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Abstract

Let ¢ and ¢; be regular functions on the boundary 4D of the unit disk D in R?, such that fozn p1do=0

and fOZH sin 8(¢; — o) d6 = 0. It is proved that there exist a linear second-order uniformly elliptic operator
L in divergence form with bounded measurable coefficients and a function « in WhP(D), 1 < p <2, such
that Lu = 0 in D and with u|yp = ¢y and the conormal derivative du/0N|sp = ¢ .
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1. Introduction

Let D be the unit open disk in R2, n the outer normal to D and L a linear second-order
uniformly elliptic operator, with bounded measurable coefficients in D, of the form

L:= a”au +2a12612 +a22622. (1.1)

In [1], Manselli and the second author proved that, given two arbitrary functions
fO, O on D (with some appropriate regularity assumption, such as df®/d6 and
1 Holder continuous with exponent 7 > %), there exist an operator L of the form

(1.1) and a function u € W?P(D), 1 < p < 2, satisfying

Lu=0 in D,
ulop = f©,

@ =f(1)_

onlap

Such a pair (u, L) was called an elliptic extension of f©, f1)in D.
Here we consider the following similar question for elliptic operators in divergence
form. Given two functions ¢y and ¢, on 0D, do there exist a function u and a linear
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second-order uniformly elliptic operator L in divergence form, such that
Lu=0{da"d;u)=0 a.e. inD,

ulpp = %0, (12)
ou|
N o 1,

where 0u/ON|sq = a'/u, n; is the conormal derivative of u?

Wollft [3] studied this problem on smoothly bounded domains Q C R”, n > 3. He
proved that in order to have a solution with u and L smooth, the functions ¢y and
1 must satisfy suitable necessary and sufficient compatibility conditions. He also
remarked that, for the case n = 2, additional assumptions on ¢ and ¢; are required.

Here, using the result in [1], we prove that, if ¢y and ¢, are regular functions on D

such that
f ¢1ds=0 and f na(e1 — o) ds =0,
oD oD

then there exist an operator L in divergence form, with bounded measurable
coefficients, and a function u in W'?(D), 1 < p < 2, which satisfy (1.2) in a suitable
weak sense.

2. The main result

Consider the problem (1.2), where L is a linear second-order uniformly elliptic
operator in divergence form, with bounded measurable coefficients, and u is a function
in W'»(D), p > 1. Notice that, due to the low regularity of u and L, the conditions
of (1.2) have no meaning, unless they are reinterpreted in a weaker sense, which we
now specify. Recall that, if Q is a bounded domain in R?, a function u in W"2(Q) is
considered a solution of the problem

Lu=0;(a’d;u)=0 ae.inQ,

ou
Py =1,
a0

if it satisfies the identity

f aijajuain dx = f pindo  foranyne &1(9)
Q oQ

(see, for example, [2, p. 161]).
By analogy with such interpretation, in the following a function u € W'*(D), p > 1,
will be considered a solution of (1.2) if

f aijajuain dx = f o1 do for any n € Cl(B)a
D aD

trace of u on 9D = .

2.1

Our result is the following.

https://doi.org/10.1017/5S000497271200069X Published online by Cambridge University Press


https://doi.org/10.1017/S000497271200069X

[3] Elliptic extensions in the disk 53

THeEOREM 2.1. Let 1 < p <2 and ¢y, ¢ be of class C* on 0D and such that:

D fope1ds=0;
(ii) fBD na(¢1 — o) ds = 0.

Then there exist a linear second-order uniformly elliptic operator L in divergence
form, with bounded measurable coefficients, and a function u € Wl”’(D), which is a
solution of (1.2) (that is, satisfies (2.1)).

Proor. Let (o, ¥1) be the solution on dD of the system

dyo
nmy —ny —— = o,

d d
d—e(nzllfl + ny %) =—¢1.

The functions ¥y and ¥ exist and are regular on dD by the hypotheses on ¢,
¢1. In particular, condition (ii) is equivalent to the condition faD(dl//() /d6) ds =0 by
integration by parts.

By [1, Theorem 3.3], there exist v € W>?(D) and a second-order uniformly elliptic
operator in nondivergence form and with bounded measurable coefficients, L :=
a0, + 2a'%8,, +a*20,y, such that

(2.2)

Lv=0 inD,
Vlap = Yo,

ov _y

onlsp e

Let u = v, € W'"P(D). The equation Ly = 0 can be written as
'Zill 512 )
ﬁvxx + Zﬁvxy +v,=0 ae.inD,

and, by formally differentiating with respect to x,
Lu=(a"uy)y + (@uy), + uyy =0, (2.3)

where a'! =@''/a? and a'? = 2a'?/a*. According to our definition, u € W' is a
solution to (1.2) for the operator L defined in (2.3) if and only if the trace of u on 9D
is equal to ¢o and

f(a”uxnx + alzuynx +uyny) dx dy = f pinds
D oD
for any 57 € C'(D). On the other hand,

f‘(al luxnx + alzuynx + uyny) dx dy
D

~11 ~12 ~22
3 f A Vet + 20 Vi + A7 Vi1 dx dy
D

a22
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~11 ~12 ~22
A Vi + 20V, + 0Vyy
_ f( X = Xy ¥y Ny + (nyny — Vyyn)C)) dx dy
D

= f(vxyny - vyynx) dxdy.
D

If we consider a sequence v, € C3(D) converging to v in W>?(D), then

f(vxyny - Vyynx) dxdy = lim f((vn)xyny - (Vn)yynx) dxdy.
D n—e Jp

However,

L((Vn)xyny - (Vn)yynx) dxdy = L(((Vn)xyn)y - ((Vn)yyn)x) dx dy

= f (nZ(Vn)xy - nl(Vn)yy)n ds
aD

d(vp)y dn
= - ———Inds = Wy — d
faD( 0 )’7 s faD(V Iygg 9

. dn dn
| 2y — ds = — ds.
"l—’n"l"faD(V )yd9 ’ .L‘Dvydg '

0
Vop = o €C(OD) and —”‘ = gy €CV(D),
onlsp

and

Moreover, since

we have also that
Vylap = navilap + nivelap € C*(AD)

d d
f vy—nds=— Lnds
op ~ df op db

and

This implies that

f(a“uxnx +a' uynx + uyny) dx dy = f —77 ds,

which means that u solves

Lu=0 ae.inD,
ou| dvy
ONlpo  db’

Since, from (2.2),

Ulap = Vilop = myr — mog l!/o ®o,
ou dvy d dyo
ONlop~ do d@( mL ey )

it follows immediately that u is a solution to (1.2) with L defined in (2.3).

@1,
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