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1. Introduction 

We have recently obtained some interesting results on the global stability char­
acteristics of gaseous and stellar systems using a free-energy variational for­
mulation and Ginzburg-Landau phase transition theory (Christodoulou et al. 
1995a, b). For m = 2 nonaxisymmetric modes in particular, we have been able 
to formulate a new, robust, global stability criterion (Christodoulou, Shlosman, 
& Tohline 1995, hereafter CST) that avoids many of the problems that plagued 
the well-known Ostriker & Peebles (1973) criterion. In this article, we briefly 
summarize the conclusions from the above-cited investigations and we proceed 
to comment on the stability properties of some interesting stellar models that 
were discussed during this conference and that are not trivially understood in 
terms of the new stability criterion. 

2. Summary of Results 

(a) Phase Transitions: Axisymmetric stellar systems suffer an m = 2 "bar mode" 
when the ratio of the rotational kinetic energy to the gravitational potential en­
ergy T/\W\ £ 0.14 (Ostriker & Peebles 1973) but their fluid counterparts suffer 
a similar m = 2 instability when T/ |W| ^ 0.27. The difference between the 
two cases is caused by the different conservation laws that are valid in evolving 
stellar and gaseous systems: (i) Circulation is not conserved in stellar systems 
which are then free to undergo a dynamical second-order phase transition to­
ward a nonaxisymmetric state of lower free energy and the same total mass and 
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angular momentum. This equilibrium state becomes available to an axisym-
metric "stellar Maclaurin" system beyond the bifurcation point of the "stellar 
Jacobi sequence" which consistently occurs at a value of T/1147! « 0.14 in a wide 
variety of axisymmetric stellar equilibrium sequences, (ii) In gaseous systems, 
the conservation law of circulation renders the above bifurcation point irrele­
vant. A dynamical second-order phase transition can then occur only beyond 
the bifurcation point of a sequence whose equilibria have lower free energies and 
conserve circulation along with total mass and angular momentum. A bar-like 
(ellipsoidal) sequence that exhibits all these properties bifurcates at a value of 
T/ |W| « 0.27 in a wide variety of axisymmetric gaseous equilibrium sequences. 

(b) Bar Formation As a Global Process: According to the above description, the 
formation of bar-like systems is the natural outcome of global m = 2 instabilities 
acting in axisymmetric stellar and gaseous systems beyond the corresponding 
bifurcation points and obeying the relevant conservation laws. When the bi­
furcating sequences exist, the unstable modes must operate and must complete 
the dynamical transition that leads to the bar-like equilibrium state of lower 
free energy. This fully nonlinear description of dynamical phase transitions is 
markedly different from the commonly discussed local linear analysis that re­
lies on the absence of an inner Lindblad resonance for wave amplification by 
reflection at the center of a model. 

(c) New Stability Criterion: The new stability indicator a is based on the angular 
momentum content of a system rather then on its energy content. It can be 
written in the interesting form 

\ft, (0 < « < 1/2) , (1) 

where t = T/\W\ and / is a function that depends on both the geometrical and 
the topological structure of the system. For stability to m = 2 modes, we have 
found that stellar systems must have a £ 0.25 while gaseous systems must have 
a £ 0.34. In the case of uniformly rotating systems, eq. (1) implies that 

a = W \ ' ( ) 

where L is the total angular momentum and ilj is the gravitational (Jeans) fre­
quency introduced by self-gravity. Besides being a useful alternative expression 
for differentially rotating systems in which the form of function / is not known, 
eq. (2) also shows that the parameter a is not equivalent to the ratio L2/(2I\W\) 
(where I is the moment of inertia) introduced by Vandervoort (1982) in a pio­
neering attempt to take into account the total angular momentum content L of 
a differentially rotating system in place of its total kinetic energy T. 

3. The Stability of Two Types of Stellar Models 

During the conference, two types of stellar models were largely discussed be­
cause their m = 2 stability properties are not trivially understood in terms of 
the above-described bifurcation points and the corresponding behavior of the 
parameter a: 
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(a) Davies (1995) has recently studied in detail the stability of Toomre n = 0 
and n = 1 stellar disks to bar formation. Various sequences of n = 0 models with 
different degrees of random-motion support and different numbers of particles 
in counter-rotation are easily understood since the disks become unstable to 
m = 2 modes for a ^ 0.25. However, for the sequences of re = 1 models, it is 
not obvious how a representative value of fij (which is a function of radius) can 
be determined for use in eq. (2). 
(b) Efstathiou, Lake, & Negroponte (1982) have studied stellar disk/halo models 
and formulated a stability criterion that does not depend on the core radius of 
the halo and that is understood in terms of the parameter a (see CST for details). 
On the other hand, Sellwood (1989) has performed computer simulations of such 
models and reported a dependence of the results on the core radius (just as had 
previously been found analytically by Toomre in an unpublished study). In 
particular, Sellwood argued that the instability could be suppressed in weakly 
perturbed models with small core radii. 

Although the new stability criterion is backed by a physical understanding 
of the nonlinear processes that are responsible for bar formation, its application 
to the above two cases is not without ambiguities. Firstly, more work is needed 
to understand the "calibration" of ftj when it is a strong function of radius. 
Secondly, the numerical simulations of Sellwood (1989) have not been examined 
yet in terms of the parameter a. Contrary to expectations from linear analysis, 
Sellwood's models were unstable to a nonlinear m = 2 mode of instability. We 
believe then that these stellar models with a small compact core cannot be 
considered as pure exponential disks embedded in a halo; they are rather two-
component systems with a central "point-mass." Thus, the observed nonlinear 
m = 2 mode must be the result of a discontinuous A-transition or of a nonlinear 
resonance (see Christodoulou et al. 1995b). In such a case, Sellwood's models are 
not subject to the conventional "Maclaurin-to-Jacobi" phase transition. Instead, 
they suffer a nonlinear instability akin to those discussed by Christodoulou et al. 
(1995b) in relation to the "one-ring" equilibrium sequence, and their a-values 
should be determined along the lines introduced by CST for toroidal models. 
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