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SUMMARY

Pertussis or whooping cough has persisted and resurged in the face of vaccination and has
become one of the most prevalent vaccine-preventable diseases in Western countries. The high
circulation rate of Bordetella pertussis poses a threat to infants that have not been (completely)
vaccinated and for whom pertussis is a severe, life-threatening, disease. The increase in pertussis
is mainly found in age groups in which immunity has waned and this has resulted in the
perception that waning immunity is the main or exclusive cause for the resurgence of pertussis.
However, significant changes in B. pertussis populations have been observed after the
introduction of vaccinations, suggesting a role for pathogen adaptation in the persistence and
resurgence of pertussis. These changes include antigenic divergence with vaccine strains and
increased production of pertussis toxin. Antigenic divergence will affect both memory recall and
the efficacy of antibodies, while higher levels of pertussis toxin may increase suppression of the
innate and acquired immune system. We propose these adaptations of B. pertussis have decreased
the period in which pertussis vaccines are effective and thus enhanced the waning of immunity.
We plead for a more integrated approach to the pertussis problem which includes the
characteristics of the vaccines, the B. pertussis populations and the interaction between the two.

Key words: Emerging infections, epidemics, epidemiology, pertussis (whooping cough), vaccination
(immunization).

INTRODUCTION

Pertussis or whooping cough has persisted and
resurged in the face of vaccination and has become
one of the most prevalent vaccine-preventable diseases
in Western countries with estimated infection frequen-
cies of 1–9% [1–4]. The high circulation rate of

Bordetella pertussis poses a threat to infants that
have not been (completely) vaccinated and for
whom pertussis is a severe, life-threatening, disease
[5]. The increase in pertussis is mainly found in older
age groups in which immunity has waned and this
has resulted in the perception that waning immunity
is the (exclusive) cause for the resurgence of pertussis.

Estimates of duration of immunity, acquired either
by infection or vaccination, vary widely between, res-
pectively, 4–20 years and 4–12 years [6]. This large
variation is probably due to different definitions of
immunity and different vaccines included in these

* Author for correspondence: Professor F. R. Mooi, Laboratory
for Infectious Disease, Centre for Infectious Disease Control,
National Institute for Public Health and the Environment,
Bilthoven, The Netherlands.
(Email: frits.mooi@rivm.nl)

Epidemiol. Infect. (2014), 142, 685–694. © Cambridge University Press 2013
doi:10.1017/S0950268813000071

https://doi.org/10.1017/S0950268813000071 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268813000071&domain=pdf
https://doi.org/10.1017/S0950268813000071


studies. Mathematical modelling supports a period of
natural immunity that is, on average, long-lasting (at
least 30 years) but inherently variable [7]. Compared
to natural infection, several studies have revealed a
shorter duration of protection after vaccination. A
modelling study estimated that 15% of individuals
vaccinated with an acellular vaccine (ACV), lost
their immunity within 5 years after vaccination [8].
Recent field studies have shown that protection con-
ferred by ACVs is less enduring than previously
thought. One study found that, after the fifth dose of
an ACV, the odds of acquiring pertussis increased by
an average of 42% per year [9]. A second study noted
a markedly increased rate of disease from ages 8–12
and vaccine effectiveness was estimated to be 24% in
this age category [10]. There is also evidence that
some whole-cell vaccines (WCVs) induce longer last-
ing immunity than ACVs, raising the possibility that
the switch from WCVs to ACVs may have aggravated
the pertussis problem [11, 12].

Although there is consensus that waning immunity
is an important cause for the resurgence of pertussis,
we know little about the underlying causes. Such
causes include the qualities of the vaccine affecting
the immune response, which are determined by ad-
juvants, pertussis-administered and co-administered
antigens. For example, pertussis antigens used in
vaccines have immunosuppressive activities in their
native form, which may still be (partly) retained in
the vaccine, possibly leading to a suboptimal immune
response [13–15]. Other factors that may affect waning
immunity include lack of natural boosters and adap-
tation of the pathogen [16–18]. Lack of natural boos-
ters by infection, proposed to be caused by a decrease
in the circulation of B. pertussis compared to the pre-
vaccination era, is difficult to reconcile with the
high (1–9%) infection frequencies observed in the
last 10–20 years [1–4]. Further, if natural infection
confers a longer lasting immunity than vaccination,
as is widely accepted, one would expect less boosting
in the pre-vaccination period compared to the current
period if initial immunity is vaccine-induced. The role
of pathogen adaptation in waning immunity has been
largely ignored. Pathogen adaptation may affect the
structure or regulation of B. pertussis products and
hence its recognition by, and interaction with, host
defences. For example, antigenic variation may dimin-
ish the efficacy of antibodies, or affect T-cell recog-
nition and memory. Changes in gene expression, by
either up- or down-regulation, may also affect the
antigenic profile of the pathogen. If the affected

genes code for compounds which modulate host im-
munity, changes in gene regulation may significantly
change pathogen properties. Notably, all these
changes have been observed in B. pertussis popu-
lations and will be discussed here. We argue that
these changes are adaptive and increase strain fitness
by decreasing the period in which pertussis vaccines
are effective and thus enhance the waning of immu-
nity. Further, the observed changes in B. pertussis
populations point to ways of improving vaccines.

Variation in B. pertussis virulence-associated proteins

Identifying genetic polymorphisms is a first step in
finding loci important for bacterial adaptation. Early
studies on genetic polymorphisms in B. pertussis
populations focused on genes coding for proteins
known to contribute to immunity: serotypes 2 and 3
fimbriae (Fim2, Fim3), pertactin (Prn) and pertussis
toxin (Ptx) (reviewed in [19] and [20]). Later, we also
included the promoter for Ptx (ptxP) in these studies,
in view of the central role we perceived for Ptx in the
ecology of pertussis [21, 22]. Although potentially
adaptive mutations have been described in many
other genes in later years, when whole genome sequen-
cing became feasible [23–25] most was known about
these four proteins, both genetically and functionally.
Importantly, together with filamentous haemaggluti-
nin (FHA) these proteins are included in acellular per-
tussis vaccines (ACVs) which have replaced whole-cell
vaccines (WCVs) in many countries [26]. Therefore,
Fim, Prn, Ptx and ptxP will be the focus of this re-
view. FHA has not been included as little is known
about variations in this protein due to the large size
of its gene and the presence of repeats which affects
the accuracy of sequencing.

B. pertussis strains contain both fim2 and fim3 genes
and may express one or both genes [27]. Allelic vari-
ation in fim2 and fim3 genes is rather limited. Two
Fim2 and three Fim3 variants are found in B. pertussis
populations (Fig. 1a). The Fim3-3 variant has been
detected sporadically. As with the other genes dis-
cussed here, more alleles than protein variants circu-
late due to the presence of silent mutations [19].
Several studies have suggested an important role for
fimbrial antibodies in protection [28, 29] and care
was taken to include strains with both Fim2 and
Fim3 in WCVs. Fimbriae are part of two ACVs, the
T-type vaccine mainly used in Japan which contains
Fim2 in addition to FHA, Ptx and Prn [30] and
a five-component vaccine which contains both
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fimbrial serotypes and is used in Europe and North
America [26]. With the exception of a Dutch vaccine
strain, which contains fim2-2 and fim3-1, all vaccine
strains analysed harboured fim2-1 and fim3-1
(Table 1).

Ptx is composed of five subunits (PtxA–E), of which
PtxA harbours the toxic activity. PtxA has been
shown to be immunodominant over the other four
subunits [31]. Consistent with this, variation in Ptx is
mainly found in PtxA. In B. pertussis populations,
five protein variants of PtxA have been identified,
PtxA1, PtxA2, PtxA4, PtxA5 and PtxA8, of which
PtxA1 and PtxA2 predominate [19]. Ptx is the only
pertussis antigen which has been shown unequivocally
to confer protection in humans, since it has been
tested as a single component vaccine [32]. Indeed,
a Ptx monocomponent vaccine has been used in

Denmark since 1997 [33]. However, vaccines with
three or more (FHA, Fim, Prn) pertussis antigens
in addition to Ptx were found to be more effective
than vaccines containing Ptx only, supporting a role
for FHA, Fim and Prn in conferring protection
against pertussis [34]. Ptx is incorporated in all
ACVs and three protein variants have been found in
pertussis vaccine strains, PtxA1, PtxA2 and PtxA4,
of which PtxA2 and PtxA4 are produced by strains
used for the production of widely used ACVs [35]
(Table 1).

Seventeen ptxP alleles have been found worldwide
of which three (ptxP1, ptxP2, ptxP3) predominate
[22, 36–40]. Strains with the ptxP2 allele disappeared
after the introduction of vaccination and in current
B. pertussis populations mainly ptxP1 and ptxP3 are
observed. A comparison of Ptx production showed
that ptxP3 strains produced 1·6 times more Ptx than
ptxP1 strains [22]. In contrast, the production of Prn
was slightly suppressed in ptxP3 strains compared to
ptxP1 strains, suggesting that increased Ptx pro-
duction was not due to a global up-regulation of viru-
lence genes.

Thirteen Prn protein variants have been identified,
of which three (Prn1, Prn2, Prn3) predominate in
B. pertussis populations (Fig. 2). Antibodies to Prn
have been associated with protection [29, 41]. Strains
used for vaccine production contain the prn1, prn7
or prn10 alleles (Table 1). However, the prn10 allele
was found in only one Swedish vaccine strain.
Although single nucleotide polymorphisms (SNPs)
are also present, variation in Prn is mainly found in
two regions comprised of five and three amino-acid
repeats (regions 1 and 2, respectively; Fig. 2). Vari-
ation in repeat units is a mechanism used by many
pathogens to escape from host immunity [42], and
it seems likely that the Prn repeats serve a similar
function.

Table 1. Protein variants found in pertussis vaccines*

Protein variants

Vaccine Fim2 Fim3 Prn PtxA

Whole cell vaccine Fim2-1, Fim2-2† Fim3-1 Prn1, Prn7, Prn10‡ PtxA1, PtxA2, PtxA4
Acellular vaccine§ Fim2-1 Fim3-1 Prn1, Prn7 PtxA2, PtxA4

*Adapted from Mooi [19]. Many ACVs also contain filamentous haemagglutinin which has not been included here as little is
known about variation in this large protein.
†Only in one Dutch vaccine strain.
‡Only in one Swedish vaccine strain.
§ Protein variants found in the strains Tohama I (Prn1, PtxA2) and 10536 (Prn7, PtxA4) used for many acellular vaccines.

(a)
174
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Fig. 1. (a) Fim and (b) PtxA variants found in B. pertussis
populations. Protein variant designations are shown on the
left. Dots indicate identical amino acids. Numbering is
relative to the N-terminal methionine. Protein variants
found in vaccine strains are underlined. The Fim2-2
variant has only been found in one vaccine strain used in
The Netherlands.
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Temporal changes in the Dutch B. pertussis population

Analyses of B. pertussis populations in a number of
countries have shown that the introduction of vacci-
nation was associated with significant shifts in allele
frequencies (reviewed in [19]). Here we focus on The
Netherlands as it offers a number of unique features
to the study of the evolution of B. pertussis and in par-
ticular to explore the relationship between changes in
strain frequencies and notifications. The Netherlands
comprises a relatively small country in which vac-
cination coverage has been consistently high.
Further, the vaccines and vaccine strains used have
been well characterized, and changes in vaccines and
vaccination schedules were implemented nationwide
within a short time span. Mass vaccination against
pertussis with a WCV was introduced in 1953.
In November 2001, an ACV booster was implemented
for 4-year-olds and in January 2005 the infant
WCV was replaced by an ACV. Two ACVs have
been used in The Netherlands, a three-component
vaccine from GlaxoSmithKline, containing FHA,
Prn and Ptx, and a five-component vaccine from
Sanofi Pasteur-MSD which contains two additional
antigens, Fim2 and Fim3 [26].

In The Netherlands, we observed the successive
appearance of novel, non-vaccine-type, alleles for
ptxA, prn, ptxP and fim3 after the introduction of vac-
cination in 1953. Based on the allelic variation in the
four genes, seven allele types could be defined (Fig. 3).
Two of these (II and III) are typical for vaccine strains
used in The Netherlands and other countries. The
remaining allele types are distinct from the vaccine
types in one or more of the four genes.

Phylogenetic analyses based on SNPs of Dutch
strains isolated between 1949 and 2008 revealed a
tree of which the topology was very similar to that
of trees derived for the human influenza A virus hae-
magglutinin genes, exhibiting a ladder-like structure
with a long trunk and short side branches [43]
(Fig. 3). As noted for the human influenza A virus
haemagglutinin tree [44], the trunk corresponds to
the progenitor lineage. Mutations that occur along
the trunk are eventually fixed, persisting until replaced
by subsequent mutations. In contrast, mutations that
appear on side branches are eventually lost from
the population. The mutations in four virulence-
associated genes fim3, prn, ptxA and ptxP were
found in the trunk of the tree and were fixed until
they were replaced by novel mutations in the same
gene. When travelling from the root to the tip of
the tree, a gradual divergence between the two
Dutch WCV strains and the B. pertussis population
was observed with respect to the four genes. A similar
temporal accruement of mutations has been found by
Octavia and co-workers [23] using a geographically
more diverse strain collection. The distribution
of allele types in the tree indicated that new geno-
types emerged de novo, rather than being selected
from ancient reservoirs, as reappearance of ancient
allele types would be reflected in branches emanating
from, or close to, the root. The most recent changes
in the B. pertussis population involved the emerg-
ence of ptxP3 and fim3-2 strains. Consistent
with this, the earliest Dutch isolates carrying the
ptxP3 and fim3-2 alleles are from 1988 and 1994,
respectively [25]. Similar dates were observed in the
USA [40].

102 266260 337 532  590  853
| | | |   |    |    |  

Prn1 S   RGDAPAGGAVP GGAVP GGAVP GGFGP GGFGP ----- ----- VLD   S   L   PQP   H 
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Prn4   .   ......GGAVP GGAVP GGFGP GGFGP ----- ----- ----- VLD   .   . 
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R F 

Prn7 .   ......GGAVP GGAVP GGAVP GGFGP GGFGP ----- ----- VLD   .  . 
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Prn11   .   ......GGAVP GGAVP GGAVP GGAVP GGFGP GGFGP ----- VLD   .  . 
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Fig. 2 [colour online]. Prn variants found in B. pertussis populations. Protein designations are shown on the left. Dots and
dashes indicate identical and absent amino acids, respectively. Numbering is relative to the N-terminal methionine of
Prn1. The two regions (1 and 2) with five and three amino-acid repeats, respectively, have been blocked. The five
amino-acid repeats occur as three variants which have been highlighted. The RGD motif involved in adherence, and
protein variants found in vaccine strains, are underlined.
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Mutations in B. pertussis are associated with clonal
sweeps

Mutations in fim3, prn, ptxA and ptxP were associated
with clonal sweeps, suggesting they increased strain
fitness or were associated with (as yet unidentified)
mutations that did so [25] (Fig. 4). Vaccine-type
strains (allele types II and III), predominant before
the introduction of vaccination, were replaced by
novel strains. Two types of changes were observed
in the B. pertussis population, antigenic divergence
with vaccine strains and increased Ptx production.
Notably, the emergence of ptxP3 strains coincided
with increased notifications. An association between
the emergence of ptxP3 strains and increased notifica-
tions has also been observed in Finland and Australia
[22, 38]. Concordant changes in allele frequencies and
notifications were also observed in the USA [40].
In the USA, however, the association between ptxP3
frequencies and notifications was less tight than in

The Netherlands and increases in notifications most
closely followed fim3-2 frequencies. The fim3-2 allele
is only found in association with ptxP3, and is thus
difficult to separate effects caused by the two alleles.
However, in The Netherlands the increase in notifica-
tions most consistently followed the increase in ptxP3
frequencies. In the Netherlands, fim3-2 strains in-
creased in frequency, from 4% in 1996 to 62% in
2002, after which these strains gradually decreased
in frequency to 9% in 2007 [25]. In this period of
declining fim3-2 frequencies, notifications remained
high, suggesting that fim3-2 has played only a minor
role, if any, in the increase in notifications. The dif-
ferences observed between the USA and The
Netherlands may be due to the different vaccines
used. In The Netherlands a WCV was used until
2005, while in the USA WCVs were replaced by
ACVs in 1997 [40]. The common factor is, however,
the link between the emergence of a distinct B. per-
tussis lineage and the increase in notifications.

Allele types

VII

VI

V

IV

III

II

I

ptxP3-ptxA1-prn2/3-fim3-2

ptxP3-ptxA1-prn2/3-fim3-1

ptxP1-ptxA1-prn1-fim3-1

ptxP2-ptxA4-prn1-fim3-1

ptxP1-ptxA4-prn1-fim3-1

ptxP4-ptxA5-prn10-fim3-1

ptxP1-ptxA1-prn2/3-fim3-1

Fig. 3 [colour online]. Relationship between phylogeny and the accumulation of mutations in virulence genes in The
Netherlands. The maximum parsimony tree was based on 85 SNPs and 198 Dutch strains isolated between 1949 and
2008. Changes in the alleles for fim3, ptxA, ptxP and prn are indicated. The alleles prn2 and prn3 were combined as they
are both non-vaccine types. Based on the four alleles, seven allele types (I–VII) could be distinguished. Coloured dots
distinguish allele types and arrows indicate changes between allele types. Whole-cell vaccines used in The Netherlands
until 2005 were derived from allele types II and III (blocked). (Adapted from van Gent et al. [25].)
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Interestingly, prn2, ptxP3 and fim3-2 were first
detected in, respectively, the early 1980s, 1988–1989,
and 1994, in both the USA and The Netherlands,
suggesting rapid global spread of strains carrying
novel adaptive mutations.

P3 strains: a globally emerged lineage

Phylogenetic studies showed that the ptxP3 strains
isolated in the Americas, Asia, Australia and Europe
formed a monophyletic branch which recently
diverged from ptxP1 strains [43]. First detected in
the late 1980s, ptxP3 strains are now found worldwide
and in several countries they have reached frequencies
of more than 90%, essentially replacing the resident
ptxP1 B. pertussis population [21, 22, 36, 37, 39, 40].
This rapid global expansion of ptxP3 strains is

remarkable. The ptxP3 strains produce more Ptx
than the ptxP1 strains they replaced, providing a
rationale for their emergence and spread. It has been
well established that Ptx plays a central role in sup-
pression of both the innate and acquired immune
system [45]. Thus, in primed hosts, increased Ptx pro-
duction may delay an effective immune response,
enhancing transmission and hence pathogen fitness.
Increased Ptx production may also be beneficial for
the pathogen because the host requires higher levels
of antibodies against Ptx for toxin neutralization.

Ptx causes leukocytosis in humans by inhibiting
regression of leukocytes from the vasculature, and
high levels of leukocytosis are associated with an
increased mortality rate in infants due to pulmonary
hypertension [46]. Thus, the invasion of ptxP3 strains
may result in increased illness and death. Although
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Fig. 4 [colour online]. Temporal trends in strain frequencies and notifications in The Netherlands during 1949–2010. Strain
frequencies are indicated by coloured lines. Strains were aggregated into allele types (ATs) defined by the combination of
alleles for ptxP, ptxA, prn and fim3 as shown in the top of the graph. No distinction was made between strains with the
prn2 and prn3 alleles. ATs are indicated by blocked Roman numerals and allele changes resulting in differences between
ATs are indicated. ATs found in one or two periods only, with a frequency lower than 15%, are not shown. If necessary,
years were combined to increase the number of analysed strains to at least six. Note that due to this, the x-axis is not
proportional. Changes in the vaccination programme are indicated below the x-axis. From 1953 to 2005 a whole cell
vaccine (WCV) was used. In 2002, a booster with an acellular vaccine (ACV) was introduced for 4-year-olds and in 2005
the WCV was replaced by an ACV for all age groups. (Adapted from van Gent et al. [25].)
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there is some evidence that ptxP3 strains are more
virulent [22, 47], further research is needed to resolve
this issue. For this purpose, comparing the clinical pic-
ture and outcome between ptxP3- and ptxP1-infected
individuals would be valuable.

The effect of ACVs on B. pertussis populations

The changes in allele frequencies observed in B. per-
tussis populations, predate the introduction of ACVs
and were thus presumably primarily driven by vacci-
nation with WCVs. ACVs were introduced between
1994 and 2005 in a number of countries and may
exert selective pressures that are qualitatively and
quantitatively different from WCVs. WCVs induce a
Th1 cytokine profile while the response after ACV
vaccination shows a mixed Th1/Th2 profile [15]. Fur-
ther, WCVs induce a broad immune response, with
relatively low titres against individual antigens, while
ACVs induce an immune response against only a
few antigens, but with higher titres [48]. Therefore,
the introduction of ACVs may eventually result in
new adaptations in the B. pertussis population.
Indeed, after the introduction of ACVs in France,
Japan, Finland and The Netherlands, strains have
been found that do not express FHA, Ptx or
Prn, three components of the currently used ACVs
[49–51] (our unpublished data). In France and
Japan, strains that do not express Prn have reached
frequencies of 14% and 27%, respectively. As yet,
the effects of the loss of Prn production on vaccine
efficacy and strain fitness have not been quantified.

Strain variation affects colonization of naive and
immune mice

Functional studies in animal models are important
to substantiate epidemiological associations. Several
groups have studied the effect of B. pertussis strain
variation on vaccine efficacy in mice. Ideally, such
studies need to reflect the conditions in human popu-
lations, where newly emerged strains are most success-
ful in individuals in which immunity has waned.
Four studies revealed an effect of strain variation on
vaccine efficacy [52–55]. Particularly elegant was
the study by Komatsu and co-workers [55]. These
authors constructed isogenic strains differing only
in the ptxA and/or prn alleles and showed that mis-
matches with the vaccine strain in both alleles was re-
quired to reduce vaccine efficacy in a mouse model.
The effect of the ptxP3 allele on vaccine efficacy has
not yet been studied in mice. However, studies in

naive mice can also shed light on the relevance of strain
variation. When we tested a large number of clinical
isolates in naive mice, only variation in Prn and ptxP
were found to significantly affect colonization [56].
Variation in Prn is mainly found in region R1, which
is located proximal to the RGD motif implicated in
host-cell attachment [57]. Thus variation in R1 may
affect both immune recognition and binding to host
cells, explaining why polymorphism in Prn was found
to affect colonization of both naive and immune mice
[52, 56]. In naive mice, Prn1 strains were more profi-
cient colonizers than Prn2 and Pn3 strains, although
only the difference with Prn3 was statistically signifi-
cant. In immune mice, however, Prn2 were the best
colonizers. These observations are consistent with the
predominance of Prn1 and Prn2 strains in unvacci-
nated and vaccinated populations, respectively.

DISCUSSION

Studies of B. pertussis populations suggest that, even
in the context of complex bacterial genomes, small
mutations in single genes can have a significant effect
on strain fitness, resulting in clonal sweeps within a
period of 6–20 years [25]. This implies that B. pertussis
is a well-adapted pathogen which requires mainly gen-
etic fine-tuning to persist and resurge in the face of
vaccination. Perhaps this is because B. pertussis con-
tains a large gene repertoire focused on manipulating
and suppressing host defences [13]. As suggested by
the emergence of ptxP3 strains, small genetic changes
in bacterial pathogens may be of significant relevance
for public health.

Changes in the B. pertussis population, similar to
those in The Netherlands, have been observed in
many countries. Yet they have not always been fol-
lowed by (large) increases in notifications. It is unclear
whether these discrepancies are due to differences in
surveillance methods [58] or differences in population
immunity. By standardization of surveillance it should
be possible to distinguish between the two possibilities
and to select vaccines and vaccination strategies that
are most effective.

Pathogen adaptations reveal weak spots in the
bacterial defence and hence point to ways to improve
vaccination. For example, memory induction and the
effectiveness of antibodies may be improved by up-
dating vaccines to include protein variants that pre-
dominate in current populations. The emergence and
global spread of strains with increased Ptx production
underline the central role Ptx plays in the ecology of
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pertussis. Thus, persistence of sufficient high levels of
Ptx neutralizing antibodies may be the clue to resolv-
ing the pertussis problem. In light of this, the use of
boosters, with low Ptx content, for infants and adults
should be carefully (re)considered as fewer side-
effects, due to the reduced antigen content, should
be balanced against increased infection rates if the
duration of protection is affected. The quality and per-
sistence of Ptx antibodies can be improved by repla-
cing chemically detoxified Ptx with genetically
detoxified Ptx. Genetically detoxified Ptx is more
immunogenic than chemically detoxified Ptx and
also induces Ptx neutralizing antibodies more
efficiently [59]. While changing the composition of
pertussis vaccines may be a long-term project, morbid-
ity and mortality in infants can be reduced signifi-
cantly in the short term by maternal immunization
or cocooning strategies [60, 61]. In fact, maternal
immunization is now recommended in the USA and
UK [62, 63]. The pertussis epidemics in the last 3
years may give us some respite as population immu-
nity has been boosted by natural infection. However,
this should not give us a (false) sense of security as
there is no evidence that the increase of pertussis infec-
tions in adolescents and adults is waning.

Changes observed in B. pertussis populations are
predicted to affect the duration of protection (and
thus the waning of immunity). Antigenic divergence
with vaccine strains will affect both memory recall
and the efficacy of antibodies. Further, higher levels
of Ptx, may increase suppression of the innate and
acquired immune system, allowing B. pertussis strains
to outpace antibody recall in hosts in whom immunity
has waned. The solution to the pertussis problem
requires a comprehensive approach focused on the
characteristics of the vaccines, the B. pertussis popu-
lations and the interaction between the two.
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