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FREE ^-SEMIGROUPS 

NEAL J. FOWLER 

ABSTRACT. Given a strongly continuous semigroup of isometries U acting on a 
Hilbert space #", we construct an EQ-semigroup au, the free E^-semigroup over U, 
acting on the algebra of all bounded linear operators on full Fock space over 9i. We 
show how the semigroup au®v can be regarded as the free product of au and ctv. In 
the case where U is pure of multiplicity n, the semigroup au, called the freeflow of 
rank n, is shown to be completely spatial with Arveson index +oo. We conclude that 
each of the free flows is cocycle conjugate to the CAR/CCR flow of rank +oo. 

0. Introduction. An ^semigroup [s a continuous semigroup a = {at : t > 0} of 
normal, unital *-endomorphisms of a von Neumann algebra M. More precisely, each 
at is a normal, unital *-endomorphism of fAf, as+t = as o at whenever s, t > 0, a0 is 
the identity endomorphism, and for each x E M and each a-weakly continuous linear 
functional p on M, the map t \—> p(at(x)) is continuous. Powers initiated the study of 
these semigroups in [9], and to date, even in the case where M is #(X), the algebra of 
all bounded linear operators on a separable, complex Hilbert space !H, there are very few 
concrete examples. 

In this paper, we will introduce a family of is o-semigroups called free Eo-semigroups, 
which are the free objects in the category of £o-semigroups. We will show that a certain 
subfamily of the free £0 -semigroups, the free flows, consists entirely of £0 -semigroups 
which are completely spatial and have numerical index +00. Using Arveson's classifica­
tion of completely spatial ^o-semigroups, we are then able to conclude that each of the 
free flows is cocycle conjugate to the CAR flow of rank +00. 

The construction of £0-semigroups which we present is modeled after similar con­
structions by Powers ([9]) and Arveson ([1]). In each of these constructions, one begins 
with a strongly continuous semigroup of isometries U = {Ut : t > 0} acting on (K. By 
making use of an appropriate set of commutation relations, one can effectively "quan­
tize" U to produce an £o-semigroup ocu acting on #(X), where X is a Fock space over 
H. The relations used by Powers are the canonical anticommutation relations, or CARs, 
and the Hilbert space 9Ç which underlies the resulting CAR £o-semigroup is the antisym­
metric Fock space over 5i. Arveson makes use of the canonical commutation relations 
(CCRs), and the underlying Hilbert space % in this case is the symmetric Fock space 
over 5t. Our construction of free £0 -semigroups is the full Fock space analogue of these 
constructions, and makes use of the Cuntz relations. 

In each of the above constructions the semigroup au is spatial; that is, there is a 
strongly continuous semigroup of isometries V = {Vt : t > 0} acting on % which 

Received by the editors November 23, 1993. 
AMS subject classification: Primary: 46L40; secondary: 81E05. 
© Canadian Mathematical Society, 1995. 

744 

https://doi.org/10.4153/CJM-1995-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-039-0


FREE ^-SEMIGROUPS 745 

intertwines a with the identity in the sense that a¥(A)Vt = VtA for each A G #(X) 
and each t > 0. Indeed, one such V is simply the second quantization of the original 
semigroup U. 

Much attention has been paid to the case where U is a pure semigroup of isometries. 
If U is pure of multiplicity « (1 < n < oo), the iso-semigroup which results from any of 
the constructions referred to above is called a flow of rank n. In [9], Powers showed that 
the CCR flow of rank n is conjugate to the CAR flow of rank n, and both Powers and 
Arveson have defined numerical indices for spatial EQ-semigroups which recover the 
rank of these flows. In computing the index of the CCR flows, Arveson ([3]) explicitly 
described the set of all intertwining semigroups for the CCR flow of rank n, and made 
precise the notion that this particular iso-semigroup has an abundance of intertwining 
semigroups by showing that it satisfies a certain technical condition which he called 
complete spatialness. He concluded by showing that his numerical index was a complete 
cocycle conjugacy invariant for completely spatial £o-semigroups, and consequently that 
every completely spatial EQ-semigroup is cocycle conjugate to a CAR/CCR flow. 

In Section 3.1 of this paper we will show that the numerical index of the free flow 
of rank n is +oo whenever n>\. This is a radical departure from the CAR/CCR case, 
where the corresponding flow of rank n has index n. We then verify that each of the free 
flows is completely spatial, and hence cocycle conjugate to the CAR/CCR flow of rank 
+oo. We also take a moment in Section 1.3 to justify the use of the word free by showing 
how free £o-semigroups are related to free products. 

We close the introduction with a few remarks on notation, most of which is standard. 
We use the symbols C, R, and Z to denote the complex numbers, real numbers, and 
integers, respectively. The symbol N denotes the natural numbers {1 ,2 ,3 , . . . , }, and 
we define No to be the set {0 ,1 ,2 , . . . , } . All Hilbert spaces are assumed to be over the 
complex numbers, and are also assumed to be separable. The inner product we use is 
linear in the first slot and conjugate linear in the second slot. The identity operator on H 
will be denoted /# , and abbreviated / when the context is clear. 

1. Free £>semigroiips. 

1.1. Preliminaries. Let !H be a complex Hilbert space. For each n > 1, let tt®n denote 
the «-fold full tensor product of ^ , and let !H®° = C. The full Fock space over 0{ is the 
Hilbert space 7{9() defined by 

oo 

5(#) = 0 ^ w . 
n=0 

The distinguished vector 1 0 0 ® 0 0 0 0 • • • E J (X) is called the vacuum vector, and 
shall be denoted by Q#, or just Q if the context is clear. We will denote the projection 
of 7{p<) onto the subspace (K®n by Pn. 

To each/ G #" we associate a left creation operator 1(f) and a right creation operator 
r(f) acting on iF(^), defined by 

l(f)n = r(f)Q=f 
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KfW\®---®f»)=f®f\® •••®/« 

K/X/i ® • • • ®/i) =/i ® • • • ®/B ® / , « > 1, / i , • • •,/« 6 # . 

On easily checks that their adjoints, called annihilation operators, satisfy 

i(f)*n = r(/)*n = o 
/(/)*(/i ® • • • ®fn) = (fuflfi ® • • • ®/» 

r(/)*(/l ®"-®fn) = (fnj)f\ ® • • • ®/»-i n > 1, / , , . . . , / „ G # . 

The maps I,r:9{—> S ^ ^ ) ) are linear, isometric, satisfy the Cuntz relations 

r(g)*r(f) = (f,g)I 

and the commutation relations 

l(gW) - r(f)l(g) = 0 

(1.1) l(gyrif)-r<fm* = lf,g)P*, figZX-

It is easy to extend the domain of/ and r to all vectors in !F(9Q which have bounded 
support; that is, vectors/ G 7(?C) for which Pjf = 0 for all but finitely may n. Simply 
define 

1(D) = r(Q) = I 

l(fx®'-®fn) = l{fx)--l(fn) 

r<fi®-"®f«) = r(fn)...rVi% n>\,fu...,fneX, 

and extend linearly. We will denote the set of all vectors in ?(?() which have bounded 
support by %(JH). 

When working with the symmetric Fock space over H, denoted eH, one has the luxury 
of a canonical isomorphism e^ (g) e^1 ^ e^®^. The following proposition gives a full 
Fock space analogue of this isomorphism. We now recognize this as a special case of [5, 
Définition 1.5.1], which we have reproduced in Definition 1.3.2 of this paper. 

PROPOSITION 1.1.1. Suppose 9{ is expressed as an internal direct sum tt\ 0 ^ , and 
consider T(!H\ ) as a subspace off(?{) in the natural way. Define another subspace E of 

FW by 

oo 

n=l 

Then there is a unique unitary operator 

W:f{X{)®E—>f(9i) 

which satisfies 

(1.2) w(h®f) = r(f)h, heTWXf&EnMX). 
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PROOF. Suppose h = h\ ® • • • ® hm G ?(tt\) for some m>0,hi,...,hme ^ i , with 
the understanding that h = Q if m = 0. Similarly, let/ =/i ® • • • ® / G £ for some a > 0, 
where/i G #2 if a > 1 and/ G # for all / > 2. Suppose A7 = h\ ® • • • ® /£ G 5(#i) 
and/7 =/[ ® • • • ®/[ G £ are another such pair of vectors. We will show that 

(1.3) (r(f)h,r(f')h') = {h®f,h'®f), 

from which we are assured the existence of an isometry W\ T{tt\ ) ® E —* J(i#) satisfy­
ing (1.2). 

Equation (1.3) is obvious if m = n and a = b. If either m ^ n or a ^ b, we have 

( * ® / , * , ® / > = (A,A /) ,/,/) = 0, 

so we must establish that (r(f)h, r(f')h') = 0 in this case. This equation clearly holds if 
m+a f n + b, so we may assume that m+a = n + b, and without loss of generality m <n. 
Then 

(r{f)h,r(f)ti) = (hi ® • • • (8) Am ®/i ® • • • ®/,/*; ® • • • ®tin ®f[ ® • • • ®/J) 

= 0, 

since (/i,/^+1) = 0. 
It remains to show that W is surjective. For this, we define a subspace 9{x of 5(^0 for 

each;cGU^0{l,2}"by 

^ fC if* G {1,2}° 
* U , ® - 8 ^ ifjc = (x b . . . ,x w )G {1,2}W for some n> 1. 

A moment's thought shows that 7(9() = ®x 9ix, so it suffices to show that the range of W 
contains each of the subspaces ttx. The case x G {1,2}° is trivial, since W(Q ® Q) = Q. 
Suppose x = (x\,..., xn) for some n > 1. If JC,- = 1 for all /, then 

He = 9i^n c 7{H{) = w(r(rti)® n). 

Otherwise, let/ = min{/ : xi+\ = 2}. Then 

He Ç ^ ' ( 8 ) ^ 2 ® ^ 2 ® • • • ® Hn 

Ç spân>(#2 ® rtn~J~l)rt®J 

Ç ran^F. • 

As a final preliminary, we observe that to each linear contraction T: 0i —> 3C between 
Hilbert spaces #" and 3C, we can associate a contraction T: 7(9{) —» 7{X), the second 
quantization of T, defined by 

m®---®fn)=Tfx®---®Tfn, « > ! , / , , . . . ,/„ G tf. 
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The map T i—• T is imitai, strongly continuous, and preserves both involution and com­
position of operators. Moreover, these quantized operators interact nicely with creation 
and annihilation operators, as demonstrated in the following lemma. 

LEMMA 1.1.2. Suppose T\9{ —> %is a linear contraction. Then for eachf G %{^H) 
we have 

Tl(f) = l{ff)f 

Tr(f) = r(Tf)T. 

IfTis an isometry, we further have 

Tl(f)* = l(ff)*T 
tr(f)*=r{ff)*T. 

PROOF. The first statement is routine and left to the reader. For the second statement, 
suppose T is an isometry. Relying heavily on the fact that (f)* = (71*), we have 

Tliff = (l(f)T*Y = (/(f*77)f*)* = (f*/(7/))* = l{ffff. m 

The following corollary is a trivial restatement of Proposition 1.1.1, using the language 
of the previous lemma. 

COROLLARY 1.1.3. Suppose L: 0{ —> %is an isometry. Let EL Q !F(X) be the sub-
space E of Proposition 1.1.1 with respect to the decomposition % = Ltt © (LlH)1; that 
is, let 

oo 

There is a unique unitary operator 

WL:!F(rt)®EL—>?(%) 

such that 

wL(h ®f) = r(f)lh, h e Tirt), feELn rb(X). 

1.2. Construction. 

THEOREM 1.2.1. Suppose U = {Ut : t > 0} is a strongly continuous semigroup of 
isometries on Oi. There is a unique Eo-semigroup au = {aj7 : t > 0} on #(jF(X)j, the 
free Eo-semigroup over U, which satisfies 

(1.4) <tf{W) = /(£/</), f£!K, t>0. 
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PROOF. Uniqueness of au follows from the fact that {1(f) : / G H\ generates 
#( J(#*)) as a von Neumann algebra. (See [6].) To prove the existence of au, we begin 
by observing that the theorem is trivial if each of the isometries Ut is actually unitary. 
In this case the second quantization Ê / = { Ê / , : J > 0 } o f £ / i s a strongly continuous 
semigroup of unitary operators on #( J(#")), and we can define a trivial £0-semigroup 
au on #(/(#")) by 

c$(A) = ÛtAÏft, A G 0(iF(#)), t > 0. 

By Lemma 1.1.2 this is clearly the desired semigroup. 
In the case where Ut is a proper isometry for some (and hence all) t > 0, let V be 

a unitary extension of U; that is, let V = {Vt : t G R} be a strongly continuous one 
parameter unitary group acting on a Hilbert space 3C which extends U in the sense that 
there is an isometry L:tH —> 9£ which intertwines U and V: 

VtL=LUh t>0. 

Let /? = {/3/ : / G R} be the one parameter automorphism group acting on ^(^F(^C)) 
defined by 

By Lemma 1.1.2 we have 

Pt{l(g))=KVtg% gG3C, *GR, 

so in particular 
pt(KLfj) = l(VtLf) = /(L[/A / G tf, f > 0. 

Thus the von Neumann algebra 91 generated by {l(Lf) : / G 9{} is invariant under the 
semigroup {(3t : t> 0}. We will show that the equation 

0(l(f))=l(Lf), fetH 

extends to a ^-isomorphism of ®(5(^0) onto A. The £o-semigroup ocu is then defined 
by o f = 8~l o/3,o6,t> 0. 

Let WL:f{!}{)®EL —> T(X) be the unitary operator of Corollary 1.1.3. We claim that 

8(T) = WL(T®I)W*L, T 6 B ( J ( # ) ) 

defines the desired *-isomorphism of ®( ?(?()) onto A For this, simply note that for 
f£ELn %{X), g,h£ 7(H\ we have 

WL{l(g) ® I)(h ®f) = WL(l(g)h ®/ ) 

= r(f)Ll{g)h 

= r(f)l(Lg)Lh (Lemma 1.1.2) 

= l{Lg)r(f)Lh 

= l(Lg)WL(h ®/) . 
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Again this suffices, since {1(g) : g G M} generates (B^fittj) as a von Neumann algebra. 
(See [6].) • 

COROLLARY 1.2.2. Suppose U = {Ut : t >Q} is a strongly continuous semigroup of 
isometries on 9{. Then the free Eo-semigroup au = {af7 : t > 0} satisfies 

(1.5) a?(A) = WUt(A®l)W*Ut, A G 0( j ( t f ) ) , / > 0, 

where W\jt\ 7(M) ® £t/, —• ̂ "(^0 w //*e unitary operator of Corollary 1.1.3. 

PROOF. Simply verify that equation (1.5) holds whenever^ = 1(g) for some g G H. 
The calculation is identical to the one just given at the end of the proof of Theorem 1.2.1. • 

1.3. Free products. Given two strongly continuous semigroups of isometries £/and V 
acting on Hilbert spaces HJJ and fHy, respectively, one can define a semigroup [ / ® F 
acting on Ufa® My in the obvious way: (£/0 V)t(f@g) = £ / / 0 Vtg. Similarly, given two 
£o-semigroups oc and f3 acting on *B{fHa) and (B(Mp), respectively, one can show there is 
a unique E0 -semigroup a (g) (3 acting on #(.?4 <8> ty) which satisfies (a ® j3)t(A ® B) = 
at(A)®(3t(B). Arveson has shown that the construction of the CCR E0 -semigroups carries 
the direct sum operation for semigroups of isometries into the tensor product operation 
for ^-semigroups ([1]). More precisely, he has shown that the map 7: £/1—> 7e7 defined 
by the construction of the CCR Eo-semigroups is a functor from the (appropriately 
defined) category of strongly continuous semigroups of isometries to the (appropriately 
defined) category of iso-semigroups, and that under this functor, the £o-semigroup 7 ( / e F 

is naturally isomorphic to l u (g) 7 v . 

We would like to carry out this program for the construction U \—> au of the free 
EQ-semigroups, showing that auev is naturally isomorphic to the free product of au 

and av. Unfortunately, the theory of free products of E$-semigroups has not yet been 
developed. Nevertheless, in a very real sense the semigroup au®v is the free product of 
au and av, as we shall describe in this section. 

To begin with, we will say a few words about the free product of Hilbert spaces and 
the reduced free product of von Neumann algebras. The definitions that follow are from 
[5], where one can find a more complete discussion of this material. 

DEFINITION 1.3.1. Let (9%, £ï)i€l be a family of Hilbert spaces tf with distinguished 
vectors £,- G 9%. The Hilbert space free product *,-e/(^, £,•) is (M, £), where ?H is the 
Hilbert space 

^ = C £ 0 0 ( 0 rtiX®~-®MiX 
n>\ \hJhf-Jin)

 J 

o 

Here oii denotes the orthocomplement of £/ in ^ . 

REMARK. One can check that * /G/(^ r(^),Q /) = ( j ( 0 / € / ^ , Q ) , where Q( is the 
vacuum vector in ?(?£) for each / G /. 
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DEFINITION 1.3.2. Suppose ( J ^ , ^ , ^ ) / G / is a family of von Neumann algebras ^ 

acting on Hilbert spaces % with distinguished vectors £,• G %. Let (X, 0 = * / e / ( ^ , £,), 
and for each / G 7 let #"(/) denote the subspace of #" defined by 

#(0 = CC 0 0 ( 0 #,-, ® • • • ® # A 

Define unitary operators F,: ^ ® #(/) —> J# by 

hi ®£ ->#/ 

& ® (#,-, ® • • • ® # U ->#,-, ® • • • ® #,-„ 

# , ®(#;1 ® • • • ® #,-,,) —•#«• ® #,-, ® • • • ® ^ . 

For each i G 7, let A/1̂ 4/ —> #(#") be the representation defined by 

\i(a)=Vi(a®Im)V?, aeAi. 

The reduced free product von Neumann algebra A = */<=/(-%, X, £/) is the von Neumann 

algebra 

Now, suppose 11 is a collection of strongly continuous semigroups of isometries. For 
each [ / G t l , let ^ / be the Hilbert space on which U acts. Let fH - ^ueu^u, and let 
lu be the inclusion map of Ufa into 9i. Then the semigroup W = ®f/ewC/ is the unique 
semigroup of isometries on # which satisfies 

wtiuf=LUutf, ueu,fe9b,t>o. 

We will show that aw behaves like the "free product" of the family {au)Ueu in the sense 
that 

1. aw acts on the reduced free product von Neumann algebra 

*i/e«(^(j(^/)) ,J(^4/) ,nc/) , 

2. af o\v = \vo au for each [ /Gîi , where Xu is the representation of #( !F(&u)) 

on $( J ( # ) ) used in defining *f/G«(^(j(i«c/)), 7(^t/), fit/). 

In computing *(/ew(îB(^ r(^)),^ r(^/),Qf/j, the subspace of J ( ^ ) which corre­
sponds to 9{{j) in Définition 1.3.2 is precisely the subspace ELu of Corollary 1.1.3, 
and the unitary operator which corresponds to Vf is WLu. Thus the representation 
Xv: <B(Hrtu)) -» $(>(#)) is simply 

A ^ ) = 0 ^ ® 7 ) ^ , ^ G *( J(*4,)), 
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from which we obtain 

(1.6) *v{W) = Kwf), fevu. 
Since {l(iuf) • U G Uj E 9<u} generates #( J ( ^ ) ) as a von Neumann algebra, we have 

0( j ( t f ) ) = * l / G «(« ( j (^ / ) ) , W / ) , < V ) -

The second statement follows easily from (1.6): 

{ocfo\v){l(f))=aY{Kiuf)) 

= W*u/) 

= \u{KUtri) 
= (At, o a f )(/(/)), / G ^ , , / > 0 . 

2. Free product systems. Continuous tensor product systems, or product systems 
for short, were introduced by Arveson in [3], and play an integral role in the theory of 
£o-semigroups. For example, if </>: E —> #(#") is an essential representation of a product 
system E, there is a natural way of associating an £o-semigroup with <j>. Conversely, 
for each E$-semigroup a there is an associated concrete product system *£«. These two 
processes interact nicely: if a is the £o-semigroup associated with the essential repre­
sentation <f>\E—* *B(fH), then the product systems E and £« are canonically isomorphic. 
We refer the reader to [3] for details. 

In this chapter we make use of a strongly continuous semigroup of isometries U acting 
on 9{ to construct a product system E = Eu, the free product system over U9 along with 
an essential representation <f> - <\>u: Eu —> #(^F(X)) in such a way that the £o-semigroup 
associated with cj)u is au, the free EQ-semigroup over U. 

We begin by characterizing the intertwining space %, of the endomorphism a*7; that 
is, the linear subspace of #(^F(X)) defined by 

% = {T E V(!F(9Q) : <xY(A)T = TA, Ae 0(fF(#)) }. 

It is a standard result that such an intertwining space is a Hilbert space in the inner 
product T*S = (5, T)I. (See [11].) Observe that the corresponding Hilbert space norm on 
% coincides with the operator norm. 

For the remainder of this paper, we will use the abbreviations Et and Wt for the Hilbert 
space Ejjt and the unitary operator Wjjt of Corollary 1.1.3. 

LEMMA 2.0.3. For each t > 0, define <j>t: Et —• 0(fF(#)) by 

<t>t(f)h = wt{h ®y), feEhhe H^). 

Then <f)t maps Et onto the Hilbert space % of intertwining operators for a^. Moreover, 
4>t defines a unitary operator from Et to %; that is, 

(2.1) <t>t(g)*4>t(f) = (f,g)i, f,geE,. 
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REMARK. Observe that <j>,(f) = r(f)Ût when/ G E, n %{">€). 

PROOF. TO see that <£,(£,) c •£, we make use of Corollary 1.1.3: for A G «(?"(#)), 

av
t(A)4>t{f)h = {Wt{A®r)W*t)(Wt(h®f)) 

= H^A ®» 

Equation (2.1) is easily verified: if/, g £E,,h\,h2£ ?(?(), then 

{<t>t<f)h,4>t{g)h2) = {wt(h ®/) , FF,(A2 ®g)) 

= (Al®/,*2®g> 

= {f,g)(huh2). 

Finally, we show that </>, maps Et onto 2i. Since </>/(£/) is a closed subspace of the Hilbert 
space £,, it suffices to show that its orthogonal complement in % is {0}. Supposed G % 
is orthogonal to <j>t(Et). Then R*cj)t(Et) = {0}, so i?* is zero on 

span<M£,M^) = FT,( W ) ® Et) = -FĈ O-

Thus i? = 0. • 

The following lemma provides a useful characterization of the Hilbert space Et. 

LEMMA 2.0.4. Et = f l / ,^ kcr l(Uth)*. 

PROOF. The inclusion Et Ç H/,e^ ker l(Uth)* is obvious, since 

oo 

(2.2) fi^Ce^I/,^)1®^1'. 

For the reverse inclusion, we will establish that 

£ j L ç ( n i œ r / ( W ) ± -
VA€# ' 

For this, suppose n > 1 and h\, h2, ..., h„ G #". Note that vectors of the form 
£/,/?! ® A2 ® • • • ® A„ span £/-. If/ G nA e# ker l{U,hf, then 

(/", I/,*, ® A2 ® • • • ® A») = (/", l(Uthx)(h2 ® • • • ® A„)) 
= {KU,hTf,h2®---®hn) 
= 0. • 

The total space of the free product system over U is defined by 

£ = {(/,/) G (0, (X)) x <F(tf) : / G £,}, 
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and the projection/?: E —» (0, oo) is given simply byp(t,f) = t, with/?_1(/) inheriting its 
Hilbert space structure naturally from Et. If we endow E with the relative norm topology, 
then E is a closed subset of (0, oo) x F(!H), and is thus a standard Borel space. To 
see this, suppose {(tn,f„)} is a sequence in E which converges to some point (t,f) in 
(0, oo) x !F(9f). We need to show that / G Et. For this, it suffices by Lemma 2.0.4 to 
prove that l(Uth)*f = 0 for any h G 9{. But this is simple, since 

KUth)*f= lim l(UtHh)*fn=0, 
n—>oo 

the last equality holding because^ G Etn for each n. 
To complete the definition of E, we will define a Borel isomorphism ?/;: £ —> £, where 

£ is the concrete product system associated with the free Eo-semigroup over U. This 
isomorphism will be defined so that it restricts to a unitary operator on each fiber. Not 
only will this assure the measurability of the Hilbert space operations in E, but by pulling 
back the multiplication in £ we can define a multiplication in E which makes E a product 
system. 

Since the total space of £ is given by 

£ = {(f, T) G (0, oo) x 0(J(tf)) :T G £,}, 

we can simply use the maps </>t:Et—>'Et9t>0, to define ip: 

W,f) = (t,<l>t<f)), t>0,feEt. 

We claim that ip is a Borel isomorphism. Since both E and £ are standard Borel spaces 
and 1/; is a bijection, it suffices to show that t/; is measurable. Recall that £ inherits 
its Borel structure from (0, oo) x #(^F(X)) by first endowing #( J ( # ) ) with the Borel 
structure generated by the strong operator topology, and subsequently endowing (0, oo) x 
#(^(X)) with the product Borel structure. Consequently, it suffices to show that ijj is 
continuous when we consider E and £ as topological subspaces of (0, oo) x T(!H) and 
(0, oo) x #( J (X)) , respectively. Proving this amounts to showing that (t,f) G E \--> <j>t(f) 
is strongly continuous. As a first step in this direction, we establish the following claim. 

CLAIM 2.0.5. I/O < s <t,f G Es, and h G J ( # ) , fAew 

ll</>,(/>- <M/)/*ll < 11/11 l i f t* - 0 i * | | . 

PROOF. The claim is trivial if A = 0, so assume h ^ 0. Suppose e > 0. By letting 
f = T%=0Prf for sufficiently large AT, we can choose/' G £ s n j 6 ( ^ ) such that \\f-f'\\ < 
3 ^ and m < ||/1|. Then 

Us{f)h-4>,(f)h\\ < Wtfyi-4>tfMH<l>><f)b-<l>tfMH<l>tf»-<l>tfM 
< 2 | l / - / | | P | | + | | r ^ ) ^ - r ( r ) ^ | | 
< e + \\r(f)Ûs(h - tjt.sh)\\ 

= c + H ^ X A - ^ A ) ! ! 
= c + \\r\\\\h-Vt.sh\\ 
< e + ||/1|||&JA-&iA||. -
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Now suppose s, t>0,f£ Es, g G E„ and h G fi^i). If s < t, then 

Us(f)h - <t>t(g)h\\ < \\4>s(f)h - <j>t(f)h\\ + \\<t>t{f)h - 4>AgM 

<riiii^-^ii+ii/-giipii, 

and if t < s, we similarly have 

Us(f)h -4>t(g)h\\ < 11*11 \\ush- V,h\\ + ¥-s\\ \\h\V 

Thus for all 5 , / > 0 w e have 

Us(f)h - 4>,(g)h\\ < max{|l/||, | | g | | } | | ^ - Vth\\ + \\f-g\\ 11*11-

From this equation it is clear that if (s,f) —> (t,g) in E, then <t>s(f)h —> <j>t(g)h in f{9(). 
Thus (5,/) 1—» 4>s{f) is strongly continuous. 

Define multiplication in E to be the pullback along V> of multiplication in £. The 
corollary to the following lemma gives an explicit formulation of this multiplication. 

LEMMA 2.0.6. Iff £Es,g€ E, for some s,t>0, then 

1. 4>s(f)g€Es+t 

2. 4>s+<{<t>s(f)g) = <t>s(f)<t»(g)-

PROOF. 1. By Lemma 2.0.4 we must show that l(Us+th)*<j>s(f)g = 0 for each h£9{. 
We have 

l{Us+thy<t>s(f)g = as(l(Uth)%(f)g 

= <t>s{f)i{u,hTg 

= 0, 

the last equality holding since g G E,. 

2. We may assume that/ and g are vectors of bounded support. In this case 

= r(r(f)Ùsg)Ùs+l 

= r(f)r(Ùsg)ÙsU, 
= r<f)Ûsr(g)Ût (Lemma (1.1.2)) 

= hViïfe). • 

COROLLARY 2.0.7. The multiplication on E is given by 

(2.3) (s,f){t,g) = (s + t,<j>s{f)g) 
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PROOF. Multiplication in £ is given by (s, S)(t, T) = (s +1, ST). Thus 

1>{(sMg)) =*Ks,J>Kt,g) (by definition) 

= {sAs(f))(t,$t(g)) 

= {s + t^s(f)$t(g)) 

= (s + *,<k*,(0,(/)g)) 

Since xjj is a bijection, this implies equation (2.3). • 

It is now a simple matter to define the representation <j>\E—* ^{ff^H^j alluded to at 
the beginning of this section; simply define <t>(t,f) - (/>/(/). It is routine to check that <j> is 
an essential representation of E whose associated E$-semigroup is au. 

3. The free flows. In this chapter we will study the free J^o-semigroup au in the case 
where U is pure of multiplicity n for some n G {1 ,2 , . . . , oo}. We call this £b-semigroup 
the free flow ofrank n. The main result of this chapter is Corollary 3.2.19, which states 
that au is cocycle conjugate to the CCR/CAR flow of rank +oo whenever n > 1. 
This result follows immediately from Arveson's classification of completely spatial EQ-
semigroups ([3]), once we establish that au is completely spatial (Theorem 3.2.2) and 
compute its numerical index d*(au) (Theorem 3.1.2). Each of these theorems requires 
a complete understanding of the strongly continuous semigroups which intertwine au 

with the identity representation; we will classify these intertwining semigroups along 
the way. 

3.1. Numerical index. We begin with a brief discussion on the computation of Arve­
son's numerical index. Suppose a is an EQ-semigroup acting on <B(?{) for some Hilbert 
space 9{. The numerical index d* (a) is defined to be the dimension of the product system 
*Ea associated with a. More generally, if </>: E —> !B(^) is an essential representation of 
an abstract product system E whose associated EQ -semigroup is a, then d*(a) = dimE. 
This is true because <j> can be used to implement an isomorphism of E with £«, and 
dimension is an isomorphism invariant of product systems. 

One method of computing the dimension of a product system is given in the following 
fact, which encapsulates some of Arveson's results from [3]. Recall that a unit of a 
product system p: E —> (0, oo) is a measurable, nonzero multiplicative cross section 
u: t G (0, oo) i—> u(0 Gp~l(t). 

FACT 3.1.1. Let E be a product system and let UE be the set of units of E. Suppose 3C 
is a Hilbert space and ( À , ^ C X ! Ç M n(\,0 G % is a bijection which satisfies 

(3.1) (ua,o(0,u ( /1,,)(0) = ^ A + ^ ^ 

for all (A, 0 , ( f i , i j ) e C x s : and all t > 0. Then dimE = dim X-
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Next we will give a precise definition of the free flow of rank n. Let C be a Hilbert 
space of dimension n, where n G {1 ,2 , . . . , oo}. We will denote by L2([0, oo) ; C) the 
Hilbert space of all measurable functions/: [0, oo) —* C which satisfy 

f \\f(x)\\2dx<oo, 

where of course we identify any two functions which are equal almost everywhere. The 
equivalence class of a function/will be denoted [/]. The inner product on L2 ([0, oo) ; c) 
is defined by 

(\f\,\g\) = J0 (/<?),&)) dx. 

On this Hilbert space there is a strongly continuous semigroup of isometries U = 
{Ut : t > 0}, the unilateral shift of multiplicity n, defined by 

(WW = ( / ( x - 0 £ > } , ' > 0 , / € L ^ ( [ 0 , o o ) ; C ) , x > 0 . 

The free flow of rank n is the free ^-semigroup au of Theorem 1.2.1. 

THEOREM 3.1.2. If a is a free flow of positive rank, then d*(a) = +oo. 

PROOF. Let C be a separable Hilbert space of positive dimension, and let U = {Ut : 
t > 0} be the unilateral shift semigroup on H = L2([0, oo) ; c). Let a = {at : t > 0} 
be the free E$-semigroup over U; that is, a is the free flow of rank dim C. Let E be the 
free product system over U, and let <f>\ E —» <B{^J:{9{)\ be the essential representation of 
£ on full Fock space given in Chapter 2. Since a is the Zio-semigroup associated with </>, 
it follows from our earlier remarks that d*(a) = dim is. Let Z1E be the set of units of E. 
To prove Theorem 3.1.2, we will define an infinite-dimensional Hilbert space % and a 
bijection (À, Q e C x 9£ \—* u ^ ) G % which satisfies equation (3.1). 

It is useful to think of full Fock space over H as an L2-space of functions. For this 
we need to identify a variety of Hilbert spaces. First, we make the usual identification of 
L2([0, oo) ; Cfn with L2([0, oof ; C®n)\ that is, if [ / i ] , . . . , \fn] e L2([0, oo) ; c), then 
we identify [/!](£)• • -(£>|Zi]with[/i(g)- • -®/i], where/ (g)- • • 0 / is the function [0, oo)w —» 
(T®" whose value at a point (jci,..., xn) i s / (x\ ) ® • • • ®f„(xn). This identification is even 
valid when n - 0 if we interpret [0, oo)° as some one-point space {u} and C®° as C. 

Before making the next identification we need to set some notation. For n = 0 ,1 ,2 , . . . , 
let X„ = [0, oo)". Define % to be the Borel <j-algebra on Xn, and let \in be Lebesgue 
measure on X„. In the degenerate case n = 0 we simply mean % = {0, {a;}} and 
/io({^}) = 1. Let (X, % p) be the disjoint union of the measure spaces (X„,(Bn, p„); that 
is, 

• X=[g0XB, 
• 'B={FÇX:FnX„G'B„,n>0},and 

• tm = T,^o^n(Fnx„), Fen. 
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We identify 7(H) with the subspace of 1?(X ; 7(C)) consisting of all equivalence classes 
of functions/which satisfy f(Xn) Ç C®n for each n > 0. We will say that such a function 
/ represents an element of 7(H). Note that the vacuum vector Q# is identified with the 
function which is zero on Xn for each n > 1, and whose value on the one-point space 
Xo - W} is the vacuum vector Qc. 

With these identifications, the subspace Et C 7(H) is realized as 

CO 

E, = ̂ ° e $ L 2 ( [ 0 , 0 x [0,00)"-' ; C®"). 
n=\ 

For notational convenience, we define Xo(t) = {UJ}, Xn(t) = [0, t) x [0, oo)""1 for each 
n > 1, andX(t) = U™0Xn(t\ so that 

oo 

(3.2) ^ = 0 L 2 ( l n ( O ; ^ ) , t>0. 

We will say that a function/: X —> 7(C) represents an element of Et if it represents an 
element of 7($f) and is supported on X(t). 

We are now ready to analyze the units of E. This analysis will give us a complete 
understanding of the intertwining semigroups for a, since the representation <j>:E —* 
1$(yr(?{)) implements a bijection u i—> 4> o u from ZIE onto the (strongly continuous) 
semigroups which intertwine a with the identity. In fact, this correspondence makes 
one unit of E quite conspicuous, namely, the unit tv(t) = (/, Q) corresponding to the 
semigroup {Ut : t > 0}. 

Suppose t) is a unit of E. Then there is a measurable map v: (0, oo) —• 7(H) such 
that t)(t) = (f, v(0) and v(t) G ̂  for each t > 0. By [3, Theorem 4.1], there is a unique 
complex number A such that 

(v(t),Q) = (t)(t)Mt)) = eXt, t>0. 

If we define u(t) = e~Xtv(t) and u(0 = (t, u(i)), then u is also a unit of E, and ( w(/), Q) = 1. 
We will focus our attention on u. 

CLAIM 3.1.3. I/O < s <t, then the projection ofu(t) onto Es is u(s). 

PROOF. Suppose 0 < s < t. For each n > 0 and r > 0, let un(r) = Pn(u(r)), the 
projection of u(r) onto H®n in ^F(X), and let Qr be the projection of 7(H) onto £ r . By 
Corollary 2.0.7 and the multiplicativity of u we have 

u(t) = <t>s(u(s))u(t - s) 

( OO \ / OO \ 

1=0 y v=o J 

oo n 

n=0k=0 
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and by projecting onto 9(®n we obtain 

(3.3) un(t) = £ r(un-k(s))Ûsu
k(t - s% n> 0. 

One can easily verity that Es is a reducing subspace for r(f) whenever/ G Es Pi %{tt\ 
and consequently 

&*A0 = Eri i f - ' isÙQsÎJ^t-s) , n> 0. 

Butft£/,=Po,so 

= un(s), n > 0, 

the last equality holding because (u(t — s%Q) = 1. Summing on n gives the desired 
result. • 

A consequence of this claim is that the functions u(t% t > 0, are coherent in the 
sense that there is a measurable function u\X —-» J(£) such that for each t > 0, w(f) is 
represented by u on X(7); that is, u(t) = [u • Xx(t)] for each / > 0, and û(Xn) C <r®" for 
each « > 0. The next claim tells us that this function îi is translation invariant. 

CLAIM 3.1.4. For each s > 0 we have 

û(x) = û(x + s) a.e. dfi(x); 

where 

x + s = 
[ O I/JC = Q 

(x\ + 5, . . . ,xn + s) ifx = (xi,...,xn)for some n>\. 

PROOF. Fix s > 0, and suppose / > s. Since w(Y) is represented by the function 
û • xx(t), we have that U*su(t) is represented by the function whose value at a point JC is 
û(x + s) ifx G X(/ — s), and 0 otherwise. But u(t) = 4>s(u(s))u{t — s\ so 

= ^ ( Q » , ( i i ( j ) ) t t ( r - j ) 

= (w(>), Q)u(t - ^) 
= w(* - s), 

which shows that U*su(i) is also represented by the function û • x*,_,. Thus û(x+s) = w(x) 
for almost every JC in X(t — s). Since / was arbitrary, we have ù{x + s) = ù{x) almost 
everywhere d/j,(x). m 

Let us pause for a moment to informally examine the function w when restricted to Xn 

for very small n. Hopefully this will help to motivate what follows. For n = 0, we have 
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arranged things so that U(UJ) = Q. For n = 1, u\xx is a translation invariant measurable 
function from [0, oo) to the Hilbert space C, so it should not seem unreasonable to 
expect that there is a vector f\ G C such that u{x) =f\ for almost every x G [0, oo). (A 
generalization of this assertion is proved in Corollary 3.1.14.) 

In dimension two, one can begin to see what is going on. Expanding and simplifying 
equation (3.3) for n = 2 gives 

(3.4) u2(t) = u\s) + r{u\sj) Usu\t - s) + Usu
2(t - s), 0 < s < t. 

Now u2(t) is supported in [0, t) x [0, oo) (that is, u2(t) can be represented by a function 
whose support is contained in [0, t) x [0, oo)), and the three functions on the right-hand 
side of equation (3.4) have mutually disjoint supports contained in the sets [0, s) x [0, oo), 
[s, t) x [0,5-), and [s, t) x [s, oo), respectively. Hence by restricting equation (3.4) to the 
set [s, t) x [0, s), we obtain 

Û(X\, JC2) = Û(X\ — S)<g) Û(X2) 

= f\ ®/i a.e. xux2 E [s, t) x [0, s). 

But this is true whenever 0 < s < t, so û(x\, X2) -f\ 0 / i for almost every (x\, X2) G X2 
satisfying x\ > x2. 

Above the diagonal, on the set R2 = {(*i, x2) : x\ < x2}, u is not dependent on the 
one-dimensional case. Nevertheless, u is still translation invariant on R2, and a moment's 
thought leads one to expect the existence of a function [f2] G 1?{X\ ; C®2) such that 
û(x\,x2) =f2(x2 —x\) for almost every (x\,X2) G ^2-

For n = 3, we obtain a similar result. By expanding and simplifying equation (3.3), 
then letting s and t vary, it becomes clear that u \x3 is completely determined by the one 
and two-dimensional cases, except on the set 

R3 = {(xi,x2,x3) G X3 : x\ < min{x2,x3}}. 

For example, by restricting the functions in equation (3.3) to the set [s, i) x [s, 00) x [0, s\ 
all functions on the right vanish except for r(w1(^)) Usu

2{t — s\ so 

u(x\,x2,xi) - u(x\ — s,x2 — s) ® w(x3) 

= w(xj,X2) ® w(x3) a.e. (xj,X2,x3) G [s, t) x [5,00) x [0,00). 

Similarly, by restricting to [5, i) x [0, s) x [0,00), all functions on the right vanish except 
for r(u2{s))Usu

x{t — s), so 

w(xi,x2,x3) = w(xi -s)<g)w(x2,x3) 

= w(xi)® w(x2,x3) a.e. (xi,x2,x3) G |>, 0 x [0,^) x [0,00). 

The union of all sets of these forms as s and t vary is the complement of R^. 
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On R3 itself, the translation invariance of û leads one to expect the existence of a 
fonction \f3] G L2(X2 ; C®3) such that 

û(xux2,x3)=f3(x2 -xux3-xi) a.e. (xux2,x3) eR3. 

With this motivation, we proceed as follows. Let 

oo 

X = ®L 2 ( I„ - i ; C®n) C L2(X ; -T(C)). 

We will define a bijection 

such that equation (3.1) holds. Since 3C is infinite-dimensional whenever dïmC > 1, 
this will prove that d*(a) = +oo. For £ G 3C, let / :X —•> jF(C) represent £ in the sense 
that £ = [/] and/(X„_i) Ç C®w for each « > 1. We will define a measurable function 
f:X—+ f(C) (motivated by the function û above) which satisfies/^) Ç C®n for each 
n > 0, and 

/ |l/-(x)||2t//i(x)<oo, f > 0 , 

so that/ • xx(t) represents an element of Et. The unit VL^Q is then defined by u(A^)(/) = 
(f, eA'w/(0), where W/(0 = [/" • x ^ ] . 

To define the map / i—*/ described above we first create a partition of the measure 
space X. This partition arises from analyzing the supports of the functions in equa­
tion (3.3) and letting s and t vary, as was done in our informal examination of u restricted 
to X3. Indeed, the sets R2 and R3 which we defined in this previous discussion are 
elements of the partition. 

DEFINITION 3.1.5. Let !A£ = Ug0
 N^> with m e understanding that N° is the one-point 

space {LJ}. 

DEFINITION 3.1.6. For each p G fA£ w e will now define a subset Rp of X. To begin 
with, define RU=XQ = {U}. Next, if p =p G N1, we define 

(3.5) Rp = {(JCI, . . . ,xp) G [0, oof : *i <xhi > 2}. 

Finally, if p = (pi , . . . ,/ty) for some 6 > 1, let qi=p\ + • • • +/?,• for each / = 0 , 1 , . . . , b, 
and let n- q\>. Define 

(3.6) Rp = {(xi,... ,xn) G /îp, x • • • x / ^ : x\ > x\+qi > > x\+qb_x}. 

LEMMA 3.1.7. {Rp : p G 9{} is a measurable partition ofX. 
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PROOF. The sets Rp, p E $£ are certainly disjoint measurable subsets of X. Suppose 
x E X. We will define p E fA£ such that x £ Rp. If x = a;, then x E ZC so we may assume 
that x = (x i , . . . , xn) for some n > 1. Let 

« if xt > x\ for each / _ \n if JC/ > x\ 1 
^1 } min{/ : xi+\ <x\] otherwise. 

Suppose /?i , . . . ,/?* have been defined for some k > 1. If/?i + •••+/?£ = «, then let 

p = 0?i , . . . ,/?&)• Otherwise, define 

_ f « - (p\ + • • • +pk) if x, > xnp1+...+Pjt for all / 
Pk+l \ min{/ : xi+\ < x\+Pl+..+Pk} - (p\ + • • • +pk) otherwise. 

ThenxEi?p . • 

We now define the map f \—> / by defining the value off on Rp for each p E fA£ 
Suppose/ represents an element of 3C. To begin with, define f(uj) = Clc (even iff = 0). 
Next, if x E i?p for some/? E N, define 

0.7) /w=K!w ) x J ? ; 1 , 
v ' JX/ } / ( x 2 - x i , x 3 - x i , . . . , x ^ - x i ) i f /?>2. 
Finally, if p = (p i , . . . ,/fy) for some b > 1 and x E ^ p , let qt = p\ + • — + Pi for each 
z = 0 , 1 , . . . , b, let n = qb, and consider Rp as a subset ofRPlx---x RPb, as was done 
in the definition of Rp. (See (3.6)). We use the definition off on each of the sets RPi to 
define 

(3.8) m=f^\x\ xeRp,j> = (pu...,pb). 

More precisely, 

f(x) =/(*i, • • • ,**,) ®/(*i+*i,.. • , % ) O • • • ®f(xi+qh_x, . . . ,xw) 

(3.9) = / ( x 2 - x b . . . , x 9 l -xi)<g>/(x2+f, - x i + ^ , . . . , x ^ 2 -xi+^)(g)---

®/(^2+^_! — ^l+^_!, • • • ,*/i — ^l+^_,), X E i^p, P = (Pl, • • . ,Pb), 

with the understanding that for each / such that/?/ = 1, the corresponding term 

f(X2+qi-X — x\+qi-\ i • • • ixqt ~ x\+qi~l) 

really means/(a;), and that the right-hand side is considered to be an element of C®n 

under the usual isomorphism of C®Pl <8> • • • ® C®Pb with C®n. 

REMARK 3.1.8. Note that/ is translation invariant in the sense of Claim 3.1.4. 

LEMMA 3.1.9. The map [f] E K *—> \f] is well-defined. 
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PROOF. Suppose f,g\X —* f(C) are measurable functions which represent ele­
ments of X and/(x) = g(x) a.e. dji(x). We must show that/(x) = g(x) a.e. rf/i(x). By 
Lemma 3.1.7, it is enough to show that/(x) = g(x) a.e. x G Rp for each p G ^ . First 
observe that/(ù;) and g(uf) are both defined to be the vacuum vector Q, so we have that 
f = g on X0 = Ru. Also, recall from (3.7) that/(jc) =f(uj) and g(x) = g(u) for all x eX\. 
Since p({u}) = 1 and/ = g a.e. dp,, it must be that/(o;) = g(uj). Thus the functions/and 
g are identical on X\ = R\. 

Next we show that/ = g a.e. on Rp for each/? > 2. Fix/? > 2 and define 

(3.10) r /?(xi,...,x /7) = (xi,xi +x2,x\ + * 3 , . . . , * i H-Xp), (xi,...,Xp) G.Yp. 

The map Tp is a measure-preserving affine isomorphism from^ onto Rp. Letv4 = {JC G 
^ : / W ^ ê ( ^ } - T h e n 

M(^) = L XA d[i 

XA ° Tp dp 

-L X^(xi7xi + x2,*i +x 3 , . . . ,x i + xp)*//z(x) 
Xp 

Jo JxD 
XA(S,S + yus +y2,... ,s+yp-i)dp(y)ds (Fubini's theorem), 

JXp-\ 

where in the last equality, y represents the point (yi , . . . ,yP-\). But for each s > 0 the 
point (s, s + y\, s + j>2, • • •, s + » - i ) is in ̂  if and only iff(y) ^ g(y), and since/ = g 
almost everywhere on Xp-\, this implies that the integral 

JXB 

XA(s,s+y\,s+y2,...,s+yp-\)dii(y) 

is zero for each s > 0. Thus /i(̂ 4) = 0. 
Finally, we show that / = g a.e. on each /?p where p = (p\,... ,/?*,) G N* for some 

Z? > 1. Fix such a p. Since/ = g a.e. on i?A for each / = 1,2,... ,b, we have that 
f®b - g$b a e o n ^ x • • • x i?pè. But # p is a subset of i?^ x • • • x RPb, and/ (resp. g) 
is defined on Rp to be the restriction of/8*6 (resp. g®6) to Rp, s o / = g a.e. on Rp. m 

Just as it was useful to partition X into subspaces Rp,p £ 9\C,it will also be useful to 
partition eachX(£) into subspaces Rp(t), p G ^ . For this, we simply define 

Rp(t) = RpHX(t), f > 0 , p G ^ . 

The following lemma is the main step toward showing tha t / • \x(t) represents an 
element of Et whenever/represents an element of 3C and t > 0. 

LEMMA 3.1.10. Suppose f and g represent elements of 9£. Then for any b > 0, 
p = (p\,... ,/?£,) G N6, and t > 0, we have 

(3.11) JR (f(x),g(x)) dp(x) = —KPX • • • KPh, 

where «,- = J>._, {/*(*), g(x)) <///(*). 
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PROOF. Suppose/ and g represent elements of 3C, / > 0, and p G Nb for some 
b > 0. If b = 0, simply note that both sides of (3.11) are equal to one. If b > 1, let 
p = (pi , . . . ,Pb), let qt =/?! + ••• + pi for each / = 0 ,1 7 . . . ,b , and let n = qb. For 
each / = 1,2,. . . , b, we have a measure preserving bijection TPi:XPi —> RPi as in (3.10). 
Consequently, the map Tp = TPx x • • • x TPb is measure preserving onXn = XPl x • • • xXPb, 
and Tp maps the set 

Dp(0 = {x G X„(0 : t > xx > xi+qi > • • • > xl+qb_x > 0} 

bijectively onto Rp(t). Thus 

(3.12) /" tog(x))J^(X) = / (/•(rPw),g(rp(x)))drfx). 

By the definition of/ on i?p we have 

f{Tp(x)) =f(TPl(xu... ,xqij) ®f(TP2(xHqi,... ,x92)) <g> • • • 

®/(r/*(*i+tt-i> • • • >**))> * ^ A>(0-

Also, for any/? > 1, (x i , . . . , xp) G Xp, we have 

f(Tp(xu...,xp)) =f(x\,x\ + x2,xi + x 3 , . . . ,x i + xp) 

= f(x2,x3j...,xp), 

with the understanding that/(x2,X3,... ,xp) really means/(a;) if p = 1. (See (3.7).) 
Combining these last two equations yields 

f{Tp(x)) =/(*2, . . . ,*?,) ®f(X2+qi, • • • , % ) ® * ' * ®/(*2+?*_,, • • • , */i), * ^ A>(0-

Of course a similar statement holds for g. Using this equation and the fact that the vectors 
/(*2+4,_i, • • •, xqi) and g(x2+qi_l,..., xqi) are in C®Pi for each / = 1,2,.. . , 6, we have 

(Â(W),g(W)) 

®/(*2+«fo_,, • • • ,*«),g(X2, ' ' ' ,*qi) ® ' ' * ® gfe+tt . , , • • • ,*«)) 

(3.13) = n(/'fe+^-1,...,xqi),g(x2+qi_ l,...,x^.)), x G £>p(/). 

Let j / = (x2+qi_l,... ,x^) G XA-i for each / = 1,2,.. . , b. Substituting (3.13) into (3.12) 
with this change of variables gives 

f&(x),g(x))drfx) 
JKp(t) 

rt rx i rx i .+. r r T 
= Joi "Jo ' " [ P i f yiy^sb'i))dn(yi)\dxnqb_l---dxHqtdx\ 

. , K P i ' ' ' KPb-
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We now proceed to prove that/- \x(t) represents an element of Et whenever/represents 
an element of 3C and t > 0. The first important observation to be made is that/ maps Xn 

into C®n for each n > 0. Certainly this is the case for n = 0 since/(o;) = Q. For n > 1, 
first note that (3.7) implies that 

(3.14) f(Rn)Qf(Xn-X)QC®n. 

Next, suppose p = (/?i,... ,pb) E Nè for some b > 1. Let « = /?i + • • •+/?/>, so that 
^p ÇiXn. Then (3.14) and the definition of/ on Rp given in (3.8) imply that 

Ç C®Pl ® • • • ® C®Pb 

= C0W. 

Since the spaces Rp, p E fA£ partition X, it follows that/(X„) C C®n for all « > 0. 
To prove that / • x^(o represents an element of E(t\ it remains only to show that the 

function/ • xx(t) is square-integrable overX; that is, that/is square-integrable overX(t). 
For this, we prove a slightly more general statement. 

LEMMA 3.1.11. Suppose £, rj E % are represented byfunctionsfand g, respectively. 
Then 

Jm(f(x),g(x))d^x) = e ^ \ t>0. 

PROOF. For each i = 1,2,.. . , let m? = J ^ , (/"(JC), g(x)) </jz(x), so that (£, 77) = E£i «/. 
Then 

L (fa),êW) <*/*(*) = £ L ,<fa),*(*)> <M*) 
oo r 

= EE ffax),m)dm 
b=0 peN* J * P W 

oo ^ 
= E D rr'Vi * * ' ^ (Lemma 3.1.10) 

b=0 (pu...,Pb)eNb °' 

b=o oi v / = 1 / 
oo fb 

= e'^l m 

DEFINITION 3.1.12. Suppose ( A , O e C x » ; and/:X —> f(C) represents £. Define 

M / : (0,oo)-^!F(^)by 

«KO = Ï/" • XJHCOL ' > ° > 

and U(A,^: (0, oo) —> E by 

Note that u(A^) is well-defined by Lemma 3.1.9. 
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We claim that u(A ^ is a unit of E. From the definition of the spaces X{t), t > 0, it 
is clear that t \—* Uf{t) is measurable, hence so is u ^ . Also, since f{uS) = Q (even if 
/ = 0), we have Uf(t) ^ 0 for all / > 0, so VL(\£) is not the trivial cross section. It remains 
only to show that u(A?£)(s +1) = U(A,O(5')U(A,O(0 ^or a ^ s>t > ®> where the multiplication 
is in the product system E. By Corollary 2.0.7 and a simple change of variables this is 
equivalent to the statement 

(3.15) uf(t) = <t>s (uf(sj) uf{t -s), 0<s<t. 

For each k > 0, t > 0, let uk
f(t) = Pk(uf(t)) = \f • Xxk(t)l

 T h e n 

( OO x , OO s 

£r(M<{s))Ê4 £ i / ( f - s ) 
i=0 J 7=0 y 

oo n 

= ££K«f"V))&«fc-s), 
n=0k=0 

so (3.15) is equivalent to the statement 
(3.16) un

f{t) = Y,r(i/f-k(s))Ùsrf(t-s), n > 0, 0 < s < t. 
k=0 

Fix « > 0, 0 < s < t. If n = 0 then both sides of (3.16) are equal to the vacuum 
vector Q, so we can assume that n > 1. To establish equality in this case we will choose 
appropriate representatives for the n + 2 terms in (3.16) and show that equality holds 
on these representatives. Note that it would be sufficient to show that equality holds 
almost everywhere dji, but when we make the obvious choices for representatives we 
get equality everywhere. 

By définition, u"(t) is represented by the function/ • XX(0- Similarly, for each k = 

0 ,1 , . . . , « , the vector itf~k(s) is represented b y / • Xxn_k{s) and uk(t — s) is represented by 
/ • xxk(t-s)- Thus r(w"_A:(s)) Ûsu

kÂt — s) is represented by g*, where for 1 < k < n — 1 we 
define 

if x G Xt for some i^n 

•5 , ...,xk-s) <8>/(**+i , . . . , x„) 

if x = (jti, . . . ,*„) G [s, t) x [s, oof~l x [0,s) x [0, oof-k-{ 

ifx £Xn \ ([5,0 x [s.oof-1 x [0lS) x [O,^)"-^-1), 

0 if x G Xt for some i f n 
go(x)={f(x) i f x G ^ ^ x ^ o o r 1 

0 ifxeXn\([0,s)x[01oof-1), 

0 

gk(x) = < 
/ ( * i -

0 

for k = 0 we define 

and for k = n we define 

0 ifx G A} for some / ^ « 
gnW = ^ f(x\ -s,...,x„-s) if x G [̂ , 0 x [s, oof'1 

0 ifxGXw\([5,0>< [s,oof-1). 
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We claim that 

(3.17) f'XxM = £,8k. 
k=0 

As usual, we will establish this equation by showing that the two functions are identical 
on Rp for each p E fA£. Fix p E fAk The case p = u has already been considered, so we 
may assume that p = (pi , . . . ,Pb) for some b > 1. Both sides of (3.17) are identically 
zero on Rp unless/?i + • • • +pb = n, so assume this is the case. Fix x = (x\,..., xn) E Rp, 
and let qt=p\+ - - +pt for each i = 0 , 1 , . . . , b. Again, both sides of (3.17) are zero at 
x if JCI > t, so we may assume that x\ < t. If xi < s, then g*(x) = 0 for k = 1,2,..., n, 
andgoW ~f(x\ s o equality holds in this case. Similarly, if x E [s, t) x [s, oo)w_1, then 
gk(x) = 0 for k = 0 , 1 , . . . , n — 1, and 

gn(x)=f(X\ -S,...,X„-S). 

Since x E 7?p we have that (xi — s , . . . , JC„ — s) E i?p as well, so by (3.9) we have 

gn(x) = / ( * l - 5, . . . ,X^ - S) ®f(Xi+qi - S, . . . ,Xqi - S) ® • • • 

= / f e — * b - - • ,Xqx —X\)®f{X2+qx — X\+qn . . . ,Xq2 — X\+qi) ® • • • 

®f{Xl+qb-X — *l+#,_i, • • • , X„ — Xi+^_, ) 

Thus equality holds in (3.17) at the point x in this case as well. Finally, if xi > s butx is 
not in [s, i) x [s, oo)"_1, let y = min{/ : xi+\ < s}. Then 1 <j<n— 1, g*(x) = 0 for all 
k fj, and 
(3.18) gj(x) = / ( X i - S, . . . ,Xy - 5) (8)/(Xy+i, . . . ,X„). 

Now, since x E i?p and x, > s > xy+i for all / < j , it must be that j = qi for some 
£ E {1 ,2 , . . . , * - 1}. (See (3.5) and (3.6).) Thus 

(xi -s,...,xj-s)eR(pu^P() 

and 
(Xy+i, . . . ,X„) E R(pt+W..,pb). 

Consequently, by (3.9) we have 

f(x\ -s,...,xj-s) 

=f(X\ -S,...,Xqi-s) ®f(X\+qi - S, • • • ,Xqi - S) ® • • • ®f(X\+qt_x - S, . . . ,Xy - s) 

= / ( x b . . . ,Xqx) ®f(Xi+qi, . . . ,Xqi) <g> • • • ® / ( X l % 1 , . . . ,Xy) 

and 

f(Xj+i, . . . , Xn) = / ( * l + ^ , • • • , X^+1 ) ®/(x1 + ( ? £ + 1 , . . . , X^+2) (g) • • • ® / ( X | ^ _ , , . . . , Xn). 
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Substituting these equations into (3.18) yields 

gj(x) = / (* i , . . . ,xqx) ® • • • ®f(x\+qb_x,... ,x„). 

By one last application of (3.9) this implies thatgy(jt) =/(x), giving equality in (3.17) at 
the point JC in this final case as well. Thus VL^Q is a unit of E. 

Equation (3.1 ) is now easily verified. Suppose (A, £) and (r, rj) are in C x %. Let/ and 
g be representatives of £ and 77, respectively. By Lemma 3.1.11 we have (M/(/), wg(f)) = 
et fan) for all f > 0, so 

(U(A,o(0,u(T,„)(0> = (eA'W/(0^%(0> 
= g < M W ) , > 0. 

Having established (3.1), it is now easy to see that the map ( A , O G C X ^ I - > U(A^) G 
ZIE is injective. For this, suppose u ^ ) = U(r?T?). Then for any £ G 3C we have 

<U(A,o(0, U(0,O(0) = (%,„)(*), H(0,C)(0), * > 0, 

which by (3.1) implies that 

(3.19) A + <£,C>=T + (r,,C>, CeSG 

Choosing £ = 0 in (3.19) implies that À = r. But then (3.19) reduces to the statement that 

(£> C) = (Wi 0 f° r a ^ C £ Ĉ> which implies that £ = 7/ as well. 
It remains only to show that every unit of E can be realized as u(A ^ for some 

(À, £) G C x 3C. Earlier we observed that for any given unit t) G £4;, there is a complex 
number À such that the unit u defined by u(/) = e~Xtb(t) satisfies (u(J), Q) = 1, where 
u(0 = (/, w(0)- We then established the existence of a translation-invariant measurable 
function u\X —» J(C) such that u • \x(t) represents the vector u(t) G Et for each / > 0. 
Our goal is to find a function/, representing some element £ G 3C, such that/ = w almost 
everywhere. For then Uf(i) = u(t), so that u = U(0,£), and finally b = n^o- The corollary 
to the following technical lemma will be used to define/. 

LEMMA 3.1.13. Suppose n > 1 and g:Xn —> [0,00) is a measurable function which 

satisfies the following two conditions: 

1. For each s > 0, g(t,x) = g(t + 5, JC) a.e. (t,x) G [0,00) x Xn-\ = Xn. 
2. g is locally integrable; that is, Sicgd^ < 00 for each compact K C X„. 

Then there is a measurable function f:Xn-\ —> [0,00) such that 

(3.20) g(t,x) =f(x) a.e. (t,x) G [0,00) x X„-\. 
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PROOF. For each (/,x) £ [0, oo) x Xn-\, where x = ( x i , . . . , x n - \ ) , define 

R(x) = [0,JCI] x • • • x [0,x„_i] C X n - U 

and define 

R(t,x) = [0,t] xR(x)CXn. 

Fix x G Xn-\. Then for each t > 0 and m > 1 we have 

1 /* w 1 r à /• 

7 i ^ = g 7 % Lgi^x)d^x)dt 

= J:- : Ls(^)Mx)dt (by(i)) 

(t/m)JR(t/ms)g /i* 

Consequently the function £ i—» y fa^gdu is constant on the set of positive rational 

numbers. Since this function is continuous on (0, oo), it must be constant. Letting x vary, 

we thus see that there is a function h:Xn-\ —> [0, oo) such that 

t K x ) = L ^ ^°-JRitçc) 

Define/: X„_i - + R b y 

/ ( * ! , . . . ,Xn-\) = (Xi, . . . ,Xn-i). 
OX\ • • • uXfi—i 

We claim t h a t / satisfies (3.20). To see this, define g:Xn —-»• R by 

g (^ ,x i , . . . ,xw_i) = / ( x i , . . . ,*„_i). 

We will show that for each rectangle 

*j — L^l}^2J L^I I^2J X • • • X [Xi 7-̂ 2 J —̂ w 

we have 

Jsgd»=fsgdn. 
This will prove that g = g a.e., giving (3.20). 

We begin by showing that SR^^gdfi = S^t^gdfi for each (7, x) G [0, oo) x Xn-\. We 

have 

Jo Jo dy\" - dyn-\ 

rx„-i rx2f dn~2h Jyi=Xi\ j 
= t • • • / ( y l 7 . . . , j n _ i ) )dy2'"dyn-i 

Jo Jo \dy2 - • - dyn-\ \yi=o ) 
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dn'2h 

Jo Jo dy2 • • • dyn-\ 

= th(x) 

<3-21> = L ^ -
Now suppose S C X„ is a rectangle of the form 

S^[x0
ux

0
2]x[x\,xl

2]x---xi4-l,x"2~
1]. 

For each function a: {0 ,1 , . . . , « — 1} —» {1,2}, define 

*Sa = [0,x^0)] x • • • x [ 0 , J ^ ( / I _ ^ ] . 

By a standard combinatorial inclusion-exclusion argument, for any integrable function 
F on [0,x°] x • • • x [O,^-1] we have 

//=è(-iy£/^ 

where 
Ij={a:carâ(a~l{l})=j}. 

Since each Sa is a rectangle of the form 7?(Y,x) for some (/,x) G [0, oo) x X_i , this 
together with (3.21) implies that 

Jsgd» = Jsgdn. 

COROLLARY 3.1.14. Suppose n > 1 andg\Xn —» <T®W is a measurable function which 
satisfies the following two conditions: 

1. For each s > 0, g(/, x) = g(t + 5, x) a.e. (/, x) G [0, oo) x X„-\ = X„. 
2- jXn(t)\\g(y)\\2dii(y)<™,t>0. 

Then there is a measurablefunction f:Xn-\ —* C®n such that 
(V) g(t,x) =f(x) a.e. (t,x) G [0, oo) x Xn„x 

(2') SXn_x\\f(x)fdv{x)<™. 

PROOF. Let 6: C —+ [0,2ir) be a measurable function such that z = \z\eB{& for each 
z G C . Let H be an orthonormal basis for C®n. For each £ G H and eachy G {l, 2}, we 
define a measurable function gj^:Xn —» [0, oo) by 

„ M _ | l < g ( y ) , O I 2 ify = i 
8MW) \6((g(y),0) i f /= 2, 

so that 

g(y) = £ ^ i , ^ ) 1 / 2 ^ W C for eachy G Zw. 
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We claim that each of the functions gj^ satisfies the conditions of Lemma 3.1.13. Con­
dition (1) is satisfied by each gj^ since it is satisfied by g. For each £ G S the function 
g2j is bounded and hence locally integrable. Also, for any t > 0 we have 

which implies that g ^ is locally integrable since every compact subset K of Xn is con­

tained inXn{t) for some t. By Lemma 3.1.13 there are measurable functions^:X„-\ —•> 

[0, oo) such that 
gM(t,x) =fe(x) a.e. fax) G [0,oo) x l „ _ , , y G {1,2}, £ G S. 

For each £ G S, define/^: Jrn_i - • <^w by 

Then for each £ G H we have 

/ |l/^)||2rfM(*) = / /,,<(*)<//*(*) 
JXn—\ JXn-\ 

= fx gi,dt,x)dn(t,x) 

(3-22) =fXM\{g(yU)\2dii(y) 

But 
L n l(sO0, Ol2 dfi(y) < f \\g(y)\\2 d»(y)< oo, 

so [£] G L2(X„_, ; c®"). By (3.22) we have 

E M 2 = ELjteCvU}!2^) 

^JIsOOII2^) 
< OO. 

Since [fa] and [fv] are orthogonal whenever £ and r\ are different elements of S, this 
implies that the series £$ € E[/£] converges in l?{Xn-\ ; <T®W). Let/:Xw_i —» <^w be a 
measurable function such that 

[/] = £[£]• 
Ces 

We claim that/ satisfies (l7). For this, note that for almost every fa JC) G [0, oo) x Xn-\ 
we have (using the separability of C) 

g(t,x)=Zgli(t,x)i/2ei82d''X) 

= E /u« 1 / 2 ^ w 
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But/(x) = E^es^W f° r a m i o s t every x G Xn-\, so g(t,x) =f(x) a.e. d\i(t,x). m 

We are now ready to define an element £ G 3C such that u = U(o,£). For each « > 1, 
let Tn:Xn —> i?„ be the affine isomorphism 

rw(Xi, . . . ,XW) = (Xi,Xi +*2,Xi + X3, . . . ,Xj + X„). 

Define gw:X„ —• £®" by g„ = ù o r„. Note that 

L J I ^ W I N M W = /l|fi(x)||2rf/iW 

< [ \\û(x)\\2d^(x)<œ, />0 , 

and that for each 5 > 0 we have 

gn(x) = u(x\,x\ +x2,xi +x 3 , . . . ,x\ +x„) 

= u{x\ + s,x\ +X2 + s,xi +X3 + s , . . . ,xi + x„ +5) (Claim 3.1.4) 

= gn(x\ + s,x2 ,x3 , . . . ,x„) a.e. <//i„(x). 

Consequently, by Lemma 3.1.13 there are functions [fn] G l?(Xn-\ ; C®n) such that 

gn(xi, . . . ,xw) =/„(x2 , . . . ,x„) a.e.x G Xn. 

Observe that 

\\[fn}\\2 = L (fn(x),fn(x))dKx) 

= fvnAgn(x%gn(x))dfi(x) 

= JRm(û(x),û(x))dn(x) 

< ||M"(1)||2, n > 1, 

SO 
00 00 

EIIK.] | l 2 <EII«"0) l l 2 <l l«0) l l 2 <cx) . 
n=\ n=\ 

As a result, if we define f:X —» ^F(C) by/!>„_! = /* for each w > 1, the function/ 
represents an element £ of 9£. 

We claim that / = u a.e. d/z. We will prove this by showing that/(x) = u(x) almost 
everywhere on Rp(t) for each p G fAC and each £ > 0. Fix £ > 0. Since/(o;) = w(u) = Qc, 
f and w agree on the one-point space {uo} = R^t). Next suppose p = (p) for some/? > 1. 
Then for almost every x = (x i , . . . , xp) G Rp(t) we have 

"(*) = &(*b*2 - x i , x 3 - x i , . . . , x ^ - x i ) 

= fp(*2 -X\,Xs -Xu...,Xp-X\) 

(3.23) =/(x). 
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To prove that/(x) = û(x) a.e. x G Rp(t) for the general p G 5^, we must make use of 
the multiplicativity of u. In particular, if t\,..., ta are positive real numbers which sum 
to t, then 

u(t) = u(tl)---u(ta). 

By an easy induction using the results of Corollary 2.0.7 and Lemma 2.0.6 we have 

i/(0 = <j)h (u(tij) • • • <j>ta_x (u(ta-\j)u(ta), 

and hence one can expect to learn more about the function u by investigating the vector 
on the right-hand side of this last equation. Because of its usefulness in the next section, 
we will actually consider the more general product u i (t\ ) • • • ba(ta), where t) i , . . . , Da are 
units of E. In this case we have 

(3.24) bi(fi)• • • t)a(ta) = (f,<j>h (vi(/0) • • • <t>ta_x(vfl_ife_0)vflfe)), 

where t)t(s) = (s, v;(s)) for each s > 0 and each / = 1,2,..., a. Our goal is to specify a 

function which represents the element <j>h (vi(/i)) • • • <j>tg_x {ya-\(ta-\i)va(ta) ofEt. 

To begin with, we would like to present another way of partitioning the space X(t). 

DEFINITION 3.1.15. Suppose Ms a positive real number. A partition of t is a vector 
(*i,..., ta), where a > 1, tx > 0 for each i = 1,2,..., a, and t\ + • • • + ta = J. 

DEFINITION 3.1.16. Suppose f > 0 and t = (*i,..., ta) is a partition of t. Let s,- = 
t\ + • • • + ti for each / = 0 , 1 , . . . , a. For each «-tuple m = (m\,..., ma) of nonnegative 
integers, define a subset Xm(t) of X(/) by 

^m(t) = ([Sa-\,Sa) X [jfl_i, Oof1 '1) X ([sa-2,Sa-\) X [^_2, Oof2 " l ) X • • • 

*{[sus2) x [suoof-1'1) x ([0,50 x [(^oor--1) , 

with the understanding that for each / such that m, = 0, the corresponding factor 
[sa-i,sa-i+\) x [sa-h oof11-1 should be omitted from the above product. If m is the 
a-tuple (0 , . . . , 0), it is understood that Xm(t) = X0(t) = {UJ}. 

REMARK 3.1.17. Note that if t is the trivial partition (t) oft and m = (m) for some 
m > 0, then Xm(t) = Xm(t). Thus this seemingly new notation is actually just an extension 
of our previous notation. 

LEMMA 3.1.18. Suppose t is a positive real number and t = (*i,... ,ta) is a partition 
oft. Then 

{Xm(t) : m e (No)*} 

is a measurable partition ofX(t). 
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PROOF. The sets Xm(t), m G (No)a are clearly disjoint measurable subsets of X(t). 
Suppose x G X(i). We will define m G (No)a such that x G Xm(t). If x = u, then 
x G X(o,...,o)(t), so we may assume that JC = (JCI, . . . ,xw) for some n > l.Lets, = t\+- • •+£ 
for each / = 0 , 1 , . . . , a. Define 

_ f n if x G [^-1,00)" 
1 | min{/ : xi+\ < sa-\} otherwise, 

and for each k = 2 , . . . , a, define 

10 if n = m\ + • • • +nik-\ 

n — (m\ + • • • + rrik-\) if X/ > sa_k for each / 
min{/ : xi+\ < sa-k} — Qn\ + • • • + m^-i) otherwise. 

Let m = (wi , . . . , ma). Then JC G Xm(t). m 
DEFINITION 3.1.19. Suppose t > 0 and t = (t\,..., ta) is a partition of f. Suppose 

also that for each i = 1,2,. . . , a we have a function h\\X-^ 7{C) which maps Xn into 
C®n for each « > 0. Let h = (h{,..., ha). We define a function F(h, t):X -* ?{C) as 
follows. To begin with, define F(h, t) to be identically zero o n J \ X(t). We will define 
F(h, t) on X(t) by defining it on Xm(t) for each a-tuple m of nonnegative integers. Fix 
m = (mi , . . . , ma), let nl• = m\ + • • • + m/ for each / = 0 , 1 , . . . , a, and let n-na. For each 
x = (x\,..., xn) G Xm(t), define 

F(h, t)(x) = ^(x i , . . . ,*„ , ) ® Aa-i(xi+»,, • • • , ^ 2 ) ® • • • ® M*i+/ifl-i, • • • ,xn). 

LEMMA 3.1.20. Suppose fc)i,..., ba are units ofE such that for each i = 1,2,.. . , a, 
we have 

• *i(t)=(t,vi(t)),t>0 

• (v/(/),Q> = 1, f > 0 
• vl•: X —> ^T(0 w a measurable/unction such that for each t > 0, v/(/) is represented 

by Vf on X(t). 
Let v = (v i , . . . , va), and denote by v the a-tuple {v\,..., va). Suppose t is a positive real 
number and t = (t\1...,ta)is a partition oft. Then the vector 

<t>h{y\(t\)) • • • <t>t^x{ya-\{ta-\i)Va(ta) 

in Et is represented by the function F(v, t). 

PROOF. We have 

<^,(vi(*l)) ' ' ' <t>ta-.x(Va-\(ta-\))va(ta) 
• CO >. • CO N • CO >. 

= ( E M°{tx))ut)••• ( E KCife - i ) )^ . ) (E C('«)J 

= E K^e»)) &'.-•• KCife-i))^-.c&)• 
mi,...,Awa>0 
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Fix m\,..., ma > 0, let m = (m\,..., ma\ let w,- = m\ + • • • + /w,- for each / = 1,2,.. . , a, 
and let n = na. Using methods similar to those used prior to equation (3.17), we see that 

r{vm
x°{tx))Vh • • • r ^ f c ^ & ^ C f c . ) 

is represented by the function which vanishes on X \ Xm(t), and whose value at a point 
x G Xm(t) is given by 

Va(Xi-Sa-\,. • • ,*», -Sa-\)®Va-\(X\+ni ~Sa-2, • • • ,X„2-Sa-2)®' ' ' ®Vl(*l+nfl_,, • • • ,*n\ 

which by Claim 3.1.4 is equal to 

Va(xU . • • ,*,,,) ® Vfl-l(^l+n,, • • • ,*/i2) ® • ' • ® Vl(Xi+Wa_n . . . ,X„). 

Summing on m G (No)a completes the lemma. • 

COROLLARY 3.1.21. Suppose fc is a unit of E, t)(t) = (t,v(t)) for each t > 0, 
(v(t),Q) = 1, and v:X —> ̂ F(C) w <z measurable function such that for each t > 0, 
v(t) is represented by v on X(t). Suppose also that p = (pi , . . . ,/fy) G fA£6 ^or some 
6 > 1, qx• - P\ + • • • + Pi for each i = 0 , 1 , . . . , b, and n = <#,. Then for almost every 
x = (x\,..., xn) £ Rp\ve have 

(3.25) v(x) = v(xu... ,Xqx) <g> v(*i+*i>... ,*ft) 0 • • • ® v(xi+^_1,... ,x„). 

77*<2/ w, if we regard Rp as a subset ofRPï x • • • x RPb, then v = v®b on Rp, in the sense 
of equation (3.8). 

PROOF. For each Z?-tuple t = (t\,..., &) of positive rational numbers, we will show 
that (3.25) holds for almost every x G Xp(t) D Rp. Since there are only countably many 
such t and Rp = Ut(^p(t) H Rp), this will establish the corollary. 

Fix t = (*i,..., fe), and let v be the 6-tuple (v , . . . , v). Observe that by the multi-
plicativity of & we have v(t) = </>tl (v(t\)) • • • <j>tb_x (v(tb-\))v(tb). By Lemma 3.1.20, this 
implies that v(t) is represented by the function F(v, t). But v(t) is represented by v on 
X(t), so it must be that the functions v and F(v, t) are equal almost everywhere on X(t). 
In particular, for almost every x G Xp(t) H Rp, we have 

v(x) = F(v,t)(x) 
= V(X\, . . . ,Xqi) <g> v(X\+qi, . . . ,Xq2) <g> ' ' ' <8> vfr l+^- i , • • • , **) • • 

It is now a simple matter to complete the proof that/ = u a.e. on X(t). In (3.23) we 
established that/ = u a.e. on Rp(t) for each/7 > 1, so it remains only to show that/ = u 
a.e. on i?p(0 for each p G fA£ of the form (/?i,... ,/?*,) for some b > 2. Fix such a p, let 
qt=p\+- - +pt for each / = 0 , 1 , . . . , b, and let n = qb. Then for almost every x G Rp(t) 
we have 

u{x) = w(xi,. . . ,x^)(8)w(xi+^,.. . ,x^2)0-" (8) w(xi+^_!,... ,xn) (Corollary 3.1.21) 
= f(x\,...,^) ®/(*i+9l, • • •,xq2) <g> • • • 0 / ( x i + r i , . . . , x n ) (equation (3.23)) 
= f(x) (definition of/ on Rp(t)). • 
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3.2. Cocycle conjugacy. In this section we will prove that the free flows are completely 
spatial. By the index result of Section 3.1 and Arveson's work in [3], this will imply that 
each of the free flows of positive rank is cocycle conjugate to the CAR/CCR flow of 
infinite rank. See [3] for a discussion of cocycle conjugacy. 

For our purposes, we may define a completely spatial E$-semigroup to be an EQ-
semigroup a whose associated product system *£« is divisible, defined as follows. 

DEFINITION 3.2.1. Suppose E is a product system with projection map p:E—> (0,oo). 
For each t > 0, let E(t) = p~l(t% and let F(t) be the subspace of E(f) defined by 

F{t) = spân{ui(/i)- • • xxa(ta) : A > l , t t i , . . . ,u f l E £fe,(fi,... ,ta) is a partition of t.} 

We say that E is divisible if F{i) = E{t) for each t > 0. 

THEOREM 3.2.2. Suppose a is a free flow of positive rank. Then a is completely 
spatial 

PROOF. Resuming the notation of the previous section, we must show that the free 
product system E is divisible. Our first task is to determine a condition on the spaces 
Eu t > 0, which is equivalent to the divisibility of E. Suppose a is positive integer, 
Ui, U2, . . . , ua are units of E, t is a positive real number, and t = (t\,..., ta) is a partition 
of t. By the results of Section 3.1, we know that for each / = 1,2,... ,a, there is a 
complex number zt and a vector £, G % such that U/ = U(z.^.). Let z = (z\,... ,za), and 
for each i, letf'.X—* f(C) be a function which represents £/. Then U/(s) = (s, ^u/^s)) 
for each s > 0, and by (3.24) we have 

ui(/i)- • • ua(ta) = (f,e*"V/,(K/,('i)) ' ' • ^ - i ^ - i f c - i ) ) ^ ^ ) ) -

This leads us to make the following definition. 

DEFINITION 3.2.3. For each t > 0, let Ft be the subspace of Et defined by 

Ft = span{(/>?1 (ufl(t\)) • • • <t>ta_x («/a_,(^-i ))«/<, fe) ' a > \,fu... Ja represent ele­
ments of 3C, and (t\,..., ta) is a 
partition of t.} 

REMARK 3.2.4. By Lemma 3.1.20, the vector <j>h {ufx(t\)) • • • <f>ta_x(ufa_x(ta-\))ufa{ta) 

is represented by the function F(f, t), where f is the a-tuple (f\,... ,fa), f = (f\,... ,fa), 
andt = (*i,... ,/fl). Thus 

(3.26) Ft = span{[F(f, t)] : t = (t\,..., ta) is a partition of t, and f = (f\,... ,fa) is 
an a-tuple of representatives of elements of %}. 

To prove that E is divisible, we must show that Ft - Et for each t > 0. The proof 
of this statement will proceed as follows. Fix t > 0 for the remainder of this section, 
and suppose that £ G EtC\Fj-. First we will define a sequence of mutually orthogonal 
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projections QQ,Q\,QI,..- with sum /, and prove that Qb( E Et H Fj- for each b > 0 
(Proposition 3.2.10). We will then prove that Qb(Ft) is dense in Qb(Et) for each b > 0 
(Proposition 3.2.17). The fact that C, = 0 follows easily from these two statements, since 
for any b > 0 and £ E F,, we have 

so that QtC, = 0 for each b > 0. 

DEFINITION 3.2.5. For each nonnegative integer b, let ^ = UP<EN* p̂> and let Qb be 
the projection [g] E 7(H) i-> [g • x^J . 

REMARK 3.2.6. This notation should not be confused with the use of Q in Claim 3.1.3. 
Also, observe that (Ĵ >o wb = X, so that Qo + Q\+Q2 + --=1. 

As a first step toward the proof of Proposition 3.2.10, let us demonstrate that Et is 
invariant under each of the projections Qb, b>0. For each p G ^ , define d(p) to be the 
dimension of the space Rp; that is, d{uJ) = 0, and if p = (p\,... ,/ty) for some b > 1, then 
^(P) =/>i + • • • +/ty- Since 

oo 

Et = ®L2(Xn(t);C®") 

and each Xn(i) is partitioned by the spaces Rp(t), where p ranges over all elements of fA£ 
satisfying d(p) = «, we can express 

^=0L2( i?p(O;^ ( p )) . 
p e ^ 

Thus 

(3.27) &,(£,) = 0 L2(*p(0 ; c®*>), b > 0, 

from which it is clear that Et is invariant under g^. 

LEMMA 3.2.7. Iff represents an element of %, then for each z E C, b > 0 and 
x E Wb, we have 
(3.28) #(x)=zbf(x)1 

with the understanding that 0° = 1. 

PROOF. Fix Z E C and b > 0, and suppose p E N*. We must show that (3.28) holds 
for each x E Rp. If b = 0 (so that p = UJ and 7?p = {<^}), simply note that 

z?(u)) = n c = z°f(uj). 

For the case 6 = 1 , suppose p = (p). If/? = 1, observe that for x E R\ we have 

?(*) = (z/)(u;)=z/-(x). 
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If/? > 2, then for each x = (x\,..., xp) G Rp we have 

zf(x) = (zf)(x2 -xu...,xp-x\) 

= zf(x). 

Finally, suppose p = (p\,... ,/fy) € fA£ for some b>\. Let #/ = /?i + • • • +/?/ for each 
z = 0 , 1 , . . . , 6, and let n = q^. Then for eachx = (xi , . . . ,x„) G i?p we have 

zf(x) = zf(*\,... ,**,) ® ̂ i + 9 , , . . . , % ) 0 •• • (8)^i+^_i7 • • • ,xn) 
= (zf(xu . . . ,**,)) ® (z/(xi+^,. . . ,xq2)) <g> • • • <g> (z / ( j f i % 1 , . . . ,*„)) 

= **/(*). 

LEMMA 3.2.8. Suppose p = (p\1...,pb) G fA£ t = ( / i , . . . , ta) is a partition oft, and 
m = (mi , . . . , ma) is an a-tuple of nonnegative integers. Let qt = p\ + • • • + ptfor each 
i = 0 , 1 , . . . , b, and let ni = m\ + • • • + niifor each i - 0 , 1 , . . . , a. If the intersection of 
the sets Rp andXm(t) is nonempty, then there is a unique function 

T : { 0 , 1 , . . . , * } — > {0,1,...,*>} 

such that nt = qT(f)for eacn z = 0 , 1 , . . . , a. Moreover, r is nondecreasing, andr(a) - b. 

PROOF. TO begin with, observe that since the integers #0, q\,..., qb are distinct, the 
function r is unique. Now, suppose x G Rp f l lm( t ) . Since Rp Ç Xqb and Xm(t) Ç A^, 
it must be that na = qb, so we can define r(a) = b. Also define r(/) = 6 for each 
/ G { 0 , 1 , . . . , a} such that «,- = «fl. Finally, if / G {0, 1 , . . . , # } is such that nt < na, by 
the definition of Xm(t) we have that x\+ni < Xj for each y = 1,2,. . . , w/. Consequently 
«/ = T̂(/) for some r(z) G { 0 , 1 , . . . , b}. The function r is nondecreasing since both of the 
sequences «o? «17 • • •, na and #o7 #1, • • •, qb are nondecreasing. • 

LEMMA 3.2.9. Suppose t = ( f i , . . . , ta) is a partition of t and f = (/!,... ,fa) is an 
a-tuple of representatives of elements ofIC- Then for each z G C, b > 0 andx G Wb, we 
have 
(3.29) F(5î,t)(x)=z iF(f,t)(x), 

with the understanding that 0° = 1. 

PROOF. Fix z G C and b > 0. If b = 0, simply note that ^ = {^}, and that both 
sides of (3.29) are equal to Qc when x = uo. Suppose b > 1 and x G Wb. Then x G /?p 

for some p = (p\,... ,/ty) G N*. Let qx? = /?i + • • • +/?z for each / = 0 , 1 , . . . , b, and let 
n = qb. If x is not inX(t), then both sides of (3.29) are equal to zero, so we may assume 
that x G X(t). By Lemma 3.1.18, there is an a-tuple m = (mi , . . . , ma) of nonnegative 
integers such that x G Xm(t). Let nt = m\ + • • • + mt for each / = 0 , 1 , . . . , a; note that 
na = n. By the definition of F(zf, t) onXm(t), we have 

(3.30) F(zf, t)(x) = zja(xx,... ,xWl) 0 zfa^(x{+ni,... ,x„2) <g) • • • <g>ifi (*!+„„_,,... ,*„). 
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By Lemma 3.2.8, there is a unique nondecreasing function 

r : { 0 , l , . . . , a } ^ { 0 , l , . . . , & } 

such that r(a) = b and nt = q^ for each i = 0 , 1 , . . . ,<z. Consequently, for each 
i= 1,2,... ,a, we have 

W+/I/-1Î • • • iXrii) = ( ^ 1 + 9 T ( I - _ 1 ) , • • • ?•%(, ) ) ^ ^(p1 + T ( /_i ) v . . , /7T ( / )) ^ ^ r ( 0 - r ( / - l ) -

By Lemma 3.2.7 this implies that 

zfa-i+liXl+n^, • • • ,*«,.) = 2TT(0"7<,"1)ji_,-+i(jCi+lll._1, . . . ,*„,.), I = 1, 2 , . . . , a. 

Substituting this into (3.30) gives 

F(Tf,t)(x) = (zT^-T^fa(xu...lXni)) 

® {zT{2)-T{l)fa-l(Xl+ni, • • • ,*„2)) 0 • • • 0 ( z ^ - ^ - ^ / K x j ^ , , . . . ,*„)) 

= 2T(a)-r(0)F(f,t)W 
= z*F(f,t)(jc). • 

PROPOSITION 3.2.10. IfÇ G EtnFf-, then QbÇ G EtnFj-for each b>0. 

PROOF. We have already demonstrated that QbÇ G Et for each b > 0. Let g be a 
function which represents Ç and for each b > 0 let $ = g • \wb9 so that g* represents 
gz>(. Suppose t = (f i , . . . , ffl) is a partition of t and f = (/i , . . . ,fa) is an a-tuple of 
representatives of elements of %. Then for eachz G C we have 

0=(F(zf, t) ,g) 

oo 

oo 

= £z*(F(f,t),S*> (by Lemma 3.2.9.) 
6=0 

Since a power series is identically zero if and only if each of its coefficients is zero, this 
implies that (F(f, t ) , ^ ) = 0 for each b > 0. But f and t were arbitrary, so by (3.26) we 
have that Qb( G Fj- for each b > 0. • 

It remains only to show that Qb(Ft) is dense in Qb(Et) for each b > 0. For this it is quite 
useful to give a tensor product decomposition of each of the subspaces L2 (i?p(0 ; c®d^) 
of Qb(Et). (See (3.27).) 

DEFINITION 3.2.11. Suppose b is a positive integer and t is a positive real number. 
Define Ab(t) to be the 6-simplex 

Afc(0 = {x = (xi , . . . ,xb) G Xfr(0 : t > xi > x2 > • • • > xb > 0}. 
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We will use the simplex Ab(t) to obtain a better understanding of the set Rp(t). Suppose 
p = (/?!,... ,pb) G Nè for some b > 1, and let n = d(p). In the proof of Lemma 3.1.10 
we defined the set Dp(t) by 

Dp(t) = {x G X„(0 : f > X! > xi+qx > • • > * i + ^ > 0}7 

and we observed that if we define TPi:XPi —> /£A. for each / = 1,2,.. . , b by 

^•(Vb • • • ,yPi) = (y\,y\ +yi,y\ +j>3, • • • ,y\ +yPl), 

then the map 

M> = ^pi x ' ' ' x *pb 

restricts to a measure-preserving bijection from Dp(f) onto Rp(t). 
Let 7T = 7Tp be the permutation on Xn which maps x = (JCI , . . . , xn) to the point 

(Xj ,Xi+^j, . . . 1X\+qbl ,X2,X3,X4, . . .), 

whereX2,X3,X4,... denotes the remaining n — b components ofx in their original order. 
The permutation ir restricts to a measure-preserving bijection of Dp(t) onto 

Ab(t)xXpi^i x ••• xXPb-U 

and thus the composition Tp o ir~l induces a unitary operator 

L2(Ab(t) x XPl-X x . . . x Xn-i ; C®n) —* L2(Rp(t) ; C®n) 

in the natural way. We will denote by Vp(f) the resulting unitary operator 

L2(A,(0) ® \}{Xpx-X ; C^) ® • • • ® L2(Xp,_! ; C ^ ) — L2(flp(r) ; <^") 

obtained by identifying the Hilbert spaces 

L 2 ( A è ( / ) x V , x . - x V i ; ^ ) 

and 

L2(A,(0) ® L 2 ^ - ! ; C^1) ® • • • ® L 2 ( ^ _ ! ; C ^ ) 

in the usual way. 

REMARK 3.2.12. Observe that each of the Hilbert spaces l?(XPi-\ ; C®Pi) is a sub-
space of 30 

We can formulate the operator Vp(t) explicitly as follows. Suppose 77 = [h] G 
L 2 (A^( / ) ) andyj represents an element £,- G L2(AJp._i ; c®Pi) for each / = 1,2,... ,6. 
Then the vector 
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in L2(Rp(t) ; C®n) is represented by the function 

g = (h®fl®'--®fb)o7ToTp
l 

on Rv(t); that is, for x G Rp(t) we have 

g(x) = h(x\,x\+qi,... iXi+q^Yifa - * i , . . . ,xqi -xi) ® • • • 

®fb(X2+qb^ — x\+qb^ ? • • • ixn ~ x\+qb-\) 

= h(xuxHqi1... ,xx+qb_xf\(x\,... ,xqi)<g> • • • 

(3.31) ®/&(*i+*6-,,...,^), 

where as usual qt= p\ + • - +pt for each / = 0 , 1 , . . . , b. 

We now proceed to define a spanning set of vectors for L2(À^,(/)), and then use this 

set and the operator Vp(t) to create a useful spanning set of vectors for L2(Rp(t) ; C®n). 

DEFINITION 3.2.13. Suppose b is a positive integer and t is a positive real number. 
Suppose also that t = (t\,..., ẑ>+i) is a partition of t, and st = t\ + • • • + tt for each 
/ = 0 , 1 , . . . , 2b + 1. Define a subset Sb(t) of Ab(t) by 

Sb(t) = [S2b-\,S2b) X * * * X fe,S4) X [sUS2). 

LEMMA 3.2.14. For each integer b > 1, //ze set 

{[Xsb(t)] : t = ( f i , . . . , few) is a partition oft} 

has dense linear span in L2(Ab(t)\ 

PROOF. Let ^ = {Sb(t) : (t\,..., few ) is a partition of t}, and let 

^ ' = {[ru-uru) x • • • x [^,r4) x [ r b r 2 ) : 0 < rx < r2 < • • • < r2b < t} 

be the set of all rectangles which are contained in Ab(t) and whose sides are parallel to 
the coordinate axes. By an obvious approximation argument the sets {[XA] • A G %} and 
{ [\A] ' A G *K!} have the same closed linear span in L2 (A&(f)), so it suffices to show that 
the latter is a spanning set. Since the step functions are dense in L2(7) for any interval 
/ C R, it is clear by taking tensor products that for any 5 G t ' the Hilbert space L2(i?) 
is spanned by {[XA] '• A G %!,A C B}. But it is easy to express Ab(t) as a countable 
disjoint union (JS Bi of elements of ^/ , and doing so allows us to express 

oo 

L2(Aé(O)=0L2(5,), 
ï = l 

from which it is clear that L2 (A/,(/)) is spanned by {[XA] • A G %J}. m 
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DEFINITION 3.2.15. For each integer b > 1 and each positive real number /, define 
Zb(t) to be the set 

{Fp(0([Xs6(t)] ® m ® • • * ® ^ ) : P = (P\, • • • ,Pb) ^ N6, t = fa,..., fca+i) is a 
partition of/, and rç,- G L2(XA_i ; C®Pi) for 
each/ = 1 , . . . , è} . 

COROLLARY 3.2.16. For eac/z integer b > 1 a«d each positive real number t, Zb(i) is 
a spanning set for Qb(Et). 

PROOF. This is immediate from (3.27), Lemma 3.2.14, and the fact that each Vp(t) is 
unitary. • 

PROPOSITION 3.2.17. Qb(Ft) is dense in Qb(Et)for each b>0. 

PROOF. The case b = 0 is trivial since Qo is the projection onto the vacuum vector 
Q, and Q = wo(0 £ Ft. Suppose b > 1. By Corollary 3.2.16, it is enough to show that 
Zb(t) Ç Qb(Ft). Suppose p = (pu . . . ,pb) GN è , t = ( / i , . . . , fca+i) is a partition of/, and 
fi represents an element of L2(XPi-\ ; C®Pi) for each / = 1,2,.. . , b. We will show that 

Vp([xsbit)] ® [/i] ® • • • 0 [ft]) G &(F,). 

Let / denote the set of all functions a: { 1 , . . . ,b} —> {0,1}, and for each y = 
0 , 1 , . . . , 6, let 

lj = {aei:cara(<rl{0})=j}. 

For each a G /, let % denote the (2b + l)-tuple 

fCT = (o,^(^)^,o,^(z> - i ) ^ _ i , o , . . . , o , ^ ( 2 } ^ ? o , ^ ( î y î , o ) . 

Finally, let g be the function 

£=È(-iy'£*&,t). 

Observe that g represents an element of Ft. We claim that 

Qb(\g]) = vp(Xxm] ® m ® - • • ® [/»])• 

To establish this equation we will verify the following two statements: 
f If x G Rp(t) and (x\,x\+qi,... ,x\+qh_x) G Sb(t), then 

g(x) = / i (x b . . . ,xqx) ® • • • ®.#(xi+^_1,... ,%,), 

where qt= p\+ - - - +pt for each / = 0 , 1 , . . . , b. 
\ If x G Rp'(t) for some p' G N6 andg(x) ^ 0, then p' = p and 

(x\,x\+qx,... ,xi+^_,) G *S/>(t). 
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(See (3.31).) 

CLAIM 3.2.18. Suppose m = (mi, . . . Jrri2b+\) is a (2è + \)-tuple of nonnegative inte­
gers, rit = m\ + • • • + ntifor each i = 0 , 1 , . . . , 2b + 1, andx G Xm(t). Ifg(x) f 0, then mi 
is zero for all odd i and nonzero for all even i, and 

(3.32) g(x) =f(x{+ni1... ,x„2) ® • • • ®Mx\+n2b-i, • • • > 0 -

PROOF. Suppose that g(x) ^ 0. For each a G /, we have 

F ( t , t)(x) = Ô(*i, .. . ,*„,) ® or(l)/i(*!+„,,... ,x„2) 

® 0(xi+W2,... ,x„3) <g> • • • <g> Ô(xi+ll26_2,... ,x«2,_,) 

® (j(byb(xx+nib_{,... ,xW2J <g> Ô(*i+/l2M... ,*W2ft+1). 

If nit were nonzero for some odd/, then the corresponding term Ofci+n,-^,... ,jtw.) would be 
zero. This would cause F ^ , t)(x) to be zero for each a G /, contradicting the assumption 
that g(x) 7̂  0. Thus /w, = 0 for all odd /. Similarly, for each a G /, / = 1,2,... , b, we have 

T^v . = / 0 ifa(0 = 0 a n d m 2 / > l . 
<nW/l*i+i*-,, • • •, W ^ ( X H ^ , , . . . , x„2i) otherwise. 

Consequently 

F(t,t)(x) 
= lMx\+ni, • • • ,x„2) 0 • • • ^ ( r i + n ^ , , • •. ,xn2b) if (7(0 = 1 whenever m2i > 1 

10 otherwise, 

so that g(x) is a multiple of 

More precisely, 

(3.33) g(x) = (f^(-iycj)fi(xi+ni,... ,x„2) (£)••• ®.#(xi+„26_1,... ,xnib) 
7=0 7 

where c7 is the cardinality of the set 

{a £ Ij : a(i) - 1 whenever mn > 1}. 

Let A: be the number of non-zero components of m. Then for each y = 0 , 1 , . . . , b, we 
have 

But 

vr-ivf*-*^/1 ifA: = è 
^ ir{ j j \o ifk<b-i, 
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so the assumption that g(x) is nonzero implies that k = b; that is, m, is nonzero for each 
even /. Equation (3.33) now reduces to the desired equation (3.32). • 

If x G Rp(t) and (xuxHqi,... ,xi+^_,) G Sb(t% then by defining 

m = (0,/?i, 0, /?2 ,0, . . . , 0,/fo-i, 0,pb, 0) 

we have x G Xm(t), and by the claim 

g(x) =f\(xu... ,xqi)® • • • 4 ( x i ^ „ i r . . , % ) . 

This establishes j \ 

To verify | , suppose x G /£p'(0 f° r s o m e P' = (P\i-- ->Pb) ^ ^b and g(x) ^ 0. By 
Lemma 3.1.18, there is a (2b + l)-tuple m = (/wi,... ,/W26+i) of nonnegative integers 
such that x G Xm(t). Let «,• = TWI + • • • + m; for each / = 0 , 1 , . . . , 2b + 1. By the claim, 
nti = 0 if / is odd, mz > 1 if/ is even, and 

(3.34) g(x) =f(xHni1... ,x„2) 0 • • • ®ji(^i+^_1 , . . . ,xn7b). 

Let #• = p\ + • • • + p't for each / = 0 , 1 , . . . ,6. By Lemma 3.2.8, there is a unique 
nondecreasing function r: { 0 , 1 , . . . , 2b + 1} —* { 0 , 1 , . . . , b} such that r(0) = 0, 
r(2b +1) = 6, and n\ = q'T^ for each / = 0 , 1 , . . . , 2b + 1. Since mt > 1 for / even, 
we have 

0 < «2 < «4 < • • • < «26, 

so that 
0 < ?r(2) < tfr(4) < ' ' < # W 

This clearly implies that r(2i) = /; that is, q\ = nn for / = 0 , 1 , . . . , b. Substituting into 
equation (3.34) we have 

g(x) = / i (x i , . . . ,x^) <g> • • • ®/ô(xiyM , . . • ,x^/) 

= / l ( x 2 - X l , . . . ,Xqf] - X l ) <g> • . • ®fb(X2+q'b_l -Xi+q>biJ. . . ,Xjb -Xl+q'b{) 

But ft is supported in XPi-\, so the assumption g(x) ^ 0 implies that/?- = pt for all /; that 
is, p ' = p. Lastly, observe that since qt = «2/ for each / = 0 , 1 , . . . , b, and m, = 0 for / 
odd, we have 

m = (0,jt?i,0,/72,0,...,0,/?6,0). 

The fact that x G Xm(t) now immediately implies the desired result that 

(xi,Xi+4,,... ,x\+qb_x) G Sb(t). m 

COROLLARY 3.2.19. Each of the free flows of positive rank is cocycle conjugate to 

the CCR/CARyfow of rank +00. 
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PROOF. This follows immediately from Arveson's classification of completely spatial 
£o-semigroups ([3]), which states that if a is a completely spatial £o-semigroup such 
that rf*(a) = n, then a is cocycle conjugate to the CCR/CAR flow of rank n. m 
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