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Let {£/,, Ujj} be an inductive system of normed linear spaces Ut and continuous linear
maps Ujj\ Uj-*Ut. (We write y-< / if u^: Uj-*Ut.) An inductive limit of the system with
respect to a class (U, 1TT) of spaces A in IT and maps / i n ttt is a space Uu in tl and a system
Mf: Ut-* t/u of maps in 1TI such that (i) u^u^ = Uj whenever _/-< i, and that (ii) if A is any
space in i l a n d / : U( -*• A is any system of maps in Ml for which /JOM,,- = / ; (y-< 0 > t n e n there
is a unique m a p / : C/u -+ y4 in JTt such t h a t / = / o ux for each /. If II is the class of all vector
spaces and ITT is the class of linear maps, we obtain the algebraic inductive limit, which we
denote simply by U. The usual choice is to take II to be the class of locally convex spaces and
1TT the class of continuous linear maps; the inductive limit UL then always exists [1, § 16 C].
If ITT is again the continuous linear mappings but U contains only normed spaces, the corres-
ponding inductive limit UN may not always exist. However, if in addition we require that ITT
contains just contractions (norm-decreasing linear mappings), then an inductive limit Uc will
exist if every utJ is a contraction [2]. We shall give a condition under which these limits
coincide (as far as possible), and consider the corresponding condition for projective limits.

THEOREM 1. TfUN exists, it is isomorphic {as a locally convex space) with UL.

Proof. As UN is a locally convex space, there is a unique map / : UL -> UN such that the

composite maps Uj-> UL-> UN are the canonical maps into UN. We find a continuous linear
inverse f o r / Let p be any continuous seminorm on UL, and let Up = UJp'1^) be the
normed quotient space. The continuous maps Ut-* UL-* Up provide a continuous map
gp- UN-> Up, and the maps gp yield a continuous linear map g of UN into the projective limit

of the spaces Up, viz. UL itself [1, § 16 D(A)]. It is easy to see that the maps Ui-*UN-* UL

are the canonical maps into UL, and we deduce that both/of? and g o / a r e identity maps.
We shall say that {Ut,uu} is countably directed (resp. directed) if, for any countable

(resp. finite) set {/,, i2,...}, there is aj such that in<j for every n. If the system is directed
and each u,j is an injection, then the canonical maps M( : Ut -> U are injections. It is shown in
[2] that if, in addition, uu is a contraction for each i,j, then || x || = inf | u^(x) | , (where | • | ,

denotes the norm in U,) defines a seminorm in U, and Uc is the quotient of U by the subspace
{x: \\x\\ = 0 } .

THEOREM 2. Let {Uh M,7} be countably directed, and let each u,j be a contraction and an
injection. Then, for each x, there is an i such that || x | = || wf i{x) ||,. Further, || • || is a norm on
U, and UN and Uc both exist and are isomorphic to (£/, || • ||). If each Ut is a Banach space, so
also is (U, fl • ||).

x II. For any j with in-<j for all n,Proof. For xeU, take (/„) such that uf1(x)
we have | x || g || «;»(x) | y = \\j < whence || «71W| | ;=
We can say more: if {xn} is any countable subset of U, there is ay such that | Uj 1(xn

for each n (for let/ , satisfy || ujn\xn) \\Jn = \\ xn \\, and take; with_/„-<./ for all n). Therefore, if
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fl JC || = 0, there is a j such that || ujl(x) ]| _,- = 0; whence uJ1(x) = 0, and x = 0. This and other
elementary arguments show that | • || is a norm on U. Let / : Ut -»-4 be any system of
continuous linear maps into a normed space A for which fiouu =fj whenever j-< i, and let
/ : U-* A be the canonical linear map for which/o w; = / ; (all /). Put

and choose (xn) with \\xn\\ ^ 1 such that ||/(xn)|| -> K. We can find ay such that || w^'COf.,^ 1
for every n, and | | //«7 \xn)) || = ||/(xn) || -* K; therefore K ^ | | / - 1 | . We conclude that / is
continuous, and that if each/,- is a contraction, so i s / ; thus (U, [| • |) coincides with UN and
C/c. Finally, if (xn) is a Cauchy sequence in ([/, | • ||), we can find ay such that

I uj\xn-^ \\j = || Xn-Xm || -> 0

as m, n -» oo. If i/,- is complete, there is a j such that t ^ C O -> j>; whence

The completeness of each Uj therefore implies the completeness of (U, || • ||).
The notation we use for projective limits is parallel to that for inductive limits. The

following result is obtained by arguments similar to those of Theorem 2.

THEOREM 3. Let {Vh v^} be a countably directed projective system of normed spaces with
each Vjj a contraction. For xeV, the algebraic projective limit, write \x\ = sup || v^x) \\,-.

Then there is an i such that || x || = || v((x) || f . Further, || • || is a norm on V, and VN and Vc both
exist and are isomorphic with (V, || • ||). If each Vt is a Banach space, so also is (V, || • ||).

We remark that if {{/,-, utJ} satisfies the hypotheses of Theorem 2, if Vt is trie normed
dual of Uh and if vtJ is the adjoint of «,,-, then {Vh v^} satisfies the hypotheses of Theorem 3.
It is shown in Theorem 2 of [2] that Vc is the normed dual of Uc.

Examples, (i) Let X be locally compact, and let M(X) be the usual space of bounded
Radon measures. For \i ^ 0, neM(X), write L1^) = {veM(X):v 4 n}. The system of
spaces L1^) with the inclusion maps satisfies the conditions of Theorem 2 (countably directed
because, given a sequence (fin), we can find a sequence (an) of real numbers, with an > 0 for
each n, and ^ a , / i , e ¥ ( I ) ) . It is easy to see that M{X) is the (normed) inductive limit of
these subspaces.

The dual of each Ll(n) may be identified with L°°00- The normed dual of M(X) is thus
the normed projective limit of the spaces L^i/i).

(ii) Even in this special situation, VN may not be isomorphic with VL (cf. Theorem 1).
Thus take X to be uncountable and discrete. Let m be the (unbounded) measure which
assigns mass 1 to each point. Then M(X) = Ll{m), and M(X)* = L °°(w) is the space B(X)
of all bounded functions on X. The canonical projection from B{X) to L°°(^) maps the
bounded function / o n X to its restriction to the (necessarily countable) support of fi. The
locally convex space projective limit of the spaces Lx{^i) therefore consists of B(X) with a
topology defined by neighbourhoods N(S, e) = {/: \f(x) | < e for all x e S} (e > 0, S a
countable subset of X). But, of course, M{X)* is B(X) with the uniform norm.
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(iii) The limit UN may be distinct from Uc. Thus let B be any Banach space, and let
Un{n = 1,2,...) have the same underlying space as B, but with norm defined by ||jc||n = ||*||/n;
the maps Un -» Um are the identities if n < m. Then UN may be taken to be B; but Uc = {0}.
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