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FREE E(,-SEMIGROUPS

NEAL J. FOWLER

ABSTRACT. Given a strongly continuous semigroup of isometries U acting on a
Hilbert space #, we construct an Ey-semigroup aY, the free Eq-semigroup over U,
acting on the algebra of all bounded linear operators on full Fock space over #. We
show how the semigroup aV®" can be regarded as the free product of aV and . In
the case where U is pure of multiplicity », the semigroup oY, called the free flow of
rank n, is shown to be completely spatial with Arveson index +oo. We conclude that
each of the free flows is cocycle conjugate to the CAR/CCR flow of rank +oo.

0. Introduction. An E,-semigroup is a continuous semigroup a = {c : t > 0} of
normal, unital *-endomorphisms of a von Neumann algebra #. More precisely, each
«, is a normal, unital x-endomorphism of M, oy = a5 0 oy whenever s, ¢ > 0, o is
the identity endomorphism, and for each x € M and each o-weakly continuous linear
functional p on M, the map ¢ — p(a,(x)) is continuous. Powers initiated the study of
these semigroups in [9], and to date, even in the case where M is B(#H), the algebra of
all bounded linear operators on a separable, complex Hilbert space #, there are very few
concrete examples.

In this paper, we will introduce a family of Ey-semigroups called free Ey-semigroups,
which are the free objects in the category of Ep-semigroups. We will show that a certain
subfamily of the free Ey-semigroups, the free flows, consists entirely of Ey-semigroups
which are completely spatial and have numerical index +oo. Using Arveson’s classifica-
tion of completely spatial Ey-semigroups, we are then able to conclude that each of the
free flows is cocycle conjugate to the CAR flow of rank +oo.

The construction of Ey-semigroups which we present is modeled after similar con-
structions by Powers ([9]) and Arveson ([1]). In each of these constructions, one begins
with a strongly continuous semigroup of isometries U = {Uj : ¢t > 0} acting on #. By
making use of an appropriate set of commutation relations, one can effectively “quan-
tize” U to produce an Eg-semigroup aV acting on B(X), where X is a Fock space over
7. The relations used by Powers are the canonical anticommutation relations, or CARs,
and the Hilbert space & which underlies the resulting CAR Ey-semigroup is the antisym-
metric Fock space over #. Arveson makes use of the canonical commutation relations
(CCRs), and the underlying Hilbert space X in this case is the symmetric Fock space
over 4. Our construction of free Ey-semigroups is the full Fock space analogue of these
constructions, and makes use of the Cuntz relations.

In each of the above constructions the semigroup oV is spatial; that is, there is a
strongly continuous semigroup of isometries ¥ = {V; : ¢ > 0} acting on X which
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intertwines o with the identity in the sense that aV(4)V, = V,A for each 4 € B(X)
and each ¢ > 0. Indeed, one such V is simply the second quantization of the original
semigroup U.

Much attention has been paid to the case where U is a pure semigroup of isometries.
If U is pure of multiplicity n (1 < n < 00), the Ey-semigroup which results from any of
the constructions referred to above is called a flow of rank n. In [9], Powers showed that
the CCR flow of rank 7 is conjugate to the CAR flow of rank n, and both Powers and
Arveson have defined numerical indices for spatial Ey-semigroups which recover the
rank of these flows. In computing the index of the CCR flows, Arveson ([3]) explicitly
described the set of all intertwining semigroups for the CCR flow of rank »n, and made
precise the notion that this particular Ey-semigroup has an abundance of intertwining
semigroups by showing that it satisfies a certain technical condition which he called
complete spatialness. He concluded by showing that his numerical index was a complete
cocycle conjugacy invariant for completely spatial Eo-semigroups, and consequently that
every completely spatial Eg-semigroup is cocycle conjugate to a CAR/CCR flow.

In Section 3.1 of this paper we will show that the numerical index of the free flow
of rank 7 is +oo whenever n > 1. This is a radical departure from the CAR/CCR case,
where the corresponding flow of rank » has index n. We then verify that each of the free
flows is completely spatial, and hence cocycle conjugate to the CAR/CCR flow of rank
+00. We also take a moment in Section 1.3 to justify the use of the word free by showing
how free Ej-semigroups are related to free products.

We close the introduction with a few remarks on notation, most of which is standard.
We use the symbols C, R, and Z to denote the complex numbers, real numbers, and
integers, respectively. The symbol N denotes the natural numbers {1,2,3,...,}, and
we define Ny to be the set {0,1,2,..., }. All Hilbert spaces are assumed to be over the
complex numbers, and are also assumed to be separable. The inner product we use is
linear in the first slot and conjugate linear in the second slot. The identity operator on #
will be denoted /5, and abbreviated / when the context is clear.

1. Free E,-semigroups.

1.1. Preliminaries. Let H be a complex Hilbert space. For eachn > 1, let #®" denote
the n-fold full tensor product of #f, and let #%° = C. The full Fock space over # is the
Hilbert space F(#) defined by

F(H) =é}[®".
n=0

The distinguished vector 1 0B 0D 0D --- € F(H) is called the vacuum vector, and
shall be denoted by Q,,, or just Q if the context is clear. We will denote the projection
of F(#) onto the subspace H®" by P,.

To eachf € # we associate a left creation operator I(f) and a right creation operator
r(f) acting on F(#{), defined by

INQ=rHQ=f
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ING®:-f)=fON® - Bf
r(f)(fl®®ﬁl)=f1®®fn®f7 nZI»ﬁ,-~-7ﬁz€ﬂ-

On easily checks that their adjoints, called annihilation operators, satisfy
1) Q=r()*Q=0
@ )= L@ Of
@@= /Mi® - Qfit n21, fi,.. fo €.

The maps I,r: H — QZ( F(H )) are linear, isometric, satisfy the Cuntz relations

Ig)'ltN = (f,8)]
rg)'r() = {f &)l

and the commutation relations

Ir() —r(Hie) =0
(L.1) gy r() — rNIE)" = (f,8)Po, f,g € H.

It is easy to extend the domain of / and r to all vectors in F(#) which have bounded

support; that is, vectors f € F(#) for which P,f = 0 for all but finitely may »n. Simply
define

Q)=r)=1

@ %) =1) )
rh® - ®f)=r()---rh), n=>1h,....n €H,

and extend linearly. We will denote the set of all vectors in F(#) which have bounded
support by Fy(H).

When working with the symmetric Fock space over #, denoted e”/, one has the luxury
of a canonical isomorphism e* ® e = %% The following proposition gives a full
Fock space analogue of this isomorphism. We now recognize this as a special case of [5,
Definition 1.5.1], which we have reproduced in Definition 1.3.2 of this paper.

PROPOSITION 1.1.1. Suppose % is expressed as an internal direct sum H, ® %5, and
consider F(H,) as a subspace of F(#{) in the natural way. Define another subspace E of
F(HH) by

0
E=C® @(}[2 ® _7_[®(n—])).

n=1
Then there is a unique unitary operator
W:F(H)QFE — F(H)

which satisfies
(1.2) Wh®f)=r(Hh, he F(H), [ € ENFp(3H).
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PROOF. Supposeh=h® - Qhy, € F(H) forsomem >0, hy, ..., h, € H;, with
the understanding that # = Qif m = 0. Similarly, letf =i ® - - - ® f; € E for somea > 0,
where fi € 96 ifa > 1 andf; € # foralli > 2. Suppose /' = h| ® --- @ K, € F(4)
andf' =f{ ® --- ®f} € E are another such pair of vectors. We will show that

(13) (r(Oh, r(H) = (hBf,H ®f'),
from which we are assured the existence of an isometry W: F(#) @ E — F(¥) satisfy-
ing (1.2).

Equation (1.3) is obvious if m = n and a = b. If either m # n or a # b, we have

(h@f 0 @f) = (hH)f.f) =0,

so we must establish that (r(f)h, (f")h’) = 0 in this case. This equation clearly holds if
m+a # n+b,so we may assume that m +a = n+b, and without loss of generality m < n.
Then

(rOhr(H) = (@ - Qhy @fi R Qfe, M ® - QK. Rf] @ - R ff)
= <h|7h;>"'<hm7h:n><flv :n+l>"'<favfl:>
=0’

since (fi, A,,,,) = 0.
It remains to show that W is surjective. For this, we define a subspace 7 of F(#) for
eachx € U2 {1,2}" by

C ifx € {1,2}°

= Hey @ ®H, ifx=(x1,...,x,) € {1,2}" forsomen > 1.

A moment’s thought shows that F(#) = @, #,, so it suffices to show that the range of W
contains each of the subspaces #. The case x € {1,2} is trivial, since W(Q ® Q) = Q.
Suppose x = (x1, ..., x,) for some n > 1. Ifx; = 1 for all , then

H, = 7" C F(9) = W(F() ® Q).
Otherwise, let j = min{i : x;+; = 2}. Then

H C HYRHQH, R ®IH,
- mr(%@y{n—j—l)}[{gj
C ranW. n

As a final preliminary, we observe that to each linear contraction T: #{ — X between
Hilbert spaces # and %X, we can associate a contraction T: F(#) — F(X), the second
quantization of T, defined by

TQ;{=QK :
TH® - ®f)=TH® - Q@Th, n>1,fi,.... » €.
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The map T +— T is unital, strongly continuous, and preserves both involution and com-
position of operators. Moreover, these quantized operators interact nicely with creation
and annihilation operators, as demonstrated in the following lemma.

LEMMA 1.1.2. Suppose T: H — X is a linear contraction. Then for each f € Fp(H)
we have

TiH = KTHT
Tr(H) = n(TNT.
If T is an isometry, we further have
TN = KTH'T
Tr() =nT'T.

PROOF. The first statement is routine and left to the reader. For the second statement,
suppose T is an isometry. Relying heavily on the fact that (7)* = (T*), we have
Tiy = UNTY = T TINT*)* = (T+ITP)" = KTf)'T. .

The following corollary is a trivial restatement of Proposition 1.1.1, using the language
of the previous lemma.

COROLLARY 1.1.3. Suppose L: H — K is an isometry. Let E. C F(X) be the sub-
space E of Proposition 1.1.1 with respect to the decomposition K = LH @& (LH)*; that
is, let

EL =C oy @(L}[)‘L ® K@(n~l).

n=1

There is a unique unitary operator
Wi 5(3) ® E — F(X)

such that
Wih®f)=r(f)Lh, he F(H), [ € ELN F(K).

1.2. Construction.

THEOREM 1.2.1. Suppose U = {U, : t > 0} is a strongly continuous semigroup of
isometries on H. There is a unique Ey-semigroup a¥ = {aV : t > 0} on 'B( F(H )), the
Jfree Ey-semigroup over U, which satisfies

(1.4) of (IN) = KU), fest, >0,
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PROOF. Uniqueness of aV follows from the fact that {i(f) : f € #} generates
9'3( F(H )) as a von Neumann algebra. (See [6].) To prove the existence of oV, we begin
by observing that the theorem is trivial if each of the isometries U, is actually unitary.
In this case the second quantization U = {U, : ¢t > 0} of U is a strongly continuous
semigroup of unitary operators on QZ( FH )), and we can define a trivial Ey-semigroup
aV on 23(7(}[)) by

ol (4) = UAT;, 4 € B(F0D), t>0.

By Lemma 1.1.2 this is clearly the desired semigroup.

In the case where U, is a proper isometry for some (and hence all) ¢ > 0, let ¥ be
a unitary extension of Uj that is, let ¥ = {V, : ¢t € R} be a strongly continuous one
parameter unitary group acting on a Hilbert space & which extends U in the sense that
there is an isometry L: # — X which intertwines U and V:

ViL=LU;,, t>0.

Let 3 = {B; : t € R} be the one parameter automorphism group acting on ﬂ( F (7())
defined by

BlA) = VAV;, A€ B(F(X)), teR.

By Lemma 1.1.2 we have

Bi(l) =UVig), g€X, teR,
so in particular
B(IL) = IViLN) = KLU, [ € 3, t>0.

Thus the von Neumann algebra 2 generated by {/(Lf) : f € #{} is invariant under the
semigroup {3, : ¢ > 0}. We will show that the equation

o(IN) = LN, fes

extends to a *-isomorphism of Qi( F(H )) onto 4. The Ey-semigroup oV is then defined
byal=60"10p,00,t>0.
Let W: F(#)QEL — F(X) be the unitary operator of Corollary 1.1.3. We claim that

01 = WuT DWW, T € B(F()

defines the desired *-isomorphism of ‘.B( F(H )) onto 4. For this, simply note that for
S € ELN Fp(X), g h € F(H), we have

WL (lg) ®)(h®[) = Wi(l(@h ®f)
= r(NHLI)h
= r(f)l(Lg)Zh (Lemma 1.1.2)
= I(Lg)r(Lh
= (Lg)W.(h ®f).
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Again this suffices, since {/(g) : g € %} generates QZ( F(H )) as a von Neumann algebra.
(See [6].) n

COROLLARY 1.2.2. Suppose U ={U; : t > 0} is a strongly continuous semigroup of
isometries on . Then the free Ey-semigroup oV = {aU : t > 0} satisfies

(1.5) o () = Wy (A @ DWW}, A€ B(F(31), 120,

where Wy,: F(H) ® Ey, — F(H) is the unitary operator of Corollary 1.1.3.

PROOF. Simply verify that equation (1.5) holds whenever 4 = I(g) for some g € #.
The calculation is identical to the one just given at the end of the proof of Theorem 1.2.1.m

1.3. Free products. Given two strongly continuous semigroups of isometries U and V
acting on Hilbert spaces #; and #y, respectively, one can define a semigroup U & V'
acting on Hy @ Hy in the obvious way: (UD V) (f ® g) = Uf @ V,g. Similarly, given two
Ey-semigroups o and f acting on B(#,) and B(#j), respectively, one can show there is
a unique Ey-semigroup a @ (3 acting on B(H, ® Hz) which satisfies (a« @ ()(4 ® B) =
o, (A)® B¢(B). Arveson has shown that the construction of the CCR Ej-semigroups carries
the direct sum operation for semigroups of isometries into the tensor product operation
for Ey-semigroups ([1]). More precisely, he has shown that the map ¥: U +— YV defined
by the construction of the CCR Ej-semigroups is a functor from the (appropriately
defined) category of strongly continuous semigroups of isometries to the (appropriately
defined) category of Ey-semigroups, and that under this functor, the Eq-semigroup YY®"
is naturally isomorphic to YV ® v".

We would like to carry out this program for the construction U +— aV of the free
Eo-semigroups, showing that «V®" is naturally isomorphic to the free product of oV
and o, Unfortunately, the theory of free products of Eq-semigroups has not yet been
developed. Nevertheless, in a very real sense the semigroup oV®” is the free product of
oV and o, as we shall describe in this section.

To begin with, we will say a few words about the free product of Hilbert spaces and
the reduced free product of von Neumann algebras. The definitions that follow are from
[5], where one can find a more complete discussion of this material.

DEFINITION 1.3.1. Let (%, £;)ic; be a family of Hilbert spaces #; with distinguished
vectors &; € H;. The Hilbert space free product *;c/(%, €;) 1s (H, €), where H is the
Hilbert space

H=Ceo@®( @ o 0@0,).
n>1 (i1 #i 7 Fin)

Here }O[ ; denotes the orthocomplement of §; in ;.

REMARK. One can check that *iel( F(H), Q,—) = ( F(Bicr ), Q), where Q; is the
vacuum vector in F(%;) for eachi € L.
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DEFINITION 1.3.2. Suppose (A, #, €:)icr is a family of von Neumann algebras 4
acting on Hilbert spaces %} with distinguished vectors &; € #;. Let (¥, €) = *ici(94, &),
and for each i € I let #(i) denote the subspace of # defined by

H=Cco®( @ s ® 00,
n>1 i Figto-Fin)
Define unitary operators V;: #H; ® #H (i) — H by
§i®E— ¢
9; DE —3H,
60 (0, @ ® 3;,) =3 @ ® 91,
};’i ®(}o[i, ®"’®.'}}i,,‘)_’5f;’i® 9};'. ®"'®50{,',, .
Foreachi € I, let \;: 4; — B(# ) be the representation defined by
X(a) =Vila @ Iy@)V], a€ 4.

The reduced free product von Neumann algebra A = x;c/(4;, 3, €;) is the von Neumann
algebra ;

A= (U )\i(ﬂi))

iel

Now, suppose U is a collection of strongly continuous semigroups of isometries. For
each U € U, let #y be the Hilbert space on which U acts. Let # = @pyeqHy, and let
Ly be the inclusion map of #y into . Then the semigroup W = GpeqU is the unique
semigroup of isometries on #/ which satisfies

I/Vt’/Uf=l’U[J(f’ Ue'uvfe%?tzo-

We will show that o behaves like the “free product” of the family («V)yc, in the sense
that
1. o acts on the reduced free product von Neumann algebra

svea(B(FOL), FOL), Q)

2. oz,W oAy = Ay o av foreach U € U, where )y is the representation of {B( T(ﬂu))
on B(F(20)) used in defining *yew( B(F(%0)), F(0), Q).

In computing *U,Eﬂ(fB( T(ﬂﬁ/)), F(oy), QU), the subspace of F(#) which corre-

sponds to #({) in Definition 1.3.2 is precisely the subspace E,, of Corollary 1.1.3,

and the unitary operator which corresponds to V; is W,,. Thus the representation
Au: B(F(2ty)) — B(F(9()) is simply

AU(A) = I/VLU(A ®I)WZU7 A€ Q;(.‘T(}[U))’
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from which we obtain
(1.6) () = e, f € Hy.
Since {l(tyf) : U € U,f € Hy} generates Qi( F(H )) as a von Neumann algebra, we have

B(5(90) = *veu( B(FOW)), 7o), Q).
The second statement follows easily from (1.6):

(@ o xp)(N) = o (IeuN)
= (Wuyf)
= lwUf)
= \u(LUS)
= (\voa)IN), fe€Hy, t>0,

2. Free product systems. Continuous tensor product systems, or product systems
for short, were introduced by Arveson in [3], and play an integral role in the theory of
Ey-semigroups. For example, if ¢: E — B(H) is an essential representation of a product
system E, there is a natural way of associating an Eyp-semigroup with ¢. Conversely,
for each Ey-semigroup « there is an associated concrete product system Z,. These two
processes interact nicely: if « is the Ep-semigroup associated with the essential repre-
sentation ¢: E — B(#{), then the product systems E and E, are canonically isomorphic.
We refer the reader to [3] for details.

In this chapter we make use of a strongly continuous semigroup of isometries U acting
on # to construct a product system E = EU, the free product system over U, along with
an essential representation ¢ = ¢V: EV — ﬂ( F(H )) in such a way that the £-semigroup
associated with ¢V is aV, the free Ey-semigroup over U.

We begin by characterizing the intertwining space % of the endomorphism oV; that
is, the linear subspace of QJ( F(H )) defined by

£, =T € B(F(9)) : o/ AT = T4, A€ B(F(3)}.

It is a standard result that such an intertwining space is a Hilbert space in the inner
product 7*S = (S, T)1. (See [11].) Observe that the corresponding Hilbert space norm on
E, coincides with the operator norm.

For the remainder of this paper, we will use the abbreviations E; and W, for the Hilbert
space Ey, and the unitary operator Wy, of Corollary 1.1.3.

LEMMA 2.0.3. Foreacht > 0, define ¢,: E; — ’B(T(Hf)) by
¢(Nh=Wih®f), [f€E:, he F(H).

Then ¢, maps E, onto the Hilbert space E, of intertwining operators for aU. Moreover,
¢, defines a unitary operator from E, to ‘E,; that is,

2.1 o(8) o) = (f,8), f.g € Er
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REMARK. Observe that ¢,(f) = r(f)U, when f € E; N Fo(H).

PROOF. To see that ¢(E;) C %, we make use of Corollary 1.1.3: for 4 € fB( F(H )),
fEEt:hET(}[)a

o/ A)p(NHh = (WA & DW;)(Wih @)
= Wi N(h®f)
= Wi(4h ® )
= ¢4()Ah.

Equation (2.1) is easily verified: if f, g € E,, hy, hy € F(9), then

(61, d@h2) = (Wil ® f), Welh2 ® )
=(mefih®g)
= <f’g)<h17 h2)
Finally, we show that ¢, maps E, onto %. Since ¢,(E;) is a closed subspace of the Hilbert

space %, it suffices to show that its orthogonal complement in % is {0}. Suppose R €
is orthogonal to ¢,(E;). Then R*¢,(E;) = {0}, so R* is zero on

span ¢(E)F(3) = Wi(F(3) ® E;) = F(9().
Thus R =0. (]
The following lemma provides a useful characterization of the Hilbert space E;.
LEMMA 2.0.4. E; = e ker (Uh)*.

PROOF. The inclusion E; C My ker I(U;h)* is obvious, since
o0
(22) E = CoPUH)* @ #>D,
n=1

For the reverse inclusion, we will establish that
1
ELcC ( N ker l(U,h)*) .
hes

For this, suppose n > 1 and hy, hy, ..., h, € . Note that vectors of the form

Uhi ®hy ® -+ ® hy span E-. If f € My ker (U R)*, then

(fLUh @y @ @hy) = (f,(Uh)(hy @ - -- @ hy))
(UMY S ® -+ R hy)
= 0. .

The total space of the free product system over U is defined by

E={(t.f) € (0,00) X F(H) : f € E;},
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and the projection p: E — (0, 00) is given simply by p(¢, /) = t, with p~!(¢) inheriting its
Hilbert space structure naturally from E,. If we endow E with the relative norm topology,
then E is a closed subset of (0,00) X F(#), and is thus a standard Borel space. To
see this, suppose {(t,f,)} is a sequence in E which converges to some point (¢, /) in
(0,00) X F(7). We need to show that f € E,. For this, it suffices by Lemma 2.0.4 to
prove that (U:h)*f = 0 for any h € #{. But this is simple, since

KURYf = lim (U, h)f, =0,
n—00

the last equality holding because f,, € E;, for each n.

To complete the definition of £, we will define a Borel isomorphism : E — E, where
E is the concrete product system associated with the free Ey-semigroup over U. This
isomorphism will be defined so that it restricts to a unitary operator on each fiber. Not
only will this assure the measurability of the Hilbert space operations in E, but by pulling
back the multiplication in £ we can define a multiplication in £ which makes E a product
system.

Since the total space of E is given by

£={(¢,T) € (0,00) x B(F(3)) : T € E},
we can simply use the maps ¢;: E; — E, t > 0, to define :
Y(t./) = (6 6(f)), t>0,f€E,.

We claim that 1) is a Borel isomorphism. Since both £ and £ are standard Borel spaces
and 1 is a bijection, it suffices to show that 1) is measurable. Recall that E inherits
its Borel structure from (0, 00) X Qi( F(H )) by first endowing ﬂ( F(H )) with the Borel
structure generated by the strong operator topology, and subsequently endowing (0, 00) x
5B( F(H )) with the product Borel structure. Consequently, it suffices to show that 1 is
continuous when we consider E and E as topological subspaces of (0, 00) x F(#) and
(0, 00) X ﬂ( F(H )), respectively. Proving this amounts to showing that (z, /) € E +— ¢,(f)
is strongly continuous. As a first step in this direction, we establish the following claim.

CLAIM2.0.5. If0<s <t f € E, andh € F(H), then
sk — dNAIl < NI 11| Tsh — Tihl|.

PROOF. The claim is trivial if A = 0, so assume 4 # 0. Suppose ¢ > 0. By letting
f = YN, Pf for sufficiently large N, we can choose /' € E;N F,() such that ||[f —f7|| <
3 and ||| < |If]l. Then

e = Sl < N5k — oA+ gV — Sl + |6 h — S A
21lf =Wl 1Al + () Ush — r(f)Ushl|

e+ |[rYUsth — Uy )|

e+l )h — Uish)|

e+ |11k — Ursh

e +If1111Tsh — Ui, .

A IAIA

IA I
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Now suppose s,t > 0,f € E;,g € E,,and h € F(#H). If s < ¢, then

llés(Nh — bl < N6 — (DAl + [|6dNh — S|
< WWNTsh — Tl + W — gl Al

and ift <'s, we similarly have

l¢s(Hh — (gl < llgll | Ush — Tehl] + 1l — gll [12]]-

Thus for all s,¢ > 0 we have

ll¢s( Dk — bkl < max{|If]], lgll}|TUsh — Tikll +1If — gl [|]]

From this equation it is clear that if (s,f) — (¢,g) in E, then ¢,(f)h — ¢(g)h in F(H).
Thus (s, f) — ¢s(f) is strongly continuous.

Define multiplication in E to be the pullback along v of multiplication in . The
corollary to the following lemma gives an explicit formulation of this multiplication.

LEMMA 2.0.6. Iff € E;, g € E, for some s,t > 0, then
1. ¢s(g € Esni
2. $ei(4:(Ng) = $s(Nl2).

PROOF. 1. By Lemma 2.0.4 we must show that /(Us+,h)*@s(f)g = 0 for each h € #.
We have

(Ussch)* $s(Ng = o (IUAY)b5(Ng
os(NIUh)'g
= ()’

the last equality holding since g € E,.
2. We may assume that f and g are vectors of bounded support. In this case

¢s+t(¢s(f)g) = ¢S+t(r (f)Usg)

r(r(f)f]sg) Uswe

r(NnUsg)Us U,

rNUr(g)U, (Lemma (1.1.2))

és()$(g)- .

1]

COROLLARY 2.0.7. The multiplication on E is given by

2.3) 6.t 8) = (s+1,6:(Ng)
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PROOF. Multiplication in £ is given by (s, S)(¢, T) = (s + ¢, ST). Thus

P((5.)t:8) = wis,(t,g) (by definition)
= (s,6:(0) (1, 6:(2))
= (s +14,4:(Ne(2))

= (S + t, ¢s+t (¢s(f)g)>
= Y(s+1,65(g)-

Since 1 is a bijection, this implies equation (2.3). n

It is now a simple matter to define the representation ¢: E — ‘.B( F(H )) alluded to at
the beginning of this section; simply define ¢(z, /) = ¢.(f). It is routine to check that ¢ is
an essential representation of E whose associated Eo-semigroup is aV.

3. The freeflows. In this chapter we will study the free Eq-semigroup aV in the case
where U is pure of multiplicity n for somen € {1,2,...,00}. We call this E-semigroup
the free flow of rank n. The main result of this chapter is Corollary 3.2.19, which states
that oV is cocycle conjugate to the CCR/CAR flow of rank +oo whenever n > 1.
This result follows immediately from Arveson’s classification of completely spatial Eo-
semigroups ([3]), once we establish that aV is completely spatial (Theorem 3.2.2) and
compute its numerical index d,(aV) (Theorem 3.1.2). Each of these theorems requires
a complete understanding of the strongly continuous semigroups which intertwine oV
with the identity representation; we will classify these intertwining semigroups along
the way.

3.1. Numerical index. We begin with a brief discussion on the computation of Arve-
son’s numerical index. Suppose « is an Ey-semigroup acting on B(#) for some Hilbert
space A . The numerical index d. () is defined to be the dimension of the product system
4 associated with . More generally, if ¢: E — B(#) is an essential representation of
an abstract product system E whose associated Eo-semigroup is «, then d.(c) = dim E.
This is true because ¢ can be used to implement an isomorphism of £ with Z,, and
dimension is an isomorphism invariant of product systems.

One method of computing the dimension of a product system is given in the following
fact, which encapsulates some of Arveson’s results from [3]. Recall that a unit of a
product system p: £ — (0,00) is a measurable, nonzero multiplicative cross section
u:t € (0,00) — u(t) € p~L().

FACT 3.1.1. Let E be a product system and let Uz be the set of units of E. Suppose X
is a Hilbert space and (A, §) € C X K +— 1, ¢) € Ug is a bijection which satisfies

@.1) (Uo(0); U (®)) = eCHHHED)

for all (X, &), (1,n) € C x K and all ¢ > 0. Then dim £ = dim X.
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Next we will give a precise definition of the free flow of rank n. Let C be a Hilbert
space of dimension n, where n € {1,2,...,00}. We will denote by L2 ([O, o0) ; C) the
Hilbert space of all measurable functions f: [0, 00) — ¢ which satisfy

b el dx < oo,

where of course we identify any two functions which are equal almost everywhere. The
equivalence class ofa function f will be denoted [f]. The inner product on L2 ([0, 00); C )
is defined by

(1) [) = [ (), 800) dx.

On this Hilbert space there is a strongly continuous semigroup of isometries U =
{U; : t > 0}, the unilateral shift of multiplicity n, defined by

UHD={00 1y iess 120/ €LX([0,0050), ¥>0.

The free flow of rank n is the free Eo-semigroup o of Theorem 1.2.1.
THEOREM 3.1.2. If a is a free flow of positive rank, then d.(o) = +o0.

PROOF. Let C be a separable Hilbert space of positive dimension, and let U = {U, :
¢t > 0} be the unilateral shift semigroup on # = Lz([O, 00) ; C). Leta = {0y : t > 0}
be the free Eyp-semigroup over Uj that is, « is the free flow of rank dim C. Let E be the
free product system over U, and let ¢: E — fB( F(H )) be the essential representation of
FE on full Fock space given in Chapter 2. Since « is the Ey-semigroup associated with ¢,
it follows from our earlier remarks that d.(«) = dim E. Let Ug be the set of units of E.
To prove Theorem 3.1.2, we will define an infinite-dimensional Hilbert space X and a
bijection (A, §) € C X K + U ¢ € Ug which satisfies equation (3.1).

It is useful to think of full Fock space over %/ as an L2-space of functions. For this
we need to identify a variety of Hilbert spaces. First, we make the usual identification of
L2([0,00) ; O)®" with L2([0, 00)" ; ¢®"); that s, if [fi],. .., [f] € L*([0,00) ; C), then
we identify [f11®- - - Q[f,] with [] @ - - ®f,], where f] ®- - - ®f, is the function [0, c0)" —
C®" whose value at a point (x1, . .., X,) is f1(x]) ® - - - ® f(x,,). This identification is even
valid when n = 0 if we interpret [0, 00)° as some one-point space {w} and ¢®° as C.

Before making the next identification we need to set some notation. Forn=0, 1,2,.. .,
let X,, = [0,00)". Define B, to be the Borel g-algebra on X, and let u, be Lebesgue
measure on X,. In the degenerate case » = 0 we simply mean B = {(I), {w}} and
po({w}) = 1. Let (X, B, 1) be the disjoint union of the measure spaces (X,, B,, in); that
is,

o X =112 X,
e B={FCX:FNX, € B,,n>0},and
o u(F) = SLoun(FNX,), F € B.
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We identify #(#) with the subspace of L2(X ; #(C)) consisting of all equivalence classes
of functions f which satisfy f(X,) C ¢®" for each n > 0. We will say that such a function
[ represents an element of F(#). Note that the vacuum vector Q. is identified with the
function which is zero on X, for each n > 1, and whose value on the one-point space
Xo = {w} is the vacuum vector Q.

With these identifications, the subspace E;, C F(#) is realized as

E; = @ @L([0,2) x [0,00)"" ; ¢*").
n=1
For notational convenience, we define Xo(¢) = {w}, X,(¢) = [0, ) X [0,00)"~! for each
n > 1, and X(¢) = LIS, X, (2), so that

(3.2) E = éLZ(X,,(t) ;C%"), 1>0.
n=0

We will say that a function f: X — F(C) represents an element of E, if it represents an
element of F(#) and is supported on X(¢).

We are now ready to analyze the units of E. This analysis will give us a complete
understanding of the intertwining semigroups for «, since the representation ¢: E —
93( F(H )) implements a bijection u — ¢ o u from Ug onto the (strongly continuous)
semigroups which intertwine o with the identity. In fact, this correspondence makes
one unit of E quite conspicuous, namely, the unit w(7) = (¢,Q) corresponding to the
semigroup {U, : ¢t > 0}.

Suppose v is a unit of E. Then there is a measurable map v: (0,00) — F(#) such
that b(¢) = (t, v(t)) and v(¢) € E, for each ¢t > 0. By [3, Theorem 4.1], there is a unique
complex number A such that

(W0, Q) = (0()), () =€, >0.

If we define u(t) = e *v(f) and u() = (t, u(t)) ,then uis also aunitof £, and (u(r), Q) = 1.
We will focus our attention on u.

CLAIM 3.1.3. If0 < s < t, then the projection of u(t) onto E is u(s).

PROOF. Suppose 0 < s < t. Foreachn > 0 and r > 0, let &"(r) = P,,(u(r)), the
projection of u(r) onto H®" in F(#{), and let O, be the projection of F(#) onto E,. By
Corollary 2.0.7 and the multiplicativity of u we have

u(t) = ¢s(u(®)u(t )
= (i r(ui(s)) Us) (i W(t— s))

i=0 =0

i r(u"*k(s)) Ut — s),

0 k=0

gk

n
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and by projecting onto #*" we obtain
n ~
(3.3) W'ty =Y () Ut —s5), n>0.
=0

One can easily verify that Ej is a reducing subspace for r(f) whenever f € E; N F,(H),
and consequently

0u'() = Y. r(w ) Q.U t — 5), n>0.
=0

But O U, = Py, so

Qu"(t) = r(u'(s))u’(t — 5)

=u"(s), n>0,

the last equality holding because (u(t — s),Q2) = 1. Summing on n gives the desired
result. n

A consequence of this claim is that the functions u(¢), ¢ > 0, are coherent in the
sense that there is a measurable function i: X — F(C) such that for each ¢ > 0, u(?) is
represented by # on X(¢); that is, u(f) = [# - xx(] for each ¢ > 0, and #(X,) C ¢*" for
each n > 0. The next claim tells us that this function # is translation invariant.

CLAIM 3.1.4. Foreach s > 0 we have
u(x) =a(x+s) a.e. dux);
where

Q ifx=Q
X +s,...,x,+s) ifx=(x1,...,x,) for somen > 1.

PROOF. Fix s > 0, and suppose ¢ > s. Since u(t) is represented by the function
it + X x()» we have that U*u(t) is represented by the function whose value at a point x is
ii(x + ) if x € X(¢ — 5), and 0 otherwise. But u(?) = ¢5(u(s))u(t — s), so

Uru(t) = U; ¢ (u(s))u(t — s)
bs(Q)* s (u(s) )u(t — 5)
= (u(s), Q)u(t — 5)

= u(t — s),

which shows that U*u(?) is also represented by the function & - xx, . Thus @t(x +5) = i(x)
for almost every x in X(¢ — ). Since ¢ was arbitrary, we have #(x + s) = #(x) almost
everywhere dpu(x). n

Let us pause for a moment to informally examine the function # when restricted to X,
for very small n. Hopefully this will help to motivate what follows. For n = 0, we have
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arranged things so that #(w) = Q. For n = 1, il y, is a translation invariant measurable
function from [0, 00) to the Hilbert space C, so it should not seem unreasonable to
expect that there is a vector fi € C such that @(x) = f; for almost every x € [0, 00). (A
generalization of this assertion is proved in Corollary 3.1.14.)

In dimension two, one can begin to see what is going on. Expanding and simplifying
equation (3.3) for n =2 gives

(34 W' (0) = u’(s) + r(u' (5)) Usu' (¢ — ) + Ut —5), 0<s<t

Now %(¢) is supported in [0, £) x [0, 00) (that is, #?(f) can be represented by a function
whose support is contained in [0, £) X [0, 00)), and the three functions on the right-hand
side of equation (3.4) have mutually disjoint supports contained in the sets [0, 5) X [0, 00),
[s,8) % [0,s), and [s, ) X [s, 00), respectively. Hence by restricting equation (3.4) to the
set [s, £) x [0, s), we obtain

u(x),x3) = u(x; — )  u(xy)
A®fi ae.xi,x; €[s, 1) X [0,s).

But this is true whenever 0 < s < ¢, s0 @i(x],x) = f; ® f; for almost every (x;,x2) € X
satisfying x; > x».

Above the diagonal, on the set Ry = {(x1,x2) : x; < x2}, & is not dependent on the
one-dimensional case. Nevertheless, # is still translation invariant on R, and a moment’s
thought leads one to expect the existence of a function [f;] € L2(X; ; ¢®?) such that
u(x),x2) = fo(x2 — x1) for almost every (x;,x2) € R;.

For n = 3, we obtain a similar result. By expanding and simplifying equation (3.3),
then letting s and ¢ vary, it becomes clear that [ y, is completely determined by the one
and two-dimensional cases, except on the set

Ry = {(x1,%2,x3) € X3 : x; < min{xz,x3}}.

For example, by restricting the functions in equation (3.3) to the set [s, ¢) X [s, 00) X [0, 5),
all functions on the right vanish except for r(u'(s)) Ugi®(t — 5), so

w(xy,x2,%3) = 0(xy — 8,x2 — 5) @ l(x3)

= a(xy,x2) @ t(xs) a.e. (x1,x2,x3) € [s,£) X [s,00) X [0, 00).

Similarly, by restricting to [s, £) % [0, 5) X [0, 00), all functions on the right vanish except
for r(uz(s)) Uu!(t — 5), so

(xy,x2,x3) = @(x) — 5) @ it(x2,x3)

= a(x1)® il(.X2,)C3) a.c. (x17x27x3) S [S, t) X [075) X [07 OO)

The union of all sets of these forms as s and ¢ vary is the complement of R;.
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On Rj itself, the translation invariance of & leads one to expect the existence of a
function [f3] € L*(X; ; C®%) such that

(xy,x2,%3) = f3(x2 — x1,X3 —Xx1) a..(x1,x2,X3) € Rs.

With this motivation, we proceed as follows. Let
K = PL*X,1 ; ¢*") CL*(X; F(O)
n=1
We will define a bijection

M ECX K upyg € Ug

such that equation (3.1) holds. Since X is infinite-dimensional whenever dimC > 1,
this will prove that d.(a) = +00. For £ € X, let f:.X — F(C) represent ¢ in the sense
that ¢ = [f] and f(X,—,) C C®" for each n > 1. We will define a measurable function
f : X — F(C) (motivated by the function # above) which satisfies f X)) C ¢®" for each
n >0, and

Ji VI due) < o0, £>0,

so that f - X x(, Tepresents an element of E,. The unit 1, ¢) is then defined by 1, ¢)(¢) =
(t, e’\’uf(t)), where u(t) = [f xxol-

To define the map f +— £ described above we first create a partition of the measure
space X. This partition arises from analyzing the supports of the functions in equa-
tion (3.3) and letting s and ¢ vary, as was done in our informal examination of # restricted
to X3. Indeed, the sets R, and R; which we defined in this previous discussion are
elements of the partition.

DEFINITION 3.1.5. Let A( = L2, N?, with the understanding that N° is the one-point
space {w}.

DEFINITION 3.1.6. For each p € A’ we will now define a subset R, of X. To begin
with, define R, = X = {w}. Next, if p = p € N!, we define

(3.5) Ry, ={(x1,...,x) € [0,00) : x; <x;,i >2}.

Finally, if p = (p1,...,pp) forsome b > 1,letq; =py +---+p; foreachi=0,1,...,b,
and let n = g;. Define

(3.6) Ry ={(x1,...,X%) ERp, X -+ X Rp, 1 X1 > Xi4g, >+ -+ > Xiagy_, }-

LEMMA 3.1.7. {Ry : p € A} is a measurable partition of X.
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PROOF. The sets Ry, p € A are certainly disjoint measurable subsets of X. Suppose
x € X. We will define p € A such thatx € Rp. If x = w, thenx € R,,, so we may assume
that x = (x1,...,x,) forsome n > 1. Let

_[n if x; > x; for each i
P min{i : x4 <x1} otherwise.

Suppose py, ..., px have been defined for some £ > 1. If p; +--- + p; = n, then let
p = (p1, . - ., pr)- Otherwise, define

n— (p] + ... +pk) ifxi 2 x1+Pl+"'+Pk for all i

P = { min{i : Xi+1 < Xiapy4eip, ) — @1+ - +pr)  otherwise.

Then x € R,,. =

We now define the map f +— f by defining the value of f on Ry for each p € AL
Suppose f represents an element of X. To begin with, define f(w) = Q. (even if f = 0).
Next, if x € R, for some p € N, define

fw) ifp=1
f(X2—X1,X3—X1,.--,xp"X1) 1fP22

Gn .mp{

Finally, if p = (p1,...,p») for some b > 1 and x € R, let g; = p; +--- + p; for each
i=0,1,...,b,let n = gy, and consider R, as a subset of R, X --- X R,,, as was done
in the definition of Rp. (See (3.6)). We use the definition of j’ on each of the sets R, to
define

(3.8) f&)=f%(x), xE€RpP=(1s---,Pb).

More precisely,

j(x) =i(xlv-"7xq1)®f(xl+q17'~-7xqz)®"'®j(xl+qb7n"'7xn)
(3.9 = (2 = X150y Xg, —X1) @ f(X21g, — X1tgys -+ -1 Xg, = Xl4q ) D -+

®f(X2+qb7] T Xl4gpgo e 9 Xn x1+Qb—l)7 xXe Rp’ p= (pl’ aee an),
with the understanding that for each i such that p; = 1, the corresponding term
f(xz"'q.'—l T Xlbg gy e o0 Xg T x|+lli-1)

really means f(w), and that the right-hand side is considered to be an element of "
under the usual isomorphism of ¢®7' ® --- ® C® with ¢®".

REMARK 3.1.8. Note that f is translation invariant in the sense of Claim 3.1.4.

LEMMA 3.1.9. The map [f] € K — [f] is well-defined.
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PROOF. Suppose f,g: X — F(C) are measurable functions which represent ele-
ments of X and f(x) = g(x) a.e. du(x). We must show that f"(x) = g(x) a.e. du(x). By
Lemma 3.1.7, it is enough to show that f(x) = g(x) a.e. x € Rp, for each p € A(. First
observe that f(w) and g(w) are both defined to be the vacuum vector ©, so we have that
f gon Xy = R,,. Also, recall from (3.7) that f () = f(w) and g(x) = g(w) for all x € X;.

Since pu({w}) = 1andf = g a.e. du, it must be that f(w) = g(w). Thus the functions f and
g are identical on X; = R;.

Next we show that f =ga.e.onR, foreachp > 2. Fix p > 2 and define
(B10)  Tp(xiy..vsXp) = (1,01 +X2,X1 +X3,...,X1 TX),  (X1,...,X,) €X,.
The map 7} is a measure-preserving affine isomorphism from X, onto R,. Let 4 = {x €
Ry, : f(x) # 2(x)}. Then
pd) = [ xad
= [ xao Ty

= [‘, Xa0c1,x1 +x2, %1 +x3,. .., x1 +xp) dp(x)
P

= /:Q/X XA(S, 5 +y1,8+Yy2,...,5+y,_1)du(y)ds (Fubini’s theorem),
p—1

where in the last equality, y represents the point (y1, ... ,3,—1). But for each s > 0 the
point (s,s + y1,5 +¥2,...,5 +¥,—1) is in 4 if and only if f(y) # g(y), and since f = g
almost everywhere on X,,_;, this implies that the integral
, /X . XA, S+ Y1,8+ 2,5+ Y1) du(y)
s

is zero for each s > 0. Thus p(4) = 0.

Finally, we show that f = g a.e. on each R, where p = (py,..., pb) € NP for some
b > 1. Fix such a p. Since f = g a.e. on Ry, for each i = 1,2, ,b, we have that
f® =5% ae. on R, X -+ X Ry, . But Ry is asubsetof Ry, X --+ X Ry, and f (resp. g)
is defined on Rp, to be the restriction of /? (resp. 2% to Rp,sof =gae. onR,. n

Just as it was useful to partition X into subspaces R, p € A(, it will also be useful to
partition each X(?) into subspaces Ry (¢), p € A(. For this, we simply define

Rpy() =Ry NX(1), t>0,pe.

The following lemma is the main step toward showing that f - Xx() Tepresents an
element of E, whenever f represents an element of X and ¢z > 0.

LEMMA 3.1.10. Suppose f and g represent elements of K. Then for any b > 0,
P=@1,...,0) € N° and t > 0, we have

. tb
(3.11) o T 2N ) = 55+ i,

where k; = [x,_ {f(x), g(x)) dp(x).
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PROOF. Suppose f and g represent elements of X, ¢ > 0, and p € N’ for some
b > 0. If b = 0, simply note that both sides of (3.11) are equal to one. If b > 1, let
P=(@i...,pp), letq; =p+---+p; foreachi = 0,1,...,b, and let n = g5. For
eachi=1,2,...,b, we have a measure preserving bijection 7,,: X,, — R, as in (3.10).
Consequently, the map T, = T}, X - - - X T, is measure preservingon X, = X, X--- XX,
and T, maps the set

Dp() = {x € Xu(t) 1 t > x1 > X14g, >+ > Xisg,, >0}
bijectively onto Rp(?). Thus
(3.12) S T8N dn@ = [ (1)), &(T0)) it
By the definition of / on Ry, we have

F(Tp@)) = F(Tp ety - -, %0)) O F (T (g - - - 1 %)) ® -
®F (T, (14gys - - - 1Xn)), X € Dp(0).
Also, foranyp > 1, (x1,...,x,) € X,, we have
Ty, %)) = fxr,x1 + 22,1 + X3, 0,31 +Xp)
= f(2,X3, - -+ 1 %),

with the understanding that f(x3,x3,...,x,) really means f(w) if p = 1. (See (3.7).)
Combining these last two equations yields

F(Tp() =2y -, %0) @ fCrrgrs - -1 %g) ® -+ @ f(atgyys- -1 %)y, X € Dyld).

Of course a similar statement holds for g. Using this equation and the fact that the vectors
SO24g s+ -1 Xg,) and g(x24q, ,, ..., Xg) are in C¥P for eachi =1,2,...,b, we have

(J(To®), &(Tp()))
= (f(x2y .03 Xg) ® -+
®f(x2+qb,,,7 ooy Xn), 8lx2, - ’qu) & ®g(x2+qb—n cee 7xn)>

b
(3.13) = .]__[l(f(xsz, o3 Xg), 8(X24g, s - -3 X))y X € Dp(0).

Lety; = (x2+q,_,s- -+, %) € Xp—1 foreachi=1,2,...,b. Substituting (3.13) into (3.12)
with this change of variables gives

s 760-29) s
=/01 /Oxl ,.,/oxlw,;z [llf[l/x,,ilV(Yi%g(}’i)) dﬂ()’i)] Ax1ag, | -+ dX1vg, dX)
#

= e By =

https://doi.org/10.4153/CJM-1995-039-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-039-0

FREE Ey-SEMIGROUPS 765

We now proceed to prove thatf- Xx() represents an element of E; whenever f represents
an element of & and ¢ > 0. The first important observation to be made is that  maps X,
into ¢®" for each n > 0. Certainly this is the case for n = 0 since f"(w) =Q.Forn>1,
first note that (3.7) implies that

(3.14) FRs) € f(Xumr) C "

Next, suppose p = (p1,...,ps) € N® for some b > 1. Let n = p; +--- + pp, so that
Rp C X,. Then (3.14) and the definition of / on R, given in (3.8) imply that

J@®y) CJRp) ® -+ ®F Rp,)
CCPPrR---QC%

= C®"_

Since the spaces Rp, p € A partition X it follows that f(X,) C c® foralln > 0.

To prove that f - Xx(» represents an element of E(¢), it remains only to show that the
function f - x X() 18 square-integrable over X; that is, that fis square-integrable over X(¢).
For this, we prove a slightly more general statement.

LEMMA 3.1.11. Suppose , 1 € K are represented by functions f and g, respectively.
Then

[ 0,8 d) = 467, > 0.

PROOF. Foreachi=1,2,...,letx; = fx_ (f(x),g(x))du(x), so that (£, 1) = T2, k.
Then

fio V.20 du) = % [ (70, 2(0) dutx)

PEX o)

=55 [ .20) duto)

b=0 peN® p(0)

= 3 pifm e (Lemma 3.1.10)

|
= et(§7n) . |}

DEFINITION 3.1.12. Suppose (A, §) € C X X and f: X — F(C) represents §. Define
us:(0,00) — F(#) by )
u(® =[f-xxol, t>0,
and u) ¢:(0,00) — E by
o) = (6 Mun), 1>0.

Note that 1 ¢) is well-defined by Lemma 3.1.9.
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We claim that u, ¢) is a unit of E. From the definition of the spaces X(¢), t > 0, it
is clear that ¢ — uy(¢) is measurable, hence so is 1) ¢). Also, since f(w) = Q (even if
£ =0), we have us(r) # 0 for all £ > 0, 50 11, ¢) is not the trivial cross section. It remains
only to show that 11y ¢(s +¢) = U 6)(S)U(n¢)(?) for all s, £ > 0, where the multiplication
is in the product system E. By Corollary 2.0.7 and a simple change of variables this is
equivalent to the statement

(3.15) ur(f) = s (ur(s))ut —s), 0<s<t

For each k > 0, 1> 0, let uf(t) = Pi(u/(t)) = [f - Xx,0]. Then

65 (1 (5))uslt — 5) = (f r(46) 0y ) (i; ()

=0 =
= i i r(u}“k(s)) Usu}(t —9),
n=0 k=0

s0 (3.15) is equivalent to the statement
n ~
(3.16) () =3 r(u) ) Ut —s), n>0,0<s<t.
=0

Fixn > 0,0 < s < ¢. If n = 0 then both sides of (3.16) are equal to the vacuum
vector 2, so we can assume that n > 1. To establish equality in this case we will choose
appropriate representatives for the » + 2 terms in (3.16) and show that equality holds
on these representatives. Note that it would be sufficient to show that equality holds
almost everywhere du, but when we make the obvious choices for representatives we
get equality everywhere.

By definition, u7(¢) is represented by the function f" * Xx,(»- Similarly, for each k =
0,1,...,n, the vector u}*(s) is represented by £ xx, s and uf(t — 5) is represented by
£ Xx—s)- Thus r(u () Usuf(t — s) is represented by g, where for 1 <k <n—1we
define
0 ifx € X; for some i # n
f(xl — S, ..y X —S) ®f(xk+1, ceyXn)

ifx=(x1,...,x,) €[s,£) x [s,00f! x [0,5) x [0, 00y *"1
0 if x € X, \ ([s,0) % [s, 000" x [0,5) x [0, 00" *1),

for k = 0 we define

g(x) =

0 ifx € X; for some i # n
go(x) = ¢ f(x) ifx €[0,5) x [0, ooy
0 ifxeX,\([0,5) x [0,00y7"),

and for k = n we define

0 ifx € X; for some i # n
g(x) = fx1 —s,...,x, —5) ifx € [s,0) X [s, ooy !
0 if x € X, \ ([s,£) x [s, 000" ").
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We claim that .
(3.17) S xxm = D 8k
k=0

As usual, we will establish this equation by showing that the two functions are identical
on Ry for each p € A(. Fix p € AL The case p = w has already been considered, so we
may assume that p = (py,...,pp) for some b > 1. Both sides of (3.17) are identically
zero on Ry, unless py +- - - + pp = n, so assume this is the case. Fix x = (x1,...,x,) € Ry,
andletq;=p; +--- +p;foreachi=0,1,...,b. Again, both sides of (3.17) are zero at
x if x| > ¢, so we may assume that x; < ¢. If x; < s,thengi(x) =0fork=1,2,...,n,
and go(x) = f (x), so equality holds in this case. Similarly, if x € [s,£) x [s,00)""!, then
gi(x)=0fork=0,1,...,n—1,and

2n(x) =j‘(x1 — 8yeeey Xy —S).
Since x € R, we have that (x; — s, ...,x, — 5) € Rp as well, so by (3.9) we have

2n(X) =f (X1 = 8y Xy — ) @ f Kitgy — Sy vy Xgy — )@ -+
®f‘(x1+q,)_l — 8y ey Xy —S)
=f2 = X1y 00y X — X1) @ f(Xarg, — Xiwgys -+ 1 Xg, — X14g) @ - -+
®f(X2+qb_, — Xltgy_yyec 9 Xn — xl+qb-1)

= f(x).

Thus equality holds in (3.17) at the point x in this case as well. Finally, if x; > s butx is
notin [s,£) x [s,00)" !, letj = min{i : x;s; < s}. Then 1 <j < n— 1, gi(x) = 0 for all
k #j, and

(3.18) g =fx1 =8, ..., % —8) Qf(Xj+1, - -+, Xn)-

Now, since x € Rp and x; > s > xjq for all i < j, it must be that j = g, for some
e {1,2,...,b—1}.(See (3.5) and (3.6).) Thus

(x1 —s,... ' Xj —s) € R(th»Pl)

and
(Xj+|, - ,x,,) (S R(Puh.--,pb)'
Consequently, by (3.9) we have

Fx —8,..,X—8)
=f =8, X =) @ fKirgy — 80y X, =) @ @ fK1tgy — 85000, % — )
=f(xl’-~' 7xq|)®f(xl+qn”'7xqz)® ®f(xl+q[47~-'axj)

and

f(xj+l7 o 7xn) =f(xl+q19 e 7xq(+1) ®f(x1+q[+|7 e 7xq[+z) Q- ®j‘(x1+qb_17 B 7x")'
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Substituting these equations into (3.18) yields

GO =f (1o X)) ® @ f X1y ys- -y Xn)-

By one last application of (3.9) this implies that gj(x) = f(x), giving equality in (3.17) at
the point x in this final case as well. Thus 1) ¢) is a unit of E.

Equation (3.1) is now easily verified. Suppose (), £) and (7, 7) are in C X X. Letf and
g be representatives of ¢ and ), respectively. By Lemma 3.1.11 we have (u/(?), ug(?)) =
‘& forall £ > 0, so

(U Wy () = (€M up(2), € ug(2))
= et(/\*’?*(ﬁ,n))’ t> 0.

Having established (3.1), it is now easy to see that the map (A, §) € CX K +— (¢ €
U is injective. For this, suppose 11 ¢) = U(,y). Then for any ¢ € K we have

(U@, uo®) = (Uan®), uep®), t>0,

which by (3.1) implies that

(3.19) A+ =T7+(n,(), ¢€X.

Choosing ¢ = 0 in (3.19) implies that A\ = 7. But then (3.19) reduces to the statement that
(&,¢) = (n,¢) for all ¢ € K, which implies that £ = 1 as well.

It remains only to show that every unit of E can be realized as 1, ¢ for some
(A, €) € C x K. Earlier we observed that for any given unit b € Ug, there is a complex
number ) such that the unit u defined by u(f) = e~*b(¢) satisfies (u(f), Q) = 1, where
u) = (t, u(t)). We then established the existence of a translation-invariant measurable
function #1: X — F(C) such that & - x x(; represents the vector u(f) € E, for each ¢ > 0.
Our goal is to find a function f, representing some element £ € X, such that f = i almost
everywhere. For then us(f) = u(), so that u = 1 ¢), and finally b = u, ¢). The corollary
to the following technical lemma will be used to define f..

LEMMA 3.1.13. Supposen > 1 and g: X,, — [0, 00) is a measurable function which
satisfies the following two conditions:

1. Foreachs >0, g(t,x) =g(t+s,x) a.e. (t,x) € [0,00) X X1 = X,

2. gis locally integrable; that is, [x gdp < oo for each compact K C X,,.
Then there is a measurable function f: X,_; — [0, 00) such that

(3.20) glt,x)=f(x) a.e. (t,x) €[0,00) X Xy—1.
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PROOF. For each (¢,x) € [0,00) X X,—1, where x = (x|, ..., X,—1), define
R(x) = [O,X1] Xoeee X [O7xn—l] C Xn—la

and define
R(t,x) =[0,1] X R(x) C X,.
Fix x € X,,_;. Then for each ¢ > 0 and m > 1 we have

1

m o] ok
1 R(t,x)gd‘u - kg 7 /gk;mlz /R(x)g(t,x)dp(x)dt

=20 8D by (1)

1
"~ (t/m) /R(r/mx)g -

Consequently the function ¢ +— % Jrex gdu is constant on the set of positive rational
numbers. Since this function is continuous on (0, 00), it must be constant. Letting x vary,
we thus see that there is a function A: X;,_; — [0, 00) such that

th(x) = d,u, t>0.
( ) R([ )g 9 —_
Define f: X, — Rby

" h
axl s ax,,_l

We claim that f satisfies (3.20). To see this, define g: X, — R by

f(xl,...,x,,_l)=

(xlv' . 7xn71)'

g(t,xl, Ce ,xn—l) =f(X1, e ,x,,~[).
We will show that for each rectangle
§ =[] x [, ] x - x L g7 C X,

we have

fsédu = fsgdﬂ-

This will prove that g = g a.e., giving (3.20).
We begin by showing that [z )& dp = Jr(,x) g du for each (¢,x) € [0,00) X X, ;. We

have
gdy =t d,
R(tJr)g a R(X)f K
Xp—1 x| "
= [ oy O ey

Y1=X1

Ve

Xn—1 X2 9" 2p
R o i B
/0 /0 aJ/Z"'a}’n—l(yl Yn—1)

V1=
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Il

Xn—1 an 2h
/ /6y2 . X1Y25 -3 Yn-1)dy2 - AYni

th(x)

du.
R(t.x) gak

(3.21)

Now suppose S C X, is a rectangle of the form
8= et xg] x b, x] - oe x PgL
For each function 0: {0, 1,...,n — 1} — {1, 2}, define

So = [vag(O)] X X [Oax{’:&l—l)]'

By a standard combinatorical inclusion-exclusion argument, for any integrable function
Fon[0,x9] x -+ x [0,x3~'] we have

.P?Z(WZ/F

ocl;

where

I ={o: card(o™'{1}) = j}.
Since each S, is a rectangle of the form R(z,x) for some (¢,x) € [0,00) X X,_i, this
together with (3.21) implies that

/Sgdp=/sgdu. n

COROLLARY 3.1.14. Supposen > 1 and g: X,, — C*" is a measurable function which
satisfies the following two conditions:
1. Foreachs >0, g(t,x) =g(t+s,x)a.e. (t,x) € [0,00) X X,_; = X,.
2. [0 lgW)I? du() < oo, > 0.
Then there is a measurable function [ X,—1 — C®" such that
(1') g(t,x) =f(x) a.e. (¢,x) € [0,00) X X,
) Jx,, fO? dux) < co.
PROOF. Let 6: C — [0,27) be a measurable function such that z = |z|¢?® for each
z € C. Let E be an orthonormal basis for ¢®". For each ¢ € = and eachj € {1,2}, we
define a measurable function g; .: X,, — [0, 00) by

o [, )P ifj=1
&i<0) b&@@)ﬁﬁl

so that
20) =Y g1:(0)'/2e®<0¢  foreachy € X,.
¢es
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We claim that each of the functions gj ¢ satisfies the conditions of Lemma 3.1.13. Con-
dition (1) is satisfied by each gj ¢ since it is satisfied by g. For each ¢ €
g2, is bounded and hence locally integrable. Also, for any ¢ > 0 we have

Xa(0) Xu(0)

= the function

gredu < [ lg®? du@y) < oo,

which implies that g . is locally integrable since every compact subset K of X, is con-
tained in X,(¢) for some 2. By Lemma 3.1.13 there are measurable functions fj ¢: X, —

[0, 00) such that

gc(t,%) = fie@) ace. (6,%) € [0,00) X X,_1, j€{1,2}, £ €E.

For each ¢ € E, define f;: X,—1 — C®" by
Je) = fi00)! 2.

Then for each £ € E we have

Jo VeI dutx) = / fie@dut

X,(1)

81,¢(t, x) du(t, x)

(3.22) /X(,) (g0, ) duy)

But

S €02 P Au0) < [, 80 du(y) < oo,

Xa(1)
s0 [fe] € L?(X,—1 ; C®"). By (3.22) we have

SIIF =2 /.

(1)

(g, €)1* dp(y)

= /X(,)(Z 60). ©)F) due)

= J, o IO du)

< 00.

Since [f¢] and [f;] are orthogonal whenever £ and 7 are different elements of =, this
implies that the series T¢cz[fz] converges in L2(X,_; ; ¢®"). Letf: X,—1 — C®" be a

measurable function such that

1= 2 lfel

=)

We claim that f satisfies (1”). For this, note that for almost every (¢,x) € [0, 00) X X,_;

we have (using the separability of C)
g(ta X) = Zgl,é(t7 x)l/zeigz.ﬁ(’rx)
£eE

= Zﬁ,g(x)'/ze"fzvé(")

32

=2 fe@)-

=
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But f(x) = Y¢ez fe (x) for almost every x € X,,_1, so g(t,x) = f(x) a.e. du(t, x). [

We are now ready to define an element { € X such that u = (). For eachn > 1,
let T,: X, — R, be the affine isomorphism

Tn(xly s 7xn) = (x17x1 +x27x1 +X3,...,X) +xn)'
Define g,: X, — C®" by g, = it o T,,. Note that
2 _ NP
S o @I din) = [ i) dp)
< SN2
S o PPN du) < oo, >0,

and that for each s > 0 we have

2n(x) = d(xy,x1 +x2,x1 +x3,...,x1 +Xp)
=a(x; +s,x; txp+s,x1+x3+s,...,x +x,+s) (Claim3.1.4)

= gn(x1 +5,%2,X3,. .., %) @€ dpin(x).
Consequently, by Lemma 3.1.13 there are functions [f;] € L2(X,_; ; C®") such that

2a(x1y .o Xn) = fulx2, ..., X)) a6 X €EX,.

Observe that
I = /)-(M(f"(x)»ﬁ,(x))du(x)
- /X,,(l)<gn(x)» 2n()) dp(x)
- /Rn(.)@(x), a(x)) dp(x)
< "I, n>1,
50

inmmz < i " < Jlu()]]? < oo.

As a result, if we define f: X — F(C) by fTx,_, = f» for each n > 1, the function f
represents an element & of X.

We claim that f = i a.e. dp. We will prove this by showing that f(x) = ii(x) almost
everywhere on Ry (¢) for each p € A’ and each ¢ > 0. Fix ¢ > 0. Since f(w) = @(w) = Q,
S and @ agree on the one-point space {w} = R,,(f). Next suppose p = (p) for some p > 1.

Then for almost every x = (x1,...,%,) € Ry(f) we have
Ux) = gp(X1,X2 — X1,X3 — X1y vvy Xp — X1)
= folxa = x1,x3 —x1, ..., X% — X1)
(3.23) = f(x).
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To prove that f (%) = @(x) a.e. x € Ry(2) for the general p € A, we must make use of
the multiplicativity of u. In particular, if 7, . . . , ¢, are positive real numbers which sum
to ¢, then

u() = u(n)- - ul).

By an easy induction using the results of Corollary 2.0.7 and Lemma 2.0.6 we have

u(t) = ¢y, (u(t)) - - by, (ultas))ulta),

and hence one can expect to learn more about the function & by investigating the vector
on the right-hand side of this last equation. Because of its usefulness in the next section,
we will actually consider the more general product b(¢)) - - - b,(2,), where by, ..., b, are
units of E. In this case we have

(3.24) nmw~mm=@mbﬁnmmxm4%mMm}

where v;(s) = (s, v,-(s)) foreachs > 0 andeachi = 1,2,...,a. Our goal is to specify a
function which represents the element ¢, (vl(tl)) ey, (v,,,l(tu_l )) va(ty) of E;.
To begin with, we would like to present another way of partitioning the space X(¢).

DEFINITION 3.1.15. Suppose ¢ is a positive real number. A partition of t is a vector
(ty,... t;),wherea>1,t; >0 foreachi=1,2,...,a,and 4 +--- +1, = 1.

DEFINITION 3.1.16. Suppose t > 0 and t = (¢1,...,%,) is a partition of 7. Let s; =
tp+---+¢ foreachi=0,1,...,a. For each a-tuple m = (my, ..., m,) of nonnegative
integers, define a subset X (t) of X(¢) by

Xm(t) = ([Sa—lvsa) X [saAlvoo)’nI—l) X ([Sa,2,Sa71) X [SaWZaOO)MZ7l) Xoees
% ([s1,52) X [s1,00)™ ") x ([0, 51) X [0,00)™ "),
with the understanding that for each i such that m; = 0, the corresponding factor

[Sa—is Sa—it1) X [Sa—i, 00)™ ! should be omitted from the above product. If m is the
a-tuple (0, ..., 0), it is understood that Xp(t) = Xo(?) = {w}.

REMARK 3.1.17. Note that if t is the trivial partition (¢) of  and m = (m) for some
m > 0, then Xp(t) = X, (2). Thus this seemingly new notation is actually just an extension
of our previous notation.

LEMMA 3.1.18. Supposet is a positive real number and t = (11, . . . ,1,) is a partition
of t. Then

{Xm(t) : m € (No)*}

is a measurable partition of X(t).
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PROOF. The sets Xp(t), m € (No)* are clearly disjoint measurable subsets of X(¢).
Suppose x € X(¢). We will define m € (Ng) such that x € Xp(t). If x = w, then
x € Xo,...0)(t), so we may assume thatx = (xi,...,x,) forsomen > 1.Lets; =t;+-- -+
foreachi=0,1,...,a. Define

=" ifx € [s4—1,00)"
! min{i : x;+) < s,—1} otherwise,

and foreachk=2,...,a, define

0 ifn=m+- - +my_,
mk={n—(m1+---+mk_1) ifx; > s,_4 for each i
min{i : x4 < Sz x}—(my +---+my_,) otherwise.
Letm = (my,...,m,). Then x € Xp(t). (]
DEFINITION 3.1.19. Suppose ¢t > 0 and t = (#,...,%,) is a partition of . Suppose

also that for eachi = 1,2, ...,a we have a function 4;: X — F(C) which maps X,, into
Cc®" for eachn > 0. Let h = (hy,...,h,). We define a function F(h,t): X — F(C) as
follows. To begin with, define F(h, t) to be identically zero on X \ X(¢). We will define
F(h, t) on X(¢) by defining it on Xj(t) for each a-tuple m of nonnegative integers. Fix
m=(my,...,my),letn;=m;+---+m;foreachi=0,1,...,a,andletn = n,. For each
X=(X1y.-.,%) € Xm(t), define

F(h, t)(x) = ha(xy, . .. axnl) ®ha—l(x1+nn cee 7xn2)® T ®hl(xl+na_n ey Xn)

LEMMA 3.1.20. Suppose v1,...,10, are units of E such that for eachi = 1,2, ... ,a,

we have

o vi(0) = (4,v(0)), t>0

e (vi(),Q)=1,t>0

® V;: X — F(C) is a measurable function such that for eacht > 0, vi(f) is represented

by V; on X(¥).

Letv = (vi,...,v,), and denote by V the a-tuple (v1, . . . ,V,). Suppose t is a positive real
number and t = (t,,. .. ,t,) is a partition of t. Then the vector

b0 (Vi) -+ b1, (Va1 (ta-1)) Valta)
in E, is represented by the function F(V, t).

PROOF. We have
¢ (vi()) -+ b1, (Va1 (ta—1))Valla)
(2 rOr@) B ) - (3 021 e) O ) (32 Vet

m,=0 my=! m;=0

> (@)U - r (V0 (ta) U Vi ().

my,....m;>0
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Fixmy,...,m; >0,letm= (my,...,m,),letn;=m;+---+m; foreachi=1,2,...,a,
and let n = n,. Using methods similar to those used prior to equation (3.17), we see that

r(VP)) Uy -+ r(V02  (tam)) U, VP (8)

is represented by the function which vanishes on X \ Xi(t), and whose value at a point
x € Xi(t) is given by

i\’a(xl —Sa—1y- 3 Xn _Sa—l)®{7a—l(xl+n| —S8a-2y++9Xn, —sa—2)®' ° '®f)l(xl+n,,*| g 7xn)7
which by Claim 3.1.4 is equal to
Va(xty e ey Xn) @ Va1 X1tmy s o o3 Xmy) @ <= @ V1(X14my_y5 v+ 3 Xn)-

Summing on m € (Ny)? completes the lemma. n

COROLLARY 3.1.21. Suppose v is a unit of E, v(t) = (t, v(t)) for each t > 0,
(W), Q) = 1, and V:X — F(C) is a measurable function such that for each t > 0,
W(?) is represented by v on X(f). Suppose also that p = (p1,...,ps) € N® for some
b>1,q,=p +---+p;foreachi=0,1,...,b, and n = qp. Then for almost every
x=(x1,...,%) € Rp we have

(3.25) V) =D, X)) @ V(X itgyy oo v 9 Xgy) ® <o+ @ WX1gy_yy v -+ 5 Xn)-

That is, if we regard Ry as a subset of Ry, X - -+ X Ry, then ¥ = ¥*® on Ry, in the sense
of equation (3.8).

PROOF. For each b-tuple t = (¢, ..., %) of positive rational numbers, we will show
that (3.25) holds for almost every x € X,(t) N R,. Since there are only countably many
such t and R, = U, (Xp(t) N Rp), this will establish the corollary.

Fix t = (t1,...,%), and let v be the b-tuple (v,...,v). Observe that by the multi-
plicativity of b we have w(t) = ¢, ((t1)) - - - ¢y,., (V(ts-1))¥(15). By Lemma 3.1.20, this
implies that v(¢) is represented by the function F(¥, t). But v(¢) is represented by ¥ on
X(?), so it must be that the functions ¥ and F(¥, t) are equal almost everywhere on X(z).
In particular, for almost every x € X,(t) N Rp, we have

W(x) = F(¥,(x)
VX1, ey X)) @ DXy e v e 3 Xgy) @ 7+ @ WX Lagyys -+ - 3 Xn)- =

It is now a simple matter to complete the proof that f = @1 a.e. on X(?). In (3.23) we
established that_f’ = f1a.e. on Ry(?) for each p > 1, so it remains only to show that f=a
a.e. on Ry(¢) for each p € A( of the form (py, ..., ps) for some b > 2. Fix such a p, let
gi=p1+---+p;foreachi=0,1,...,b,and let n = gy. Then for almost every x € Ry(?)
we have

(x) = l:,(xl, ey X)) ® fl(x1+q. ey X)) ® e ®}}(xl+qb_, ,---yX1) (Corollary 3.1.21)
= f01,- %) @ Wiagrs -+ 3 X)) @+ ®f (Wivgy_ys - -+, %n)  (equation (3.23))
= f(x) (definition of f on Ry(?)). n
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3.2. Cocycle conjugacy. In this section we will prove that the free flows are completely
spatial. By the index result of Section 3.1 and Arveson’s work in [3], this will imply that
each of the free flows of positive rank is cocycle conjugate to the CAR/CCR flow of
infinite rank. See [3] for a discussion of cocycle conjugacy.

For our purposes, we may define a completely spatial Ey-semigroup to be an Ey-
semigroup « whose associated product system ‘E, is divisible, defined as follows.

DEFINITION 3.2.1. Suppose E is a product system with projection map p: E — (0, 00).
For each ¢ > 0, let E(f) = p~(¢), and let F(¢) be the subspace of E(f) defined by

F(t) =span{u;(t)- - Ua(ty) : @ > 1,1y, ..., 1, € Ug, (41,...,1,) is a partition of £.}

We say that E is divisible if F(t) = E(¢) for each t > 0.

THEOREM 3.2.2. Suppose o is a free flow of positive rank. Then o is completely
spatial.

PROOF. Resuming the notation of the previous section, we must show that the free
product system E is divisible. Our first task is to determine a condition on the spaces
E;, t > 0, which is equivalent to the divisibility of E. Suppose a is positive integer,
Uy, Uy, ..., U, are units of £, ¢ is a positive real number, and t = (¢}, . .. , ¢,) is a partition
of ¢. By the results of Section 3.1, we know that for each i = 1,2,...,4q, there is a
complex number z; and a vector §; € X such that u; = u, ¢,. Letz = (z1,...,z,), and
for each 7, let f;: X — F(C) be a function which represents ;. Then u;(s) = (s, e%i uﬁ(s))
for each s > 0, and by (3.24) we have

i) Ualta) = (t, ¢y, (s (1)) -+ &y, (u,;,A,(zaﬁl))u,;,(m).
This leads us to make the following definition.
DEFINITION 3.2.3. For eacht > 0, let F; be the subspace of E; defined by
F,= span{d),l (uf, (tl)) ey, (ufa;,(tagl))uﬁ‘(ta) ta > 1,fi,...,f. represent ele-

ments of X, and (¢, ...,4)isa
partition of t.}

REMARK 3.2.4. By Lemma 3.1.20, the vector ¢, (ug, (1)) -+ - i, (w7, (fa1) )7, (ta)

is represented by the function F(f'7 t), where f is the a-tuple (1, ..., f), f= (f; N
andt=(t,...,%,). Thus

(3.26) F,=span{[F(f,0)]:t=(1,...,1,) is a partition of t, and f = (f}, ..., ) is
an a-tuple of representatives of elements of X }.

To prove that E is divisible, we must show that F; = E, for each ¢ > 0. The proof
of this statement will proceed as follows. Fix ¢z > 0 for the remainder of this section,
and suppose that ¢ € E, N F;-. First we will define a sequence of mutually orthogonal
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projections Qo, 01,0, ... with sum /, and prove that Q,¢ € E, N F- for each b > 0
(Proposition 3.2.10). We will then prove that Q,(F}) is dense in Q,(E;) for each b > 0
(Proposition 3.2.17). The fact that { = 0 follows easily from these two statements, since
forany b > 0 and £ € F,, we have

0= (0sG, §) = (O, Ov€),
so that 0p¢ = 0 for each b > 0.

DEFINITION 3.2.5. For each nonnegative integer b, let W, = Upens Ry, and let O be
the projection [g] € F(H) — [g - xw,]-

REMARK 3.2.6. This notation should not be confused with the use of Qin Claim 3.1.3.
Also, observe that | Jy>o Wp = X, sothat Qo+ Q1 + Qr + -+ = L.

As a first step toward the proof of Proposition 3.2.10, let us demonstrate that E, is
invariant under each of the projections Qp, b > 0. For each p € A(, define d(p) to be the
dimension of the space Ry,; that is, d(w) = 0,and if p = (p1, . . . , p) for some b > 1, then
d(p)=p; +---+pp. Since

E = DL ; ¢*)
n=0

and each X,(¢) is partitioned by the spaces Rp(f), where p ranges over all elements of A
satisfying d(p) = n, we can express
E = @ L*(Ry(0) ; ¢*0).
PEN

Thus
(327 On(E) = D L*(Ry(0) ; C*®), b>0,

peN?

from which it is clear that E; is invariant under Qp.

LEMMA 3.2.7. If f represents an element of X, then for each z € C, b > 0 and
x € Wy, we have

(3.28) 2f(x) = 21 (),
with the understanding that 0° = 1.

PROOF. Fix z € C and b > 0, and suppose p € N°. We must show that (3.28) holds
for each x € Rp. If b = 0 (so that p = w and R, = {w}), simply note that

(W) = Q¢ =2'f(w).
For the case b = 1, suppose p = (p). If p = 1, observe that for x € R| we have

7(x) = @) = ).
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If p > 2, then for each x = (xy,...,x,) € R, we have

7f(x)

(Zf)(XZ T XLy ey Xp —Xl)

zj’ ).

Finally, suppose p = (p1,...,p») € N for some b > 1. Let ¢; = p; + - - - + p; for each
i=0,1,...,b,and let n = g. Then for eachx = (x1,...,x,) € Rp we have

Ef(x) = 2_7(}1,... 7xq|)®27(xqun-~- 7xqz)® ®Z7(X1+,l2”1“ e ,X,,)
(@155 %)) ® (FXrrgrs -1 %)) @+ @ (2f (Xtagy 1y - -+ 5 %))
zbf(x). L]

LEMMA 3.2.8. Supposep = (p1,...,0) € N, t =(t1,...,4) is a partition of t, and
m = (my,...,m,) is an a-tuple of nonnegative integers. Let q; = p, + - - - + p; for each
i=0,1,...,b,and letn;=m; +---+m; for each i = 0,1,...,a. If the intersection of
the sets Ry and Xy (t) is nonempty, then there is a unique function

7:{0,1,...,a} — {0,1,...,b}

such that n; = g for eachi=0,1,...,a. Moreover, T is nondecreasing, and 7(a) = b.

PROOF. To begin with, observe that since the integers qo, g1, - . . , g» are distinct, the
function 7 is unique. Now, suppose x € Rp N Xm(t). Since R, C X,, and Xp(t) C X,
it must be that n, = gp, so we can define 7(a) = b. Also define (i) = b for each
i € {0,1,...,a} such that n; = n,. Finally, if i € {0, 1,...,a} is such that n; < n,, by
the definition of Xy (t) we have that x.,, < x; for eachj = 1,2,...,n;. Consequently
n; = ¢ for some 7(i) € {0, 1,...,b}. The function 7 is nondecreasing since both of the
sequences ng, 11, . . . , iy and qo, q1, - - - , g» are nondecreasing. =

LEMMA 3.2.9. Suppose t = (t,,...,t,) is a partition of t and £ = (f1,...,f;) is an
a-tuple of representatives of elements of K. Then for eachz € C, b > 0 andx € W), we
have

(3.29) F, tx) = 22 F(, (),
with the understanding that 0° = 1.

PROOF. Fixz € Cand b > 0. If b = 0, simply note that W, = {w}, and that both
sides of (3.29) are equal to Q. when x = w. Suppose b > 1 and x € W;,. Thenx € R,
for some p = (p1,...,ps) € NP. Letg, =p; +---+p; foreachi =0,1,...,b, and let
n = qp. If x is not in X(¢), then both sides of (3.29) are equal to zero, so we may assume
that x € X(¢). By Lemma 3.1.18, there is an a-tuple m = (m,, ..., m,) of nonnegative
integers such that x € Xp(t). Let n; = my +--- + m; for each i = 0, 1, ..., a; note that
n, = n. By the definition of F(zf, t) on Xy (t), we have

(3.30) FEE,)(x) = Zf3(X1, - -+ 3 X)) @ Zfa 1 KLtmy s -+« 5 X)) @ = -+ @ ZfA (Xt -+ - + Xn)-
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By Lemma 3.2.8, there is a unique nondecreasing function
7:{0,1,...,a} —{0,1,...,b}

such that 7(a) = b and n; = g, for each i = 0,1,...,a. Consequently, for each
i=1,2,...,a, we have

14m_ys e+ o3 %m) = Klaguyys + + + 9 %9) € Rprariryyeotny) E Wrtiy—r(i-1)-
By Lemma 3.2.7 this implies that
it @im s ey %n) = 20D Ganyy %)y i=1,2,... 4.
Substituting this into (3.30) gives

(ZT“)_T(O)JA?I(xl yoee s Xy ))

® (ZT(Z)—T(l)fA‘;_l(me . ,xnz)) Q- (ZT(a)_T(a_l)j](an,,_,, L 7xn))
ZOTORGF, t)(x)
2E(E, (). .

FG, ()

PROPOSITION 3.2.10. If¢ € E,NF}, then Qy¢ € E,NF} for each b > 0.

PROOF. We have already demonstrated that Oy € E; for each b > 0. Let g be a
function which represents ¢, and for each » > 0 let g® = g - x,, so that g® represents
OiC. Suppose t = (t1,...,1,) is a partition of ¢ and f = (f1,...,/z) is an a-tuple of
representatives of elements of X. Then for each z € C we have

0 = (F(f,t),g)
= SFE.0.2)
b=0

= iz”(F(i", t),g’) (by Lemma3.2.9.)
b=0

Since a power series is identically zero if and only if each of its coefficients is zero, this
implies that (F(f, t),g") = 0 for each b > 0. But f and t were arbitrary, so by (3.26) we
have that Q¢ € F/- for each b > 0. n

It remains only to show that Q(F;) is dense in Q;(E;) for each b > 0. For this it is quite
useful to give a tensor product decomposition of each of the subspaces L? (Rp(t) ; C®“(P))
of Qu(E)). (See (3.27).)

DEFINITION 3.2.11. Suppose b is a positive integer and ¢ is a positive real number.
Define Ap(f) to be the b-simplex

Ab(t)={x=(x1,...,xb)€Xb(t):t>x1 >x2>-~>xb20}.
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We will use the simplex A(#) to obtain a better understanding of the set Ry (#). Suppose
p=(1,-..,ps) € N® for some b > 1, and let n = d(p). In the proof of Lemma 3.1.10
we defined the set Dp(¢) by

Dp(t) = {x € X,(t) : t > x1 > X11g, > -+ > Xing,, > 0},

and we observed that if we define 7),: X,, — R, foreachi=1,2,...,b by

L1y ¥p) =1 H 2,1+ 13,00, V1Y),

then the map

TP=TP| ><~~><pr

restricts to a measure-preserving bijection from Dy (#) onto Rp(¢).
Let m = m, be the permutation on X, which maps x = (xi, . .., x,) to the point

(xl,x1+q,,. .. ,x1+qb_,,x2,x3,x4, .. .),

where x5, x3, X4, . . . denotes the remaining n — b components of x in their original order.
The permutation 7 restricts to a measure-preserving bijection of Dy(¢) onto

Ap() X Xp, 1 X -+ X Xy, 1,
and thus the composition 7, o 7! induces a unitary operator
L2(Ab(f) X Xy, 1 X -+ X Xy, 15 €") — L?(Rp(t) ; C*")
in the natural way. We will denote by V(¢) the resulting unitary operator
L2 (85(0) © L*(Xp, -1 5 CPY @ -+ @ (X, 1 ; %) — L2 (Rp(1) 5 C*)
obtained by identifying the Hilbert spaces
L2(Ap() X Xpy—1 X -+ X X1 5 C")

and
L2 (8(1) @ L*(Xp—1 ; €)@ -+ @ LA(Xp, 1 5 C)

in the usual way.

REMARK 3.2.12. Observe that each of the Hilbert spaces L?(X,,—1 ; C®) is a sub-
space of X.

We can formulate the operator V,(¢) explicitly as follows. Suppose n = [h] €
Lz(Ab(t)) and f; represents an element ¢; € L2(X,,— ; C®) for eachi = 1,2,...,b.
Then the vector

Vo) ® €1 @+ ® &)

https://doi.org/10.4153/CJM-1995-039-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-039-0

FREE Ey-SEMIGROUPS 781

in L%(Rp(f) ; C®") is represented by the function

g=h®fi® - Qf)omoT,"

on Ry(2); that is, for x € Ry(¢) we have

8(X) = (X1, X14gy5 -+ 5 Xgy W12 — X150y Xg, — X)) @ -
® folXotgyy = Xitgy iy -+ 2%n — Xl+gy_,)
= h(xl,xHq,,...,x|+qb_1)ﬁ(x1, ey Xg )R
(3.31) B fo(X1gsyy - - - 1 %n),

where asusualg; =p; +--- +p; foreachi=0,1,...,b.
We now proceed to define a spanning set of vectors for L2 (Ab(t)), and then use this
set and the operator Vp(?) to create a useful spanning set of vectors for L? (Rp(t) ; C®").

DEFINITION 3.2.13. Suppose b is a positive integer and ¢ is a positive real number.
Suppose also that t = (#,..., %) is a partition of £, and s; = #; + .-+ + ¢; for each
i=0,1,...,2b+ 1. Define a subset Sy(t) of Ay(f) by

Sp(t) = [s26—1,826) X -+ + X [53,84) X [51,52).

LEMMA 3.2.14. For each integer b > 1, the set

{[xs,0] : t=(t1,...,tw+1) is a partition of t}
has dense linear span in L? (Ab(t)).

PROOF. Let ® = {Sy(t) : (t1,...,kp+) is a partition of ¢}, and let
R ={lr-1,rm) X - X[r3,r) X [r,r2) : 0<r <y <+ <y <t}

be the set of all rectangles which are contained in A,(f) and whose sides are parallel to
the coordinate axes. By an obvious approximation argument the sets {[x4] : 4 € R } and
{[x4] : A € R'} have the same closed linear span in L (Ab(t)), so it suffices to show that
the latter is a spanning set. Since the step functions are dense in L2(/) for any interval
I C R, it is clear by taking tensor products that for any B € }’ the Hilbert space L2(B)
is spanned by {[x4] : 4 € R/,4 C B}. But it is easy to express Ay() as a countable
disjoint union [ JX, B; of elements of ®’, and doing so allows us to express
o0
L2(A(0)) = D L*(By),

i=1

from which it is clear that L? (Ab(t)) is spanned by {[x4]: 4 € R'}. .
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DEFINITION 3.2.15. For each integer & > 1 and each positive real number ¢, define
Zp(t) to be the set

O([xs,0] @M@ ®@np) 1 p=(P1.-.,pp) €N, = (t1,...,p1) is 2
partition of £, and 7; € L*(X,,_1 ; C%P) for
eachi=1,...,b}.

COROLLARY 3.2.16. For each integer b > 1 and each positive real number t, Z(t) is
a spanning set for Qp(Ey).

PROOF. This is immediate from (3.27), Lemma 3.2.14, and the fact that each V,(?) is
unitary. -

PROPOSITION 3.2.17. Q(F}) is dense in Qp(E;) for each b > 0.

PROOF. The case b = 0 is trivial since Qy is the projection onto the vacuum vector
Q, and Q = uy(¢) € F,. Suppose b > 1. By Corollary 3.2.16, it is enough to show that
Zy(£) C Op(F,). Suppose p = (p1,...,p») € NP, t = (ty,...,tp+) is a partition of #, and
f; represents an element of LZ(XP,.AI ; C®) foreachi=1,2,...,b. We will show that

N(xs,ol @ N]1® - @ h]) € Op(F).

Let I denote the set of all functions o:{1,...,b} — {0,1}, and for each j =
0,1,...,b,let
L= {a € 1:card(c™' {0}) =j}.

For each o € I, let f, denote the (25 + 1)-tuple
f, = (0, o(b)fy,0,0(b — 1)fy_1,0,...,0,0(2)5,0,0()A ,0).

Finally, let g be the function

b . ~
g= Z&(—IY 2 F(is, 1.
=

o€l;
Observe that g represents an element of F,. We claim that
(gD = V(X501 ® N1 ® - -- @ [])-

To establish this equation we will verify the following two statements:
T Ifx € Rp(?) and (x1, X1+, - - - s X144, ,) € Sp(t), then

) = fi(x1s - yXg)) @+ @fp(Xragsys -+ 2 Xg0)s

where q; =p;+--- +p; foreachi=0,1,...,b.
I If x € Ry(¥) for some p’ € N? and g(x) # 0, then p’ = p and

(x],x1+ql yeen 7)C1+q,H) € Sp(t).
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(See (3.31).)

CLAIM 3.2.18. Suppose m = (my,...,myp+1) is a (2b + 1)-tuple of nonnegative inte-
gers,n;=my+---+m;foreachi=0,1,...,2b+1, and x € Xp(t). If g(x) # 0, then m;
is zero for all odd i and nonzero for all even i, and

(3.32) 80 = filkitms - Xn) ® -+ @ Fo (Kt s - - - 1 Xigy)-
PROOF. Suppose that g(x) # 0. For each o € I, we have
F(f,, ) = 00x1, - . ., Xn,) ® 01y (c1om s - - - 1 %my)

® 0 4myy - -+ 5 Xns) ® -+ @ O 1mgyys - -+ » Xy,
Q o(BWp(X1tnzyys -+ + 3 Xmy) @ O 14z - -+ 5 Xy, )-

If m; were nonzero for some odd i, then the corresponding term f)(xH,,,._l s+« s X )Wouldbe
zero. This would cause F(f;, t)(x) to be zero for each o € I, contradicting the assumption
that g(x) # 0. Thus m; = 0 for all odd i. Similarly, foreacho € I,i=1,2,...,b, we have
0 ifo(i) =0and my; > 1.

T tm i+ X ) = SiXLiny - -~ 1 Xny,) Otherwise.

Consequently
F(f,, t)(x)
Ay X)) @ - @ fp(Xitng_y s - -5 Xny,) i 0(i) = 1 whenever my; > 1
0 otherwise,

so that g(x) is a multiple of

ﬁ(xl+n17 e ,an) Q- ®ﬁ7(x1+n2b_|7 oo 7x’l2b)'

More precisely,

b . A ~
(3.33) gn=(zx—wqpunM”“q%g®-u®ﬁuﬁm4v“,ﬁw
j=0
where ¢; is the cardinality of the set
{o € I : o(i) = 1 whenever my; > 1}.

Let k£ be the number of non-zero components of m. Then for eachj = 0,1,...,b, we

have
_(b—k
Cj = j

b (b—k\_ (1 ifk=bh
1 (e B PRy

Jj=0

But
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so the assumption that g(x) is nonzero implies that k£ = b; that is, m; is nonzero for each
even i. Equation (3.33) now reduces to the desired equation (3.32). n

If x € Rp(#) and (x1, X14g,5 - - - y X144,_,) € Sp(t), then by defining

m= (Oaplv O7p27 0,..., OanAI ) Ovpba 0)

we have x € Xpy(t), and by the claim

g(x) =ji(x17 cee ,qu) Q- ®/‘1‘7(xl+q54|7 o ’xqb)'

This establishes 1.

To verify 1, suppose x € Ry (f) for some p’ = (p1,...,p,) € N® and g(x) # 0. By
Lemma 3.1.18, there is a (2b + 1)-tuple m = (my, ..., my+;) of nonnegative integers
such that x € Xiy(t). Letn; =my +--- + m; foreachi = 0,1,...,2b + 1. By the claim,
m; =0ifiis odd, m; > 1if i is even, and

(3.34) E) = firams -+ 3 Xn)) ® B fy(Xitngy s« - - s Xogy)-

Let g/ = p{ +--- +p] for eachi = 0,1,...,b. By Lemma 3.2.8, there is a unique
nondecreasing function 7:{0,1,...,2b + 1} — {0,1,...,b} such that 7(0) = 0,
T2b+1) = b, and n; = q;(,-) for eachi = 0,1,...,2b + 1. Since m; > 1 for i even,
we have

0<m<ng < -+ < nyy,
so that
0 < Gy < Griay <+ < Gran)-
This clearly implies that 7(2i) = i; that is, g; = n; for i = 0,1,...,b. Substituting into
equation (3.34) we have
g(x) =ji(x17 cee 1xq’l) Q- ®j}7(xl+q;)_la cee 7xq;,)
= filer —x1,. .. ' Xg, —x)® - ®fb(x2+q;H — Xitg eeesXg — Xivg, )

But f; is supported in X}, _;, so the assumption g(x) # 0 implies that p] = p; for all 7; that

is, p’ = p. Lastly, observe that since gq; = ny; for eachi = 0,1,...,b, and m; = 0 for i
odd, we have

m = (Oaplv 0’P27 09 ey Ovpbs 0)

The fact that x € Xip(t) now immediately implies the desired result that
(X1, X14gy 5 -+« y X14g,,) € Sp(D). .

COROLLARY 3.2.19. Each of the free flows of positive rank is cocycle conjugate to
the CCR/CAR flow of rank +oo.
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PROOF. This follows immediately from Arveson’s classification of completely spatial
Ey-semigroups ([3]), which states that if o is a completely spatial Ey-semigroup such

that d.(a) = n, then « is cocycle conjugate to the CCR/CAR flow of rank . n
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