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1. Introduction

For any collection of closed subspaces of a complex Hilbert space the set of
bounded operators that leave invariant all the members of the collection is a
weakly-closed algebra. The class of such algebras is precisely the class of reflexive
algebras as defined for example in Radjavi and Rosenthal (1969) and contains
the class of von Neumann algebras. In this paper we consider the problem of
when such algebras are finitely generated as weakly-closed algebras. It is to be
hoped that analysis of this problem may shed some light on the famous unsolved
problem of whether every von Neumann algebra on a separable Hilbert space is
finitely generated. The case where the underlying space is separable and the
collection of subspaces is totally ordered is dealt with in Longstaff (1974). In the
present paper the result of Longstaff (1974) is generalized to the case of a direct
product of countably many totally ordered collections each on a separable space.
Also a method of obtaining non-finitely generated reflexive algebras is given.

The author wishes to thank Professor P. Rosenthal for his helpful suggestions
concerning the content of this paper.

2. Notation and preliminaries

Throughout this paper the terms Hilbert space, subspace and projection will
be used to mean complex Hilbert space, closed subspace and orthogonal projec-
tion respectively. The set of all bounded linear operators acting on a Hilbert space
H will be denoted by B(H). The symbol ' s ' will be used for set inclusion while
' <=•' will be reserved for proper inclusion. If M and N are subspaces and M £ N
we denote by N Q M the orthogonal complement of M in N. The symbol ' © ' will
always denote orthogonal direct sum. An operator TeB(H) is said to leave a
subspace M invariant if Tx e M(x e M). We indicate this by TM s M. If PM
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denotes the projection with range M, the invariance of M under T is equivalent to
(/—PM)TPM = 0 where I is the identity operator. Most of the notation, definitions
and results we use concerning von Neumann algebras are to be found in Dixmier
(1957). If {Ha}asg is a collection of Hilbert spaces, we denote by ©aegffa their
Hilbert space sum. If H = ©a ^H,, and {Ta}a €9 is a collection of operators satisfying
TxeB(Hx)(oceI) and supae/1| Ta \\ < oo the mapping ( x j a e / ->• (Txxx)xeI defines
an element of B{H), which we denote by © a 61 Ta. If Sa is a non-empty subset of
B(Hx)(a e I) by © „ e 7 Sa we mean the set of operators ® aeITx with Tx e Sa(a e /).

If {NJ is any collection of subspaces of the Hilbert space H, V Na denotes
the smallest subspace of H containing each Nx and A Nx denotes the largest sub-
space of H contained in each Ntt. A collection J^ of subspaces of H will be called
complete if

(i) (p),He&;
(ii) whenever <f> ¥=-^0 ^&, A i v e ^ N E ^ and V Ne^0Ne^.

If ^ S £(#) is any non-empty subset we let Lat^ denote the set of all subspaces
left invariant by every member of £? and, for any non-empty collection J57 of sub-
spaces of H let AlgJ5" denote the set of all operators in B(H) which leave every
member of J^ invariant. It is not difficult to show that Lat^ is a complete collec-
tion of subspaces, that Alg J^ is a weakly-closed algebra of operators and that
J5" £ Lat Alg,F, Sf £ Alg Lat^. If & is any collection of subspaces of H, since
the intersection of any family of complete collections is complete, it follows that
there is a smallest complete collection containing J5", denoted by c o ^ ) . The
following lemma generalizes Lemma 3.2 of Ringrose (1965).

LEMMA 2.1. If J5" is a non-empty collection of subspaces of a Hilbert space
H then

AlgJT = Algco(J^) = Alg Lat Alg J5".

PROOF. Since ̂  <=, Lat Alg J^ and the latter is complete we have & £ co(Jr)
S Lat Alg J5" and so Alg Lat Alg J^ £ Alg co(.F) £ Alg J5". The result follows from
the fact that y £ Alg Lat Sf for any subset Sf £ B(H).

The importance of this lemma is that, in the study of reflexive algebras i.e.
algebras of the form Alg 3F, we may assume without loss of generality thati5' is a
complete collection of subspaces.

If the collection ./K of subspaces is totally ordered by inclusion it is called a
nest. Let JV be a complete nest.

DEFINITION 2.2. If N GJV define

iV_ = y{Le J^:L c N} if N * (0)

N+ = A{Le JT:N cL} if N + H

and define (0)_ = (0), H+ = H.
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The definition of N_ is due to Ringrose (1965). With these definitions, it is
obvious that N_,N+ eJf and that JV_ £ JV £ JV + for every N e JV. If JV_ c JV,
JV_ is called the immediate predecessor of N in .yf. If JV cz JV+, N + is called the
immediate successor of TV in^T. It is obvious that if TV c JV + then (iV + )_ = TV.
If M, JV e ./f" then the corresponding projections PM, PN commute. Consequently,
if S is the set of projections onto the members ofdf then the von Neumann algebra
Sf generated by $ is abelian. This von Neumann algebra is called the core

3. A doubly generated reflexive algebra

Let {Hk}*=1 be a family of separable Hilbert spaces with 1 5S K ^ oo. When
K = oo in the following, the index set is to be taken as the set of positive integers.
For every k with 1 5S k ^ K letyTfc be a complete nest of subspaces of Hk. Let
H = ®K

k = iHk and let J*" be the collection of closed subspaces JV of H of the form
N = © *=i Nk where, for 1 ^ k g K, NkeJr

k. Then Alg,F is a weakly-closed
sub-algebra of B(H). We will prove the following.

THEOREM 3.1. AlglF is generated, as a weakly-closed algebra, by two
operators.

Observe that Alg J5" = ©^=1Alg^f"k. Let Sk denote the collection of pro-
jections onto the members of ^Vk a n d ^ denote the core of Alg JTk, for 1 ^ k ^ K.
As is shown in Longstaff (1974), for every k, it is possible to choose a maximal
abelian self-adjoing algebra 9)k and an operator Bk e Alg jVk such that

(i) <ft £ Sk

(ii) whenever (/ - £)B4£ = 0 with E a projection belonging to @k then E eSk.

PRCXJF. Let 3ik and Bk be as above. Without loss of generality we may suppose
that supi-stgKlBfc! < oo. Let B = © k

K
=1BkeB(H) and 3) - © f= 1^ .Then

^ is a maximal abelian self-adjoint subalgebra of B(H) (see Dixmier (1957;
pages 12 and 19)) and 9 £ AlgJ^, BeAlgJ*'. Hence J^ £ LatB O Lat^. On
the other hand, if M is a subspace of H, which is invariant under B and every
element of 2 then P M e ^ and (/ - P+)BP+ = 0. It follows that PM = ®k = lEk

where £k is a projection belonging to 3>k and that

( / - Ek)BkEk = 0 i l £ k £ K )

Hence, E t e ^ ( l ^ H X ) and M = ®k = 1EkHkeJ^. This shows that
^ = LatB n Lat ^ .

Since // is separable, by a well-known result of J. von Neumann there is an
operator A&3) such that 2 is the weakly-closed algebra generated by A. Let % be
the weakly-closed algebra generated by A and B. Then 91 £ Algi5" since AlgJ^ is
weakly-closed, and so ^ £ LattM. But any subspace which is invariant under
every element of 81 is, in particular, invariant under B and every element of Sd
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(since 2 £ 21) and so belongs to &. Thus Lat2r = 3?. Theorem 3 of Radjavi
and Rosenthal (1969) then shows that 21 = Alg J^. This completes the proof of
the theorem.

4. A non-finitely generated reflexive algebra

Leti/f be a complete nest of subspaces of a Hilbert space H. If J^ = {L :L a
subspace of H, N_ £ L £ JV for some JV e JV] then clearly ./f* £ ^ .

LEMMA 4.1. & = Lat Alg^".

PROOF. Obviously J*" £ Lat AlgJ^. Let Me LatAlgJ5" and let iVe^T be
arbitrary. We first show that either M £ JV or N £ M. Now Pw e AlgJ5" for if
L eJF and iC_ £ L £ K(KGJV) then either K ^ N or N <= K from which we
obtain, respectively, L £ N or JV £ L. In either case PWL £ L. Hence PWM £ M
and it follows that PNPM = PMPN and that M has the decomposition M = (M n JV)
®(M n(H 0 JV)). If M n (H e JV) = (0) then M £ JV. If M n (// 0 JV) # (0)
we show that N ^ M. Let e 6 M O (H © JV) be a unit vector and let fe N be
arbitrary. Then the operator x -»(x | e)/(x e H) which we denote by e ® f belongs
to AlgJ?" for if L e J% as we have seen either L £ JV or TV £ L. In the first case,
(e ® f)L = (0) £ L and in the second case, (e ® /)L £ JV £ L. Since M is in-
variant under every element of Alg S7 we have (e ® f)M £ M. But eeM and so
/ = (e ® /)(e) e M. This shows that JV £ M. Thus M is comparable with every
element of JT. Let N = f\{LeJ^ :M ^ L}. Then JV e jV and M £ JV. If JV = (0)
then M = (0) e J^. If JV # (0) and L e >" with L c / V then M £ L cannot be true
and s o L c M . Thus JV_ = \J{L SJV : L c N} £ M and M e J5". This completes
the proof of the lemma.

THEOREM 4.2. / / JV is an element of Jf with JV_ c N <= N+ then Alg.F
cannot be generated as a weakly-closed algebra by fewer than dim(JV 0 iV_) — 1
elements.

PROOF. Let k = dim(JV 0 JV_). Then /c ^ 1. We may suppose that k > 2.
Let Al,A2, •••, Aa be any finite set of elements of A l g ^ with n < k — land let 21 be
the weakly-closed algebra they generate. Then 21 £ Alg J5" since Alg J5" is weakly-
closed, and so & £ Lat2I. To show that 21 <= Alg J5" it suffices by the previous
lemma to show that J? c Lat2t. Let xeN+\N be arbitrary and let [x] be the
one-dimensional subspace spanned by x. Now N ^ N y [x] £ JV+ and (JV+)_
= JV. Thus N V [x] e IF and so is invariant under At for i = 1,2, ••-,«. It follows
that for every i, there exist a ; eC and m^N such that Atx = a,-x + m,. Let
M = N_ V {x,m1,m2,---,mn}. Then since JV_ £ JV_ V {mum2,---,mn} £ JV,
it follows that 4̂y(JV_ V {ml,m2, •••,mn}) £ iV_ V {fn\,m2, •••, mn) for 1 g _/ ̂  n.
Thus M is invariant under every Aj and hence M e Lat2l. But M 4 ̂  for if
L_ £ M £ L for some Le^V then either L £ JV or JV c L. The former cannot
be true since x £ JV. Hence JV c L and N ^ L_ £ M. But JV £ M cannot be true
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either for if so then N Q N- £ M © JV_ and so dim(N Q JV_) = k ^
dim(M © JV_) ^ n + 1 and this contradicts the fact that n < k — 1. Thus
21 c Alg J5" and the proof of the theorem is complete.

COROLLARY 4.3. If& = {NeJr:N_cN<=N+} and supNB9dim(N © JV_)
= oo then AlgJ*" is not finitely generated as a weakly-closed algebra.

COROLLARY 4.4. If for some JVeJ^, JV_ c J V c iV+ and dim(JV © JV_) = oo
then Algi^" is not finitely generated as a weakly-closed algebra.

A particular instance of this latter corollary, the case where^T is the nest with
three elements (0), M, H where (0) c M c fl and dimM = oo, has already been
established in Longstaff(1974).

5. Some additional results

In the previous section, starting with a complete nest J/~ we saw that
Ĵ " = {L : JV_ £ L £ JV for some JVe./F} was a complete collection of subspaces
such t h a t / £ J*" and such that every element of J^ is comparable with every
element o f / . In a sense we can reverse the procedure. More precisely we prove

PROPOSITION 5.1. I. / / / is a complete nest and

3F = [M:M a subspace, N_ £ M £ N for some

then S' is a complete collection of subspaces containing J/~ and

JV = {WeJ :N is comparable with every element o

II. If 3^ is a complete collection of subspaces then

J/~ = [N e J^ : N is comparable with every element

is a complete nest contained in ^ and

& £ {M :M a subspace, iV_ £ M £ N for some N e

PROOF. I. ^ is complete for by Lemma 4 . 1 , ^ = co(^) = LatAlg,^". It oily
remains to show that if N e J*" and N is comparable with every element of 3F then
JVeX Since N 6 ^ , L_ £ JV £ L for some L e # . If N $^ then L_ a N c L.
Now L_ £ L_ ©(L © N) £ L and so L_ © (L © JV) e J5". But JV and
L- ® (L Q N) are not comparable. This contradiction shows that

II. Obviously ^T £ J5" and J^ is a nest containing (0) and H. Let >/F0 be any
non-empty subset of ~V and let M = V Nejr0N. Then M e f since J5"is complete.
If LeJ^ then every element of J/~Q is comparable with L. If JV £ L for every
JV e J^Q then M £ L. If this is not the case then L c JV for some JV e yT0 and so
L cz M. Hence M e / . A similar argument applies to f\Ne,r0N. Thus J/~ is a
complete nest. Now let M e J5" and let JV = A {L&JV:M £ L}. Then N&J/~ and
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M £ JV. If N = (0) then certainly JV_ £ M £ JV. If L e JV and L <= TV then

M c L is impossible so L c M and JV_ = V {LsJ/~ :L c iV} £ M. Thus

iV_ £ M £ JV. This completes the proof of the lemma.
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