdot||)$.

Proof. For $x \in U$, take (i_n) such that $\|u_{i_n}^{-1}(x)\|_{i_n} \to \|x\|$. For any j with $i_n < j$ for all n, we have $\|x\| \le \|u_j^{-1}(x)\|_j = \|u_{ji_n}(u_{i_n}^{-1}(x))\|_j \le \|u_{i_n}^{-1}(x)\|_{i_n} \to \|x\|$; whence $\|u_j^{-1}(x)\|_j = \|x\|$. We can say more: if $\{x_n\}$ is any countable subset of U, there is a j such that $\|u_j^{-1}(x_n)\| = \|x_n\|$ for each n (for let j_n satisfy $\|u_{j_n}^{-1}(x_n)\|_{j_n} = \|x_n\|$, and take j with $j_n < j$ for all n). Therefore, if

||x|| = 0, there is a j such that $||u_j^{-1}(x)||_j = 0$; whence $u_j^{-1}(x) = 0$, and x = 0. This and other elementary arguments show that $||\cdot||$ is a norm on U. Let $f_i : U_i \to A$ be any system of continuous linear maps into a normed space A for which $f_i \circ u_{ij} = f_j$ whenever j < i, and let $f : U \to A$ be the canonical linear map for which $f \circ u_i = f_i$ (all i). Put

$$K = \sup \{ || f(x) || : || x || \le 1 \},$$

and choose (x_n) with $||x_n|| \le 1$ such that $||f(x_n)|| \to K$. We can find a j such that $||u_j^{-1}(x_n)||_j \le 1$ for every n, and $||f_j(u_j^{-1}(x_n))|| = ||f(x_n)|| \to K$; therefore $K \le ||f_j||$. We conclude that f is continuous, and that if each f_j is a contraction, so is f; thus $(U, ||\cdot||)$ coincides with U_N and U_C . Finally, if (x_n) is a Cauchy sequence in $(U, ||\cdot||)$, we can find a j such that

$$||u_j^{-1}(x_n-x_m)||_j = ||x_n-x_m|| \to 0$$

as $m, n \to \infty$. If U_j is complete, there is a y such that $u_j^{-1}(x_n) \to y$; whence

$$x_n = u_j(u_j^{-1}(x_n)) \to y.$$

The completeness of each U_j therefore implies the completeness of $(U, \|\cdot\|)$.

The notation we use for projective limits is parallel to that for inductive limits. The following result is obtained by arguments similar to those of Theorem 2.

Theorem 3. Let $\{V_i, v_{ij}\}$ be a countably directed projective system of normed spaces with each v_{ij} a contraction. For $x \in V$, the algebraic projective limit, write $||x|| = \sup_{i} ||v_i(x)||_i$.

Then there is an i such that $||x|| = ||v_i(x)||_i$. Further, $||\cdot||$ is a norm on V, and V_N and V_C both exist and are isomorphic with $(V, ||\cdot||)$. If each V_i is a Banach space, so also is $(V, ||\cdot||)$.

We remark that if $\{U_i, u_{ij}\}$ satisfies the hypotheses of Theorem 2, if V_i is the normed dual of U_i , and if v_{ij} is the adjoint of u_{ij} , then $\{V_i, v_{ij}\}$ satisfies the hypotheses of Theorem 3. It is shown in Theorem 2 of [2] that V_C is the normed dual of U_C .

Examples. (i) Let X be locally compact, and let M(X) be the usual space of bounded Radon measures. For $\mu \ge 0$, $\mu \in M(X)$, write $L^1(\mu) = \{v \in M(X): v \le \mu\}$. The system of spaces $L^1(\mu)$ with the inclusion maps satisfies the conditions of Theorem 2 (countably directed because, given a sequence (μ_n) , we can find a sequence (a_n) of real numbers, with $a_n > 0$ for each n, and $\sum a_n \mu_n \in M(X)$. It is easy to see that M(X) is the (normed) inductive limit of these subspaces.

The dual of each $L^1(\mu)$ may be identified with $L^{\infty}(\mu)$. The normed dual of M(X) is thus the normed projective limit of the spaces $L^{\infty}(\mu)$.

(ii) Even in this special situation, V_N may not be isomorphic with V_L (cf. Theorem 1). Thus take X to be uncountable and discrete. Let m be the (unbounded) measure which assigns mass 1 to each point. Then $M(X) = L^1(m)$, and $M(X)^* = L^{\infty}(m)$ is the space B(X) of all bounded functions on X. The canonical projection from B(X) to $L^{\infty}(\mu)$ maps the bounded function f on X to its restriction to the (necessarily countable) support of μ . The locally convex space projective limit of the spaces $L^{\infty}(\mu)$ therefore consists of B(X) with a topology defined by neighbourhoods $N(S, \varepsilon) = \{f: |f(x)| < \varepsilon \text{ for all } x \in S\}$ ($\varepsilon > 0$, S a countable subset of X). But, of course, $M(X)^*$ is B(X) with the uniform norm.

(iii) The limit U_N may be distinct from U_C . Thus let B be any Banach space, and let U_n (n = 1, 2, ...) have the same underlying space as B, but with norm defined by $||x||_n = ||x||/n$; the maps $U_n \to U_m$ are the identities if n < m. Then U_N may be taken to be B; but $U_C = \{0\}$.

REFERENCES

- 1. J. L. Kelley and I. Namioka, Linear Topological Spaces, (Princeton, 1963).
- 2. Z. Semadini and H. Zidenberg, Inductive and inverse limits in the category of Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 13 (1965), 579-583.

THE UNIVERSITY SHEFFIELD