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Abstract

The main goal of this paper is to deduce (from a recent resolution of singularities
result of Gabber) the following fact: (effective) Chow motives with Z[1/p]-coefficients
over a perfect field k of characteristic p generate the category DM eff

gm[1/p] (of effective
geometric Voevodsky’s motives with Z[1/p]-coefficients). It follows that DM eff

gm[1/p]
can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p]
(weight structures were introduced in a preceding paper, where the existence of
wChow for DM eff

gmQ was also proved). As shown in previous papers, this statement
immediately yields the existence of a conservative weight complex functor DM eff

gm[1/p]→
Kb(Choweff[1/p]) (which induces an isomorphism on K0-groups), as well as the existence
of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for
any cohomology theory on DM eff

gm[1/p]. We also mention a certain Chow t-structure
for DM eff

− [1/p] and relate it with unramified cohomology.

Introduction

It is well known that Hironaka’s resolution of singularities is very important for the theory of
(Voevodsky’s) motives over characteristic 0 fields; see [GS96, Voe00] and also [Bon09a, Bon10a].

A recent resolution of singularities result of Gabber (see [Ill08, Theorem 1.3]) could be called
‘Z(l)-resolution of singularities’ over a perfect characteristic p field k (where l is any prime
distinct from p). In particular, it implies that Chow motives with Z(l)-coefficients generate the
triangulated category of Voevodsky’s motives; hence, that this category can be endowed with a
Chow weight structure (cf. [Bon10a, § 6.6]).

The main goal of this paper is to extend these results to motives with Z[1/p]-coefficients.
We also mention several consequences of the main results (they can be easily obtained using
the methods of [Bon10a]). In particular, there exists a conservative exact weight complex functor
DM eff

gm[1/p]→Kb(Choweff[1/p]); K0(Choweff[1/p])∼= K0(DM eff
gm[1/p]). Previously, these results

were known to hold only for motives with rational coefficients.
The notion of weight structures is central for this paper. Weight structures are natural counter-

parts of t-structures for triangulated categories, introduced in [Bon10a] (and independently
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Z[1/p]-motivic resolution of singularities

in [Pau08]). They were thoroughly studied and applied to motives in [Bon10a, Bon10b] (see
also [Bon10d, Heb10] and the survey preprint [Bon09b]). Weight structures allow proving the
properties of motives mentioned above; they are also crucial for our proof of the central result
(that Choweff[1/p] generates DM eff

gm[1/p] as a triangulated category).

Now we list the contents of the paper. More details can be found at the beginnings of sections.

In § 1, we recall some basic properties of motives and weight structures. Most of them are just
modifications of results of [Bon10a, Voe00]; the only absolutely new result is a new condition
for the existence of weight structures. We also recall a recent result on resolution of singularities
over characteristic p fields (proved by O. Gabber).

In § 2, we prove our central theorem on the existence of the Chow weight structure for
DM eff

gm[1/p]; we deduce this result from its certain Z(l)-version. Next, we deduce the existence of
the weight complex functor, and calculate K0(DM eff

gm[1/p]) and K0(DMgm[1/p]).

We also list some other applications. DMgm[1/p] possesses a perfect duality; this allows
defining Z[1/p]-motives with compact support for arbitrary smooth varieties. There exist Chow-
weight spectral sequences for any cohomology of Z[1/p]-motives, as well as a certain Chow t-
structure for DM eff

− [1/p] (whose heart is AddFun(Choweff[1/p]op, Ab)). We relate the latter with
birational sheaves and unramified cohomology.

The proofs and more details for these applications can be found in the parallel report [Bon10c].

A caution on signs of weights. When the author defined weight structures (in [Bon10a]), he
chose Cw60 to be stable with respect to [1] (similarly to the usual convention for t-structures); in
particular, this meant that for C = K(B) (the homotopy category of cohomological complexes)
and for the ‘stupid’ weight structure for it (see [Bon10a, § 1.1]), a complex C whose only non-
zero term is the fifth one was ‘of weight 5’. Whereas this convention seems to be quite natural,
the author recently realized that for weights of mixed Hodge complexes, mixed Hodge modules
(see [Bon10e, Proposition 2.6]), and mixed complexes of sheaves (see [Bon10d, Proposition 3.6.1])
‘classically’ exactly the opposite convention is used (so, our C would have weight −5; cf.
Proposition 2.3.2(2) below). In the current paper we reverse our convention for signs of weights, to
make it compatible with the ‘classical’ convention (this convention for the Chow weight structure
for motives was already used in [Heb10] and in [Wil09]; see [Wil09, Remark 1.2]); so, the signs
of weights used below will be opposite to those in [Bon10a, Bon10b], as well as to those in the
current versions of [Bon09b, Bon10c, Bon10d, Bon10e].

Notation. For a category C, A, B ∈Obj C, we denote by C(A, B) the set of C-morphisms from
A to B. For categories C, D, we write D ⊂ C if D is a full subcategory of C.

For a category C, X, Y ∈Obj C, we say that X is a retract of Y if idX could be factorized
through Y . For an additive D ⊂ C, the subcategory D is called Karoubi-closed in C if it contains
all retracts of its objects in C. The full subcategory of C whose objects are all retracts of objects
of D (in C) will be called the Karoubi-closure of D in C.

X ∈Obj C will be called compact if the functor C(X,−) respects all small coproducts that
exist in C (contrary to tradition, we do not assume that arbitrary coproducts exist).

For X, Y ∈Obj B, we will write X ⊥ Y if B(X, Y ) = {0}. For D, E ⊂Obj B, we will write
D ⊥ E if X ⊥ Y for all X ∈D, Y ∈ E. For D ⊂B, we will denote by D⊥ the class

{Y ∈Obj B : X ⊥ Y ∀X ∈D}.

Dually, ⊥D is the class {Y ∈Obj B : Y ⊥X ∀X ∈D}.
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C below will always denote some triangulated category; usually, it will be endowed with a
weight structure w (see Definition 1.3.1 below).

We will use the term ‘exact functor’ for a functor of triangulated categories (i.e. for a functor
that preserves the structures of triangulated categories).

For f ∈ C(X, Y ), X, Y ∈Obj C, we will call the third vertex of (any) distinguished triangle

X
f→ Y → Z a cone of f . We will often specify a distinguished triangle by two of its morphisms.
For a set of objects Ci ∈Obj C, i ∈ I, we will denote by 〈Ci〉 the smallest strictly full trian-

gulated subcategory containing all Ci; for D ⊂ C, we will write 〈D〉 instead of 〈C : C ∈Obj D〉.
We will say that Ci ∈Obj C generate C if C equals 〈Ci〉. We will say that Ci weakly generate

C if {Ci[j], j ∈ Z}⊥ = {0}.
D ⊂Obj C will be called extension-stable if, for any distinguished triangle A→B→ C in C,

we have A, C ∈D =⇒B ∈D.
k will be our perfect base field of characteristic p > 0. Var⊃ SmVar⊃ SmPrVar will denote

the set of all varieties over k, respectively of smooth varieties, respectively of smooth projective
varieties.

l below will be some prime number distinct from p (we will assume it to be fixed from time
to time).

1. Preliminaries: motives and weight structures

In this section, we recall some basics on motives, weight structures, and resolution of singularities.
In § 1.1, we study Voevodsky’s motives with various coefficient rings (following [MVW06,

Voe00]).
In § 1.2, we recall a recent result of Gabber on resolution of singularities; we also ‘translate

it into a motivic form’.
In § 1.3, we recall those basics of the theory of weight structures (developed in [Bon10a]) that

will be needed below.
In § 1.4, we prove a certain new criterion for the existence of a weight structure.

1.1 Some basics on motives with various coefficient rings
For motives with integral coefficients, we use the notation of [Voe00]: SmCor, Shv(SmCor) (the
category of Nisnevich sheaves with transfers), Choweff ⊂DM eff

gm ⊂DM eff
− ⊂D−(Shv(SmCor));

Mgm : SmVar→DM eff
gm; Z(1).

Now recall that (as was shown in [MVW06]) one can do the theory of motives with coefficients
in an arbitrary commutative associative ring with a unit R. One should start with the naturally
defined category of R-correspondences: Obj(SmCorR) = SmVar; for X, Y in SmVar, we set
SmCorR(X, Y ) =

⊕
U R for all integral closed U ⊂X × Y that are finite over X and dominant

over a connected component of X. Proceeding as in [Voe00] (i.e. considering the corresponding
localization of Kb(SmCorR), and complexes of sheaves with transfers with homotopy invariant
cohomology), one obtains the theory of motives (i.e. of DM eff

gmR that lies in DMgmR and in
DM eff

− R) that satisfies all basic properties of the ‘usual’ Voevodsky’s motives (i.e. of those with
integral coefficients; note that some of the results of [Voe00] were extended to the case char k > 0
in [Deg08, HK06]). So, we will apply these properties of motives with R-coefficients without any
further mention.
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In this paper, we will mostly consider motives with Z[1/p]- and Z(l)-coefficients.
We will denote by Choweff[1/p]⊂DM eff

gm[1/p]⊂DM eff
− [1/p], Mgm[1/p] : SmVar→DM eff

gm[1/p]
(respectively Choweff

(l) ⊂DM eff
gm,(l) ⊂DM eff

−,(l), Mgm,(l) : SmVar→DM eff
gm[1/p]) and Chow[1/p]⊂

DMgm[1/p] the corresponding analogues of Voevodsky’s notions (note that we have all of the
full embeddings listed, indeed).

We list some of the properties of motivic complexes that we will need below. Recall that DM eff
−

supports the so-called homotopy t-structure t (coming from D−(Shv(SmCor))). The heart of t
is the category HI of homotopy invariant (Nisnevich) sheaves with transfers. Below, we will
denote the hearts of the restrictions of t to DM eff

− [1/p]⊃DM eff
−,(l) by HI [1/p]⊃HI (l).

Proposition 1.1.1. (i) The functors DM eff
− →DM eff

− [1/p] (respectively DM eff
− [1/p]→

DM eff
−,(l)) given by tensoring sheaves by Z[1/p] (respectively Z[1/p]-module sheaves by Z(l))

tensor all morphism groups by Z[1/p] (respectively by Z(l)). The same is true for the (compatible)

functors Choweff→ Choweff[1/p]→ Choweff
(l) and DM eff

gm→DM eff
gm[1/p]→DM eff

gm,(l).

(ii) The collection of functors ⊗Z(l)
: DM eff

− [1/p]→DM eff
−,(l) for l running through all primes

6=p is conservative (on DM eff
− [1/p]).

(iii) The forgetful functors that send a complex of Z[1/p]-module sheaves to the underlying
complex of sheaves of abelian groups (respectively a complex of Z(l)-module sheaves to the

underlying complex of Z[1/p]-module sheaves) yield full embeddings DM eff
−,(l) ⊂DM eff

− [1/p]⊂
DM eff

− .

(iv) For any U ∈ SmVar, m ∈ Z, S ∈Obj DM eff
− [1/p] (respectively S ∈Obj DM eff

−,(l)), the

mth hypercohomology of U with coefficients in S is naturally isomorphic to DM eff
− [1/p]

(Mgm[1/p](U), S[m]) (respectively DM eff
−,(l)(Mgm,(l)(U), S[m])).

(v) t can be restricted to DM eff
− [1/p] and DM eff

−,(l); the two functors connecting DM eff
− [1/p]

with DM eff
−,(l) (described in the previous assertions) are t-exact with respect to these restrictions.

(vi) All objects of DM eff
gm[1/p] are compact in DM eff

− [1/p].

(vii) For any X ∈ SmVar, we have DM eff
− [1/p](X), DM eff

−,(l)(X) ∈DM eff
− [1/p]t60.

Proof. (i) It suffices to note that Z[1/p] is flat over Z, and Z(l) is flat over Z[1/p].
(ii) Immediate from assertion (i).
(iii) Indeed, these functors are one-sided inverses of the functors DM eff

− →DM eff
− [1/p]→

DM eff
−,(l) described in assertion (i).

(iv) Immediate from [Voe00, Proposition 3.2.3 and Theorem 3.2.6].
(v), (vi) Easy from the previous assertions.

(vii) Immediate from the corresponding fact for Mgm(X), which is obvious given [Voe00,
Proposition 3.2.6]. 2

Remark 1.1.2. One can also easily see: all the results proved below for Z[1/p]-motives are also
valid for motives with coefficients in an arbitrary (unital commutative) Z[1/p]-algebra; to this
end, our proofs could be adjusted straightforwardly.

1.2 Gabber’s Z(l)-resolution of singularities
Let l 6= p be fixed. The foundation of this paper is the following result (which easily follows from
a result of O. Gabber).
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Proposition 1.2.1. For any U ∈ SmVar, there exist an open dense subvariety U ′ ⊂ U and a
finite flat surjective morphism f : P ′→ U ′ (everywhere) of degree prime to l for P ′ ∈ SmVar such
that P ′ has a smooth projective compactification P .

Proof. We can assume that U is connected.
Let Q′ be some compactification of U . Then, by [Ill08, Theorem 1.3], there exist a finite field

extension k′/k of degree prime to l (it is separable since k is perfect), a smooth quasi-projective
Q/k′, and a finite surjective morphism g : Q→Q′k′ of degree prime to l. Since g is proper, Q is
actually projective (in our case). We can also assume that gU is flat (since we can replace U by
some U ′′/k).

Now we restrict scalars from k′ to k and denote Q considered as a variety over k by P .
We obtain that P ∈ SmPrVar, and that there exists a finite flat morphism from some P ′ ⊂ P
to U ′ × Spec k′; the degree of this morphism is prime to l. Lastly, it remains to compose this
morphism with the natural morphism U ′ × Spec k′→ U , whose degree is also prime to l. 2

Now we reformulate this statement ‘motivically’.

Corollary 1.2.2. Let U ∈ SmVar, dim U = m.

(1) For U ′, P ′ as in Proposition 1.2.1, Mgm,(l)(U ′) is a retract of Mgm,(l)(P ′).

(2) There also exist sequences Xi, Yi ∈Obj DM eff
gm,(l), 0 6 i 6 m, and fi ∈DM eff

gm,(l)(Xi, Xi−1),
gi ∈DM eff

gm,(l)(Yi, Yi−1) (for 1 6 i 6 m), such that X0 = Mgm,(l)(U), Xm = Mgm,(l)(U ′), Y0 =
Mgm,(l)(P ), Xm = Mgm,(l)(P ′), Cone fi = Mgm,(l)(Vi)(i)[2i], and Cone gi = Mgm,(l)(Wi)(i)[2i], for
some smooth varieties Vi, Wi/k of dimension m− i (that could be empty).

Proof. (1) The transpose of the graph of f yields a finite correspondence from U ′ to P ′ (in
the sense of [Voe00]). Composing it with f and considering as a morphism of motives, we
obtain deg f · idMgm,(l)(U

′) (see [SV00, Lemma 2.3.5]). Since deg f is prime to l, we obtain that
Mgm,(l)(U ′) is a retract of Mgm,(l)(P ′) in DM eff

gm,(l).

(2) We recall the Gysin distinguished triangle (see [Deg08, Proposition 4.3] that establishes
its existence in the case char k > 0). For a closed embedding Z→X of smooth varieties, Z is
everywhere of codimension c in X, it has the form

Mgm(X\Z)→Mgm(X)→Mgm(Z)(c)[2c]→Mgm(X\Z)[1]; (1)

certainly, obvious analogues exist for the functors Mgm[1/p] and Mgm,(l).
Hence, in order to prove the assertion, it suffices to choose a sequence of Ui, Pi ∈ SmVar

such that U0 = U ′ ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um = U (respectively P0 = P ′ ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pm = P )
and Ui\Ui−1 is non-singular and has codimension i everywhere in Ui (respectively Pi\Pi−1 is
non-singular and has codimension i everywhere in Pi) for all i. Now, in order to obtain such Ui

and Pi, it suffices to consider stratifications of U\U ′ and P\P ′. 2

1.3 Weight structures: reminder
Now we recall the basics of the theory of weight structures. Note that the signs of weights below
are opposite to those in [Bon10a]; see the caution in the Introduction.
Definition 1.3.1. (I) A pair of subclasses Cw60, Cw>0 ⊂Obj C will be said to define a weight
structure w for C if they satisfy the following conditions.

(i) Cw>0, Cw60 are additive and Karoubi-closed in C.
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(ii) Cw60 ⊂ Cw60[1], Cw>0[1]⊂ Cw>0.

(iii) Orthogonality.
Cw60 ⊥ Cw>0[1].

(iv) Weight decompositions.
For any X ∈Obj C, there exists a distinguished triangle

B[−1]→X →A
f→B (2)

such that A ∈ Cw>0, B ∈ Cw60.

(II) The full subcategory Hw ⊂ C whose objects are Cw=0 = Cw>0 ∩ Cw60 will be called the
heart of the weight structure w.

(III) Cw>i (respectively Cw6i, respectively Cw=i) will denote Cw>0[i] (respectively Cw60[i],
respectively Cw=0[i]).

(IV) We denote Cw>i ∩ Cw6j by C [i,j] (so, it equals {0} for i > j).

(V) We will say that (C, w) is bounded below if
⋃

i∈Z Cw>i = Obj C.

(VI) We will say that (C, w) is bounded if
⋃

i∈Z Cw6i = Obj C =
⋃

i∈Z Cw>i.

(VII) Let H be a full subcategory of a triangulated C.
We will say that H is negative if Obj H ⊥ (

⋃
i>0 Obj(H[i])).

(VIII) We will say that a triangulated category C is bounded with respect to some H ⊂Obj C
if, for any X ∈Obj C, there exist jX , qX ∈ Z such that⋃

i<qX

Obj H[i]⊥X and X ⊥
⋃

i>jX

Obj H[i]. (3)

Now we recall those properties of weight structures that will be needed below (and that can be
easily formulated), and prove one new assertion. We will not mention more complicated matters
(weight complexes and K0) here; instead, we will just formulate the corresponding ‘motivic’
results below.

Proposition 1.3.2. Let C be a triangulated category; w will be a weight structure for C
everywhere except for assertions (iv) and (v).

(i) Cw60, Cw>0, and Cw=0 are extension-stable.

(ii) For any q, r ∈ Z, X ∈ C [q,r], there exist Xr ∈ Cw=0 and f ∈ C(X, Xr[r]) such that
Cone f ∈ Cw6r.

(iii) For any i 6 j ∈ Z, we have that C [i,j] is the smallest extension-stable subclass of Obj C
containing

⋃
i6l6j Cw=l. In particular, if w (for C) is bounded, then C = 〈Hw〉.

(iv) Let C be triangulated and idempotent complete; let H ⊂Obj C be negative and additive.
Then there exists a unique bounded weight structure w on the Karoubi-closure T of 〈H〉 in C
such that H ⊂ Tw=0. Its heart is the Karoubi-closure of H in C.

(v) Let D be a triangulated category that is weakly generated by some additive set
H ⊂D of compact objects; suppose that there exists an extension-stable D ⊂Obj D such that
H ∪D[1]⊂D and arbitrary (small) coproducts exist in D. Denote by H ′ the Karoubi-closure
of the category of all (small) coproducts of objects of H in D; denote by E the triangulated
subcategory of D whose objects are characterized by the following part of (3): there exists a
qY ∈ Z such that

⋃
i<qY

Obj H[i]⊥X.
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Then there exists a bounded below weight structure w′ for E such that Hw′ = H ′.

Besides, a compact X ∈Obj D belongs to E[q,j] (for q 6 j ∈ Z) whenever it satisfies (3) with
jX = j and qX = q.

Proof. (i) This is [Bon10a, Proposition 1.3.3(3)].
(ii) Immediate from the distinguished triangle A→B→X[1] and the previous assertion.

(iii) A weight decomposition of X[−r] yields a distinguished triangle X →A′
f ′
→B′→X[1] for

A′ ∈ Cw>r, B′ ∈ Cw6r. Assertion (i) implies that A′ ∈ Cw=r. Hence, we can take Xr = A′[−r],
f = f ′.

(iv) Easy from [Bon10a, Proposition 1.5.6(2)].
(v) By [Bon10a, Theorem 4.3.2(II1)], there exists a unique bounded weight structure on 〈H〉

such that D ⊂ 〈H〉w=0. Next, [Bon10a, Proposition 5.2.2] yields that w can be extended to the
whole T ; along with [Bon10a, Theorem 4.3.2(II2)], it also allows calculating Tw=0 in this case.

(vi) The existence of w′ is immediate from [Bon10a, Theorem 4.3.2(III), version (ii)]. The
second part of the assertion is given by [Bon10a, Theorem 4.3.2(III), part V2] (cf. [Bon10a,
Definition 4.2.1]).

1.4 The ‘main weight structure lemma’
The main part of the proof of the central theorem is a certain weight structure statement (not
contained in [Bon10a]). We formulate and prove it here, since it could be used independently
from motives (so, it could be useful even if in the future the resolution of singularities will be
fully established over fields of arbitrary characteristic).

Theorem 1.4.1. Let D, D, H be as in Proposition 1.3.2(v). Let C ⊂D be an idempotent
complete triangulated subcategory such that all objects of C are compact in D, H ⊂ C, and
C is bounded with respect to H.

Then the following statements are valid.

(1) C is contained in the Karoubi-closure I of 〈H〉 in D.

(2) There exists a bounded weight structure w for C such that Hw is the Karoubi-closure of
H in C.

(3) For X ∈Obj C, we have X ∈ C [q,j] whenever one can take j for jX and q for qX in (3).

Proof. We adopt the notation of Proposition 1.3.2(v).
We have C ⊂ E (by the definition of the latter). Besides (as proved in Proposition 1.3.2(v)),

the analogue of assertion (3) with w′ instead of w and with E[q,j] instead of C [q,j] is valid.
Now we prove assertion (1). We denote Obj I by G.
We should prove that

X ∈Obj C ∩ E[r,q] =⇒X ∈G (4)
for any r 6 q ∈ Z.

First, let q = r. Then X[−q] is a retract of
∐

i∈I Hi for some set I and Hi ∈Obj H. So, idX[−q]

factorizes through
∐

i∈I Hi. Since X[−q] is compact, D(X[−q],
∐

Hi) =
⊕

D(X[−q], Hi); so,
idX[−q] also can be factorized through

∐
i∈J Hi for some finite J ⊂ I. Hence, X[−q] is a retract

of
∐

i∈J Hi; so, X ∈G.
Now we prove (4) in the general case by induction on q − r.
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Suppose that it is fulfilled for all q, r such that q − r 6 m for some m > 0. We prove (4)
for some fixed X ∈Obj C ∩ E[s,t], where t− s = m + 1. By Proposition 1.3.2(ii), there exist
Xt ∈Obj H ′ and f ∈D(X, Xt[t]) such that Cone f ∈ Ew′6t. By the definition of H ′, Xt

is a retract of some
∐

i∈I Hi, Hi ∈Obj H. Since Cone f ∈ Ew′6t, a cone of the induced
morphism X →

∐
i∈I Hi[t] also belongs to Ew′6t (since it is the direct sum of Cone f with

the ‘complement’ of Xt[t] to
∐

i∈I Hi[t]). So, we assume that Xt =
∐

i∈I Hi. Now, since
D(X,

∐
Hi[t]) =

⊕
D(X, Hi[t]), f can be factorized through

∐
i∈J Hi[t] (for some finite J).

Then Cone f = Cone(f ′ : X →
⊕

i∈J Hi[t])
⊕ ∐

i∈I\J Xi[t], where f ′ is the morphism ‘induced’

by f . So, Cone f ′ ∈ Ew′6t; it also belongs to Ew′>s by Proposition 1.3.2(i). Hence, Cone f ′ ∈G.
Since

⊕
i∈J Hi[t] ∈G, we obtain that X ∈G.

Now, Proposition 1.3.2(iv) implies that w′ can be restricted to C and the weight structure
w obtained is the one required for assertion (2). Besides, the reasoning above also proves
assertion (3) (by Proposition 1.3.2(i)). 2

2. Motivic resolution of singularities

In § 2.1, we prove (almost) a Z(l)-version of our main result. Then Theorem 1.4.1 allows us to
deduce our central theorem (in § 2.2).

Next (in § 2.3), we recall (following [Bon10a]) that the existence of wChow implies the existence
of the weight complex functor (DMgm[1/p]→Kb(Chow[1/p]); it is exact and conservative); we
also compute certain K0-groups of DMgm[1/p] (and DM eff

gm[1/p]).
We also mention several other applications. DMgm[1/p] is a perfect triangulated category;

hence, for any smooth variety, there exists a ‘reasonable’ motif with compact support for
it (in DM eff

gm[1/p]). For any cohomology H defined on DMgm[1/p], Chow-weight spectral
sequences (that relate H-cohomology of Voevodsky’s motives with that of Chow ones) exist
and are DMgm[1/p]-functorial starting from E2. Besides, there exists a certain Chow t-structure
tChow for DM eff

− [1/p] whose heart is AddFun(Choweff[1/p]op, Ab). A homotopy invariant sheaf
with transfers belongs to the heart of tChow whenever it is birational; we express unramified
cohomology in terms of tChow. We also mention birational motives and birational homotopy
invariant sheaves with transfers (as defined in [KS]).

2.1 Z(l)-version of the central theorem
We fix some l(∈ P\{p}).

We prove a statement that is essentially the Z(l)-version of our main result. We do not
formulate it in this way since our goal is just to prepare for the proof of Theorem 2.2.1. Yet the
notation DM eff

gm,(l)
[−m,0] certainly comes from weight structures.

Proposition 2.1.1. (1) DM eff
gm,(l) is the idempotent completion of 〈Mgm,(l)(P ), P ∈ SmPrVar〉.

(2) Let U ∈ SmVar, dim U = m; let P ∈ SmPrVar. Then DM eff
−,(l)(Mgm,(l)(U), Mgm,(l)(P )[i]) =

{0} for i > 0; DM eff
−,(l)(Mgm,(l)(P ), Mgm,(l)(U)[i]) = {0} for i > m.

Proof. First, we note that by [Deg08, Theorem 5.23] the subcategory HDMeff
gm

of DM eff
gm

whose objects are {Mgm,(l)(P ), P ∈ SmPrVar} is negative (here we use the isomorphism of
(Mgm(X, Z(i)[j])) with higher Chow groups). Hence, {Mgm,(l)(P ), P ∈ SmPrVar} is negative in
DM eff

gm,(l) also; we denote this category by H.
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We define DM eff
gm,(l)

[r,0] ⊂Obj DM eff
gm,(l) for r 6 0 as the smallest extension-stable Karoubi-

closed subclass of Obj DM eff
gm,(l) that contains Mgm,(l)(P )[s] for all P ∈ SmPrVar, r 6 s 6 0.

Since DM eff
gm,(l) is the idempotent completion of 〈Mgm,(l)(U), U ∈ SmVar〉 (in DM eff

−,(l)) by
definition, in order to prove assertion (1) it suffices to verify: in DM eff

−,(l) the Karoubi-closure
of 〈Mgm,(l)(P ), P ∈ SmPrVar〉 contains all Mgm,(l)(U) for U ∈ SmVar. Hence, the negativity of
H easily implies: in order to prove both of our assertions, it suffices to verify that Mgm,(l)(U) ∈
DM eff

gm,(l)
[−m,0] for any U as in assertion (2).

The latter statement is obvious for m = 0. We prove it in general by induction on m.
First, we note that DM eff

gm,(l)
[−m,0](1)[2]⊂DM eff

gm,(l)
[−m,0] for any m, since Mgm,(l)(P )(1)[2] is

a retract of Mgm,(l)(P × P1) (for P ∈ SmVar). Hence, Mgm,(l)(Z)(c)[2c] ∈DM eff
gm,(l)

[1−n,0] for any
Z of dimension <n and any c > 0.

Suppose now that our assertion is true for all m < n. We verify it for a U of dimension n.
We apply Corollary 1.2.2(2). In the notation of Corollary 1.2.2(2) (for m = n), we obtain

for any i > 0: Xi−1 ∈DM eff
gm,(l)

[−n,0] whenever Xi ∈DM eff
gm,(l)

[−n,0], and Yi−1 ∈DM eff
gm,(l)

[−n,0]

whenever Yi ∈DM eff
gm,(l)

[−n,0]. Since Y0 ∈DM eff
gm,(l)

[−n,0], the same is true for Yn and hence also
for Xn and for X0 = Mgm,(l)(U). 2

2.2 The main result: ‘motivic Z[1/p]-resolution of singularities’

Theorem 2.2.1. (1) DM eff
gm[1/p] is the idempotent completion of 〈Mgm[1/p](P ), P ∈ SmPrVar〉.

(2) There exists a bounded weight structure wChow for DM eff
gm[1/p] such that HwChow =

Choweff[1/p].

(3) For U ∈ SmVar, dim U = m, we have Mgm[1/p](U) ∈DM eff
gm[1/p][−m,0].

(4) For any open dense embedding U → V , for U, V ∈ SmVar, we have Cone(Mgm(U)→
Mgm(V )) ∈DM eff

gm[1/p]wChow60.

Proof. We set H = {Mgm[1/p](P ), P ∈ SmPrVar}, C = DM eff
gm[1/p], and D = DM eff

− [1/p], D =
DM eff

− [1/p]t60, and verify that the assumptions of Theorem 1.4.1 are fulfilled.
By Proposition 1.1.1(vi), all objects of DM eff

gm[1/p] are compact in DM eff
− [1/p]. We have

H ⊂D by Proposition 1.1.1(vii). Besides, D is extension-stable, contains D[1] = DM eff
− [1/p]t6−1,

and admits arbitrary coproducts.
Using [Deg08, Theorem 5.23], we obtain (similarly to the proof of Proposition 2.1.1) that H

is negative.
By Proposition 2.1.1, for any l(6= p) the image of DM eff

gm[1/p] in DM eff
gm,(l) is bounded with

respect to the image of H in DM eff
gm,(l). Hence, DM eff

gm[1/p] is bounded with respect to H.

It remains to verify that for any S ∈Obj DM eff
−,(l), S 6= 0, there exist P ∈ SmPrVar and j ∈ Z

such that DM eff
− [1/p](Mgm[1/p](P ), S[j]) 6= {0}.

Recall that DM eff
− [1/p] is a full subcategory of D−(Shv(SmCor)). So, there exist some

U ∈ SmVar and m ∈ Z such that the mth hypercohomology of S at U is non-zero. We
choose some l 6= p such that this hypercohomology group is not l-torsion. Then the mth
hypercohomology at U of Sl is non-zero also, where Sl is the image of S in DM eff

−,(l). Now, by
Proposition 1.1.1(iv) this group is exactly DM eff

−,(l)(Mgm,(l)(U), Sl[m]). Then Proposition 2.1.1(1)
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easily implies: there exist P ∈ SmPrVar and j ∈ Z such that DM eff
−,(l)(Mgm,(l)(P ), Sl[j]) 6= {0}.

Hence, DM eff
− [1/p](Mgm[1/p](P ), S[j]) 6= {0} also.

Now we can apply Theorem 1.4.1; it yields assertions (1) and (2) immediately. Applying
Proposition 2.1.1(2) for all l 6= p simultaneously along with Theorem 1.4.1(3), we prove
assertion (3).

Assertion (4) can be easily deduced from assertion (3) by induction. To this end, we choose
a sequence of Ui ∈ SmVar such that: U0 = U ⊂ U1 ⊂ U2 ⊂ · · · Um = V (for some m ∈ Z) and
Ui+1\Ui is non-singular and has some codimension ci everywhere in Ui+1 for all i. Then, applying
(1) repeatedly, we obtain the result; cf. the proof of Proposition 2.1.1. 2

Remark 2.2.2. (1) Our ‘globalization’ argument (i.e. passing from Z(l)-coefficients to Z[1/p]-
ones) certainly can be applied in other situations; it only requires some of ‘formal’ properties of
motives (with Z[1/p] and Z(l)-coefficients) to be fulfilled.

One could even pass to integral coefficients if similar Z(p)-information is available also.
(2) A category of relative Voevodsky’s motives could be an example of a setup of this sort.

This means: one should consider (some) Voevodsky’s motives over a base scheme S; note that
in [CD09] a rational coefficient version of such a category was thoroughly studied and called the
category of Beilinson motives, whereas in [Bon10d, Heb10] a certain Chow weight structure for
this category was introduced. Unfortunately, currently we do not know much about S-motives
with Z(l)-coefficients.

(3) We will mention several implications from our result below. Now we will only note that
any X ∈Obj DM eff

gm[1/p] has a ‘filtration’ (that can be easily described in terms of weight de-
compositions of X[i], i ∈ Z) whose ‘factors’ are objects of Choweff[1/p] (this is a weight Postnikov
tower of X; see [Bon10a, Definition 1.5.8]). In particular, for any U ∈ SmVar,
X = Mgm[1/p](U), there exist X0 ∈Obj Choweff[1/p] and f ∈DM eff

gm[1/p](X, X0) such that
Cone f ∈DM eff

gm[1/p]wChow60. Note here that DM eff
gm[1/p](X, X0) can be described in terms of

SmCor; one can assume that X0 = Mgm[1/p](P ) for some P ∈ SmPrVar.

Now, if U admits a smooth compactification P , then Mgm[1/p](P ) is one of the possible
choices of X0 (see part (4) of the theorem). So, our results yield the existence of a certain ‘motivic’
analogue of a smooth compactification of U ; this justifies the title of the paper. Moreover,
for motives with Z(l)-coefficients one could try to find some X0 using Gabber’s resolution of
singularities of results. Yet with Z[1/p]-coefficients this result seems to be very far from being
obvious from ‘geometry’; it is also not clear how to look for a ‘geometric’ candidate for X0 in
the absence of a Z[1/p]-analogue of Proposition 1.2.1. 2

2.3 The weight complex functor, K0(DMgm[1/p]), and other applications
In order to study DMgm[1/p], we will need the following lemma (that is immediate from
Theorem 2.2.1).

Lemma 2.3.1. (1) DMgm[1/p] = 〈Chow[1/p]〉.
(2) There exists a weight structure on DMgm[1/p] extending wChow for DM eff

gm[1/p], whose
heart is Chow[1/p].

Proof. Since −⊗ Z(1)[2] is a full embedding of DM eff
gm into itself (see [Voe10]), the same is true

for DM eff
gm[1/p]. Now we note that DMgm[1/p] =

⋃
i∈Z DM eff

gm[1/p](i)[2i], whereas Chow[1/p] =⋃
i∈Z Choweff[1/p](i)[2i]. The result follows immediately. 2
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This yields the following result.

Proposition 2.3.2. (1) There exists an exact conservative weight complex functor t :
DMgm[1/p]→Kb(Chow[1/p]) which restricts to an (exact conservative) functor DM eff

gm[1/p]→
Kb(Choweff[1/p]).

(2) For X ∈Obj DMgm[1/p], i, j ∈ Z, we have X ∈DMgm[1/p][i,j] whenever t(X) is
(homotopy equivalent to a complex) concentrated in degrees [−j,−i].

Proof. (1) By [Bon10a, Proposition 5.3.3], this follows from the existence of bounded Chow-
weight structures for DM eff

gm[1/p]⊂DMgm[1/p] along with the fact that these categories admit
differential graded enhancements (see [Bon10a, Definition 6.1.2 and § 7.3]).

(2) Immediate from [Bon10a, Theorem 3.3.1(IV)]. 2

The ‘first ancestor’ of weight complex functors (the ‘current’ one and that for general
triangulated categories with weight structures were introduced in [Bon10a]) was defined by Gillet
and Soulé in [GS96]. To a variety X over a characteristic 0 field, they (essentially) assigned
t(M c

gm(X)); see [Bon09a, §§ 6.5–6.6] and § 2.3 below. Yet for char k > 0 their methods only yield
the existence of weight complexes with values either in Kb(ChoweffQ) or in K(Choweff

(l)) (i.e.
they do not prove that Z(l)-weight complexes are always homotopy equivalent to bounded ones;
see [GS09, § 5]).

The existence of t allows us to calculate certain K0-groups of DM eff
gm[1/p]⊂DMgm[1/p]

(since the induced homomorphism K0(DMgm[1/p])→K0(Kb(Chow[1/p]))∼= K0(Chow[1/p])
inverts the homomorphism i : K0(Chow[1/p])→K0(DMgm[1/p]); the only problem here is to
prove that 〈Chow[1/p]〉= DMgm[1/p], so that i is surjective).

Proposition 2.3.3. We define K0(Choweff[1/p]) (respectively K0(Chow[1/p])) as the groups
whose generators are [X], X ∈Obj Choweff[1/p] (respectively X ∈Obj Chow[1/p]), and
the relations are: [Z] = [X] + [Y ] for X, Y, Z ∈Obj Choweff[1/p] (respectively X, Y, Z ∈
Obj Chow[1/p]) such that Z ∼= X

⊕
Y . For K0(DM eff

gm[1/p]) (respectively K0(DMgm[1/p])), we
take similar generators and set [B] = [A] + [C] if A→B→ C→A[1] is a distinguished triangle.

Then the embeddings Choweff[1/p]→DM eff
gm[1/p] and Chow[1/p]→DMgm[1/p] yield

isomorphisms K0(Choweff[1/p])∼= K0(DM eff
gm[1/p]) and K0(Chow[1/p])∼= K0(DMgm[1/p]).

Proof. Immediate from Lemma 2.3.1 and [Bon10a, Proposition 5.3.3(3)].
Here we use the fact that DMgm[1/p] is idempotent complete since DM eff

gm[1/p] is. 2

Remark 2.3.4. Certainly, we have similar isomorphisms for motives with coefficients in any
commutative Z[1/p]-algebra. Besides, all these isomorphisms are actually ring isomorphisms.

Now we list some other applications of the main result. More details can be found in
[Bon10c, § 3].

Remark 2.3.5. (i) Applying an argument of M. Levine described in [HK06, Appendix B],
we obtain that the full subcategory of DMgm[1/p] generated by Chow[1/p] (i.e. the whole
DMgm[1/p]) enjoys a perfect duality such that the dual of Mgm[1/p](P ) for P ∈ SmPrVar is
Mgm[1/p](P )(−m)[−2m] if P is purely of dimension m. The dual of DMgm[1/p]wChow60 with
respect to this duality is DMgm[1/p]wChow>0, and vice versa.

As explained in [HK06, Appendix B], using duality one can define reasonable motives
with compact support over k (note that the method of [Voe00, § 4] is not known to
work without Hironaka’s resolution of singularities): for U ∈ SmVar purely of dimension m,
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we set Mgm[1/p]c(U) = ̂Mgm[1/p](U)(m)[2m] ∈Obj DM eff
gm[1/p]. We also obtain that M c

gm(U) ∈
DM eff

gm[1/p][0,dim U ].
(ii) Now recall: any weight structure yields certain weight spectral sequences for any

cohomology theory (see [Bon10a, Theorem 2.4.2]). So, we obtain certain Chow-weight spectral
sequences T (H, X) (that relate the cohomology of X ∈Obj DMgm[1/p] with that of the terms of
its weight complex, i.e. of Chow motives) for any cohomological functor H : DMgm[1/p]→A (A
is abelian); T (H, X) is DMgm[1/p]-functorial in X starting from E2. T (H, X) induces a certain
(Chow)-weight filtration on H∗(X); this filtration is DMgm[1/p]-functorial, and can be (easily)
described in terms of weight decompositions (only); see [Bon10a, § 2.1].

In particular, one can take H being Zl-étale or Z[1/p]-motivic cohomology of motives. For
Ql-étale cohomology of smooth varieties, we get Deligne’s weight spectral sequences in this way
(see [Bon10a, Remark 2.4.3]). Note here: it certainly suffices to have the Chow weight structure
for DMgm,(l) in order to have Chow-weight spectral sequences for H ⊗ Z(l); yet without a Z[1/p]-
weight structure it would not be clear at all that the whole collection of these spectral sequences
(for all l 6= p) can be chosen to come from a single weight Postnikov tower for X (see [Bon10a,
Definition 1.5.8]). In particular, it is not (really) important whether we use the Z[1/p]-Chow-
weight structure or the Z(l)-one in order to construct the weight spectral sequences for Zl-étale
cohomology if we fix l; yet Z[1/p]-weight structure yields certain ‘relations’ between these spectral
sequences for various l, as well as with Z[1/p]-motivic cohomology.

Lastly, recall that for motivic cohomology we obtain quite new spectral sequences (yet a
certain easy partial case can be obtained from Bloch’s long exact localization sequence for higher
Chow groups of varieties) that do not have to degenerate at any fixed level (even rationally; see
[Bon10a, Remark 2.4.3]).

(iii) Theorem 2.2.1 along with [Bon10a, Theorem 4.5.2(I1)] immediately yields: there exists
a t-structure tChow for DM eff

− [1/p] whose heart is isomorphic to AddFun(Choweff[1/p]op, Ab);
this isomorphism is given by restricting DM eff

− [1/p](−, Y ) to Choweff[1/p]⊂DM eff
− [1/p] for

Y ∈Obj HtChow ⊂Obj DM eff
− [1/p].

(iv) Our methods easily yield certain properties of birational motives and sheaves (some
of them were already proved in [KS]; yet note that we extend them to motives with Z[1/p]-
coefficients for char k = p); see [Bon10c, § 3.3]. In particular, we obtain a certain Chow weight
structure for the category DMgm[1/p]0 defined as in [KS], and calculate its heart.

Here we call S ∈HI [1/p] birational if S(f) is an isomorphism for any open dense embedding
f in SmVar. In [Bon10c, § 3.3], it is proved that S ∈HI [1/p] belongs to HtChow whenever
it is birational. Moreover, S0 = H0

tChow
(S) is the maximal birational subsheaf for any S ∈

Obj HI [1/p]). Besides, if V ∈ SmVar possesses a smooth projective compactification P , then
the image of S0(V ) in S(V ) equals the image of S(P ) in S(V ).

(v) Using this, in [Bon10c, § 3.4] tChow was related with unramified cohomology: for C ∈
Obj DM eff

− [1/p] and X ∈ SmVar, i ∈ Z, it was proved that H i
un(X, C)∼= H0

tChow
(H i

t(C))(X).
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