REPRESENTATIONS OF INFINITE SOLUBLE GROUPS

by IAN M. MUSSON

(Received 16 June, 1981)

1. Introduction. The purpose of this paper is to study the following two questions.
(1) When does the group algebra of a soluble group have infinite dimensional irreducible modules?
(2) When is the group algebra of a torsion free soluble group primitive?

In relation to the first question, Roseblade [13] has proved that if G is a polycyclic group and k an absolute field then all irreducible $k G$-modules are finite dimensional. Here we prove a converse.

Theorem A. Let G be a finitely generated hyperabelian group which is not polycyclic-by-finite. If k is any field, then $k G$ has an infinite dimensional irreducible module.

We remark that B. A. F. Wehrfritz has recently and independently proved a result similar to Theorem A [17].

Recently some progress has been made on the second question. For instance, Roseblade has solved the problem for polycyclic groups in [14], while in [2] Brown has treated the case of torsion free metanilpotent groups whose Fitting subgroup has infinite rank.

Here we study the finite rank case. In many situations a reduction to the case where the group G has an abelian normal subgroup A with G / A infinite cyclic, seems possible, for example [4, Theorem 4.6]. By a result of Passman [11, 9.3.2] the group algebra $k G$ will always be primitive if $\Delta(G)=1$, and the field k is large enough. Thus we are concerned to find techniques which will work over any field.

We can adapt the definition of a plinth given on [11, p. 547] to this situation. If A is a torsion free abelian subgroup of a group G, and A has finite rank, we say A is a plinth in G if there is a subgroup G_{0} containing A such that
(i) $A \leq G_{0}$
(ii) $\left|G: G_{0}\right|<\infty$ and $G_{0} / C_{G_{0}}(A)$ is abelian, and
(iii) G_{0} and all its subgroups of finite index act rationally irreducibly on A.

If Γ is a group of automorphisms of the abelian group A, we say A is a Γ-plinth if A is a plinth in the split extension $G=A \sqsupset \Gamma$.

Suppose that A is an $\langle x\rangle$-plinth and $G=\langle A, x\rangle$. The problem of deciding when $k G$ is primitive here splits into two cases. Suppose that A_{0} is a finitely generated subgroup of A of maximum rank. If $A_{0}^{\langle x\rangle} / A_{0}$ is finite then we may assume $A_{0}=A_{0}^{(x)}$. In this case G is locally polycyclic and the methods of [14] can be applied, at least if k is non-absolute (see Corollary 4.6). We study the contrary case where $A_{0}^{\langle x\rangle} / A_{0}$ is infinite.

Theorem B. Suppose that A is an $\langle x\rangle$-plinth such that $G=\langle A, x\rangle$ is not locally polycyclic. If k is any field, then $k G$ is primitive.

To prove Theorem B, we need a variant of Bergman's Theorem [1], [11, Chapter 9],
for these groups. We prove that if A is an $\langle x\rangle$-plinth and I is a non-zero ideal of $k A$ such that $I^{x}=I$, then $k A / I$ is algebraic (Corollary 4.3). We next look for maximal ideals M of $k A$ such that

$$
\bigcap_{n \in \mathbb{Z}} M^{x^{n}}=0
$$

This is closely related to the Ergodic Conjecture of Farkas and Passman [4] and is known to imply primitivity.

We set $M \dagger=A \cap(1+M)$.
Theorem C. Suppose that A is an $\langle x\rangle$-plinth such that $A=A_{0}^{(x\rangle}$ for a finitely generated subgroup A_{0} of A and suppose $G=\langle A, x\rangle$ is not polycyclic-by-finite. If M is a maximal ideal of $k A$, then $\bigcap_{n \in \mathbb{Z}} M^{x^{n}}=0$ if and only if $A / M \dagger$ is infinite.

If A / A_{0} is a p-group and k is an absolute field of characteristic p, then $k A$ has no maximal ideal M with $A / M \dagger$ infinite. However, in this case we deduce Theorem B from a result of Irving, [8, Theorem 4.2].

Examples of groups satisfying the hypotheses of Theorems B and C, may be constructed as follows. Let x be an algebraic number and A_{0} a \mathbb{Z}-lattice in $\mathbb{Q}(x), A$ the $\mathbb{Z}\langle x\rangle$-module generated by A_{0}, and G the split extension of A by x. If we assume that x^{n} .does not lie in any of the proper subfields of $\mathbb{Q}(x)$ for $n \geq 1$, then A will be an $\langle x\rangle$-plinth. If in addition we ensure that x is not a unit in the ring of algebraic integers of $\mathbb{Q}(x)$ then $G=\langle A, x\rangle$ is not locally polycyclic.

We remark that Irving has shown that for any integer $r>1$ the group algebra of the group presented by $\left\langle a, x \mid a^{x}=a^{r}\right\rangle$ is primitive over any field, [8, Theorem 5.2].

As it turns out, Theorem C provides more information about x-invariant ideals of $k A$. Given any non-zero x-invariant ideal I of $k A$, it is easily seen that \sqrt{I} is a semiprime x-invariant ideal of $k A$, where \sqrt{I} / I is the nil-radical of $k A / I$. Thus we may assume that I is semiprime. In general, a semiprime ideal of $k A$ is an infinite intersection of prime ideals. However, Theorem C restricts the kinds of maximal ideals M which can contain I to those with $A / M \dagger$ finite.

We prove the following result, which is a sharper version of Corollary 4.3.
Theorem D. Let A be an $\langle x\rangle$-plinth and I a non-zero x-invariant semi-prime ideal of $k A$. Suppose that $A=A_{0}^{(x)}$ where A_{0} is finitely generated, and A is not finitely generated. Then $|A: I \dagger|<\infty$, and I is a finite intersection of maximal ideals.

Theorem A is proved in $\S 3$ of this paper; Theorems $B-D$ in $\S 4$. In $\S 2$, we prove some preliminary results about abelian groups which are needed later.

I am very grateful for the hospitality of the University of Alberta, where this work was carried out.
2. Abelian Groups of Finite Rank. Throughout this section A will denote a torsion free abelian group of finite rank and A_{0} a finitely generated subgroup of maximum rank.

Lemma 2.1. If M is a maximal ideal of $k A$ then $k A / M$ is algebraic over k.

Proof. Since $k A$ is generated by elements which are integral over $k A_{0}, k A$ is integral over $k A_{0}$. Hence by [10, Theorems 44 and 47], $M_{0}=M \cap k A_{0}$ is a maximal ideal of $k A_{0}$. By the Nullstellensatz $k A_{0} / M_{0}$ is finite dimensional and the result follows since $k A / M$ is algebraic over $k A_{0} / M_{0}$.

Lemma 2.2. Every maximal ideal M of $k A$ satisfies $|A: M \dagger|<\infty$ if and only if k is an absolute field of characteristic p, and A / A_{0} is a finite extension of a p-group.

Proof. Suppose the stated conditions hold, and that M is a maximal ideal of $k A$. By Lemma $2.1 \mathrm{kA} / \mathrm{M}$ is an absolute field and $A / M \dagger$ is periodic, and so is a finite extension of . a p-group. As k has characteristic $p,|A: M \dagger|<\infty$.

To see the necessity of the conditions, let \tilde{k} be the algebraic closure of k and $\phi: A \rightarrow(\tilde{k})^{*}$ a homomorphism from A to the multiplicative group $(\tilde{k})^{*}$ of \tilde{k}, and let F be the subfield of \tilde{k} generated by k and $\phi(A)$. Then any element of F may be written as a finite sum $\sum_{x \in A} \lambda_{x} \phi(x)$ where the coefficients λ_{x} belong to k. We may regard F as a $k A$-module. Suppose that V is a non-zero submodule of F and $\alpha \in V, \alpha \neq 0$. Then $\alpha^{-1}=\sum_{x \in A} \lambda_{x} \phi(x) \in F$. For all x in this finite sum $\alpha \phi(x) \in V$. Therefore $1=\alpha \alpha^{-1}=$ $\sum \lambda_{x} \alpha \phi(x) \in V$. Hence F is an irreducible $k A$-module and $F \cong k A / M$ for some maximal ideal M of $k A$. Clearly $M \dagger=\operatorname{Ker} \phi$.

Now suppose ζ is an element of k which is not a root of unity and let a be a non-trivial element of A. The map $\langle a\rangle \rightarrow k^{*}$ given by $a \rightarrow \zeta$ extends to a homomorphism $\phi: A \rightarrow(k)^{*}$, since $(k)^{*}$ is divisible. As $\operatorname{Ker} \phi \cap\langle a\rangle=1, A / \operatorname{Ker} \phi$ is infinite.

Finally suppose that $A / A_{0} \cong P \oplus Q$ where P is a p-group and Q is an infinite p^{\prime}-group. Since Q has finite rank, we see that either Q involves some $C_{q^{\infty}}, q \neq p$ or Q involves a direct sum of cyclic groups of prime orders p_{i} for infinitely many primes p_{i}. Since $(\tilde{k})^{*}$ contains a copy of each of these groups this yields a homomorphism $\phi: A \rightarrow \tilde{k}^{*}$ such that $A / \operatorname{Ker} \phi$ is infinite.

Lemma 2.3. Let x be an automorphism of A such that $A=A_{0}^{\langle x\rangle}$. If C is a subgroup of A with $A / C \equiv C_{p^{a}}$, then there is an element a of A_{0} whose conjugates $\left\{a^{x^{x}} \mid r \in \mathbb{Z}\right\}$ lie in infinitely many distinct cosets of C in A.

Proof. Let $A_{0}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. There is no integer s such that $\left(a_{i}^{x}\right)^{p^{*}} \in C$ for all $i=1, \ldots, n$ and $r \in \mathbb{Z}$, since A / C has unbounded exponent, and $A=A_{0}^{(x)}$ is generated by the conjugates $a_{i}^{x^{\prime}}$. Since there are only finitely many a_{i}, there is an element $a=a_{i}$ whose conjugates have unbounded order modulo C.

We introduce some notation. Let B be a subgroup of the abelian group A and p a prime. Let \sqrt{B} be the isolator of B in A, that is \sqrt{B} / B is the torsion subgroup of A / B. Similary we let $\sqrt[p]{B} / B$ and $\sqrt[p]{B} / B$ denote the p-torsion and p^{\prime}-torsion subgroups of A / B respectively. We say B is isolated, p-isolated or p^{\prime}-isolated according as $B=\sqrt{B}, B=\sqrt[p]{B}$ or $B=\sqrt[p]{B}$.

Lemma 2.4. Let x be an automorphism of A such that $A=A_{0}^{(x)}$. Suppose $\sqrt[n]{A_{0}} / A_{0}$ is
infinite. Then A has a subgroup B containing A_{0} such that either
(1) $B^{x} \subsetneq B$ and B / B^{x} is a finite p-group, or
(2) $B \subsetneq B^{x}$ and B^{x} / B is a finite p-group.

If in addition $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is irreducible as a $\mathbb{Q}\langle x\rangle$-module, then $\bigcap_{n \in \mathbb{Z}} B^{x^{n}}=1$.
Proof. Let $A_{1}=\sqrt[p]{A_{0}}$ and $A_{2}=\bigcup_{n \geqq 0} A_{0} A_{0}^{x} A_{0}^{x^{2}} \ldots A_{0}^{x^{n}}$. Then $A_{2}^{x} \subseteq A_{2}$. If $a \in A_{1}$, then $a^{m} \in A_{0}$ for some integer m prime to p, so $\left(a^{x}\right)^{m} \in A_{0}^{x} \subseteq A_{2} \subseteq A_{1} A_{2}$. Since $A_{1} A_{2}$ is p^{\prime}-isolated we have $a^{x} \in A_{1} A_{2}$. Therefore $\left(A_{1} A_{2}\right)^{x} \subseteq A_{1} A_{2}$. If this inclusion is strict, then 1) holds with $B=A_{1} A_{2}$.

If $\left(A_{1} A_{2}\right)^{x}=A_{1} A_{2}$, then since $A_{0}^{x^{-1}}$ is finitely generated, there is an integer r such that

$$
A_{0}^{x^{-1}} \subset A_{1} A_{0} A_{0}^{x} \ldots A_{0}^{x^{\prime}}=B .
$$

Since B is p^{\prime}-isolated this gives $B^{x^{-1}} \subset B$ as before. The inclusion is strict since $\sqrt[p]{A_{0}} / A_{0}$ is infinite, and $B / B^{x^{-1}}$ is a finite p-group, so 2) holds.

Finally, suppose that $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is irreducible as a $\mathbb{Q}\langle x\rangle$-module and let $C=\bigcap_{n \in \mathbb{Z}} B^{x^{n}}$. Since $C^{x}=C$, either $C=1$ or C has rank n.

If C has rank n then $C_{0}=C \cap A_{0}$ has finite index in A_{0}. But then $A_{0}^{\langle x\rangle} / C_{0}^{\langle x\rangle}$ has finite exponent and is finite. This implies A / C is finite and so A / B is finite. This is inconsistent with either (1) or (2).

We remark that if $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is irreducible as a $\mathbb{Q}\langle x\rangle$-module, the conclusion of Lemma 2.4 is precisely what is required to apply Theorem 4.2 of Irving's paper [8]. This shows that $k G$ is primitive, where $G=\langle A, x\rangle$ and k is any field of characteristic p.

3. Infinite Dimensional Irreducible Modules

Lemma 3.1. Let G be a polycyclic-by-finite group, k an absolute field and M a finitely generated $k G$-module of infinite dimension over k. Then there are elements $m \in M$ and $x \in G$ such that $m k X$ is infinite dimensional where $X=\langle x\rangle$.

Proof. Without loss of generality M is faithful for G and cyclic, and $M \cong k G / I$ where I is a right ideal of $k G$. Since G must be infinite, it has a torsion free abelian normal subgroup $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. If $I \cap k\left\langle a_{j}\right\rangle=0$ for some j then we can take $x=a_{j}$ and $m=1+I \in M$. Otherwise for all $j, k\left\langle a_{j}\right\rangle /\left(I \cap k\left\langle a_{j}\right\rangle\right)$ has finite dimension, and so $k A /(I \cap$ $k A)$ is finite dimensional. Hence, $T=\{a \in A \mid a-1 \in I \cap k A\}$ satisfies $|A: T|<\infty$ since k is absolute (see [11, 12.3.8]). Therefore, $\left|A: \operatorname{core}_{G}(T)\right|<\infty$ and since M is faithful A is finite, a contradiction.

Proof of Theorem A. Since G is finitely generated, and the class of polycyclic-byfinite groups is finitely presented, we can suppose that G is not polycyclic-by-finite but that every proper homomorphic image of G is polycyclic-by-finite by [12, Lemma 6.17]. Let A be a non-trivial abelian normal subgroup of G. Then G / A is polycyclic-by-finite and we may treat A as a $\mathbb{Z}(G / A)$-module.

Case 1. A has infinite rank. We can suppose that $A=\langle a\rangle^{G}$, where $a \in A, a \neq 1$. Hence,
A is a cyclic $\mathbb{Z} G$-module. Suppose that A is \mathbb{Z}-torsion-free. By [$\mathbf{1 1}$, Theorem 12.2.7] there is a free abelian subgroup A_{0} of A such that A / A_{0} is a π-torsion group where π is a finite set of primes. If $p \notin \pi$, then $A^{p} \cap A_{0}=A_{0}^{p}$ and so $A_{0} / A_{0}^{p} \simeq A_{0} /\left(A^{p} \cap A_{0}\right) \cong\left(A_{0} A^{p}\right) / A^{p} \subseteq$ A / A^{p}. Now as A is \mathbb{Z}-torsion free and has infinite rank, A_{0} also has infinite rank. Therefore, A_{0} / A_{0}^{p} is an infinite elementary abelian p-group and hence so is A / A^{p}. Therefore, G / A^{P} is not polycyclic-by-finite. Our assumption on homomorphic images gives $A^{p}=1$, a contradiction since A is \mathbb{Z}-torsion free.

Hence, for some prime $p, A_{p}=\left\{a \in A \mid a^{p}=1\right\} \neq 1$. By assumption, G / A_{p} is polycyclic-by-finite. Hence A_{p} is an infinite elementary abelian p-group. We can regard A_{p} as an infinite dimensional $\mathbb{F}_{p} G / A$-module. By Lemma 3.1 there are elements $a \in A_{p}$ and $x \in G$ such that $a \mathbb{F}_{p} X$ is infinite dimensional, where $X=\langle x\rangle$. It follows that the elements $\left\{a x^{n} \mid n \in \mathbb{Z}\right\}$ are linearly independent over \mathbb{F}_{p}.

Hence $\langle a\rangle^{X} \cong \oplus_{n \in \mathbb{Z}} a^{x^{n}}$, and $H=\langle a, x\rangle \cong C_{p} \sim C_{\infty} \leq G$. Now by [11, Lemma 9.2.8] $k H$ is primitive for any field k. Therefore, $k H$ has an infinite dimensional irreducible module and so does $k G$.

Case 2. A has finite rank. Clearly A is not finitely generated. We first reduce to the case where $G=\langle A, x\rangle$ is abelian-by-(infinite cyclic). Let W be an irreducible $\mathbb{Q} G$ submodule of $A \otimes_{\mathbb{Z}} \mathbb{Q}$ and $B=A \cap W$. Then B is finitely generated as a $\mathbb{Z} G$-module but not as an abelian group since G / B is polycyclic-by-finite. We can suppose that $A=B$, so that A is rationally irreducible. By passing to a subgroup of finite index we can suppose $G / C_{G}(A)=\left\langle x_{1}, \ldots, x_{r}\right\rangle$ is abelian. It follows that there is an element a of A and $x=x_{i}$ such that $\langle a\rangle^{(x\rangle}$ is not finitely generated as an abelian group. Now the group $\langle a, x\rangle$ is finitely generated and metabelian but not polycyclic-by-finite so we can suppose that $G=\langle a, x\rangle$ and $A=\langle a\rangle^{G}$. As before $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is an irreducible $\mathbb{Q}\langle x\rangle$-module. Let A_{0} be a finitely generated subgroup of A of maximum rank such that $A=A_{0}^{\langle x\rangle}$. Let k be a field of characteristic $p \geq 0$. There are now two subcases depending on the structure of A / A_{0}.

Suppose first that $\sqrt[p]{A_{0}} / A_{0}$ is infinite. Then by Lemma 2.4 and [8, Theorem 4.2] $k G$ is primitive.

Finally suppose $\sqrt[p]{A_{0}} / A_{0}$ is finite. Since A / A_{0} involves only finitely many primes, there is a maximal ideal M of $k A$ such that $A / M \dagger \cong C_{q^{*}}$ where $q \neq p$, by Lemma 2.2. Let $V=k A / M$ and $W=V \otimes_{k A} k G$. We claim that W is an irreducible $k G$-module. Let $C=M \dagger$ and using Lemma 2.3 choose an element $a \in C$. whose conjugates $\left\{a^{x} \mid r \in \mathbb{Z}\right\}$ lie in infinitely many distinct cosets of C in A. Then for all $\left.r \geq 1, C^{\left(x^{2}\right\rangle}\right\rangle / C$ is infinite and so $C^{\left(x^{\prime}\right)}=A$. Suppose that W^{\prime} is a non-zero submodule of W and that $w=$ $v_{0}+v_{1} x+\ldots+v_{r} x^{r} \in W^{\prime}$ where $v_{i} \in V$, with $v_{0} \neq 0$ and $v_{r} \neq 0$. If $r \geq 1$, then as $C^{\left\langle x^{\prime}\right\rangle}=A$ there is an element c of C such that either $x^{r} c x^{-r} \notin C$ or $x^{-r} c x^{r} \notin C$. In the first case $v_{0} c=v_{0}$ and $v_{r} x^{r} c \neq v_{r} x^{r}$ while in the second $v_{0} x^{-r} c x^{r} \neq v_{0}$ and $v_{r} x^{r}\left(x^{-r} c x^{r}\right)=v_{r} x^{r}$. A standard 'shortest length' argument shows that $W^{\prime} \cap V \neq 0$. Hence, $V \subseteq W^{\prime}$ since V is an irreducible $k A$-module. However, W is generated by the conjugates of V under x so $W^{\prime}=W$. This completes the proof of Theorem A.

Remarks. (1) Part of the motivation for Theorem A lies in obtaining a converse to the result of Jategaonkar [9] that a finitely generated abelian-by-polycyclic group is
residually finite. For suppose that the group G satisfies the hypothesis of Theorem A, then there is an irreducible $\mathbb{F}_{p} G$-module A such that the split extension $A \sqsupset G$ is finitely generated but not residually finite.
(2) We might ask, as in [3, Questions 2 and 9] for general conditions under which all irreducible $k G$-modules are finite dimensional over k. At present only special cases are known. For countable locally finite groups with no elements of order p see [5], [7] and for soluble groups over \mathbb{C}, see [15]. If G is a finitely generated linear group, then by [16, Theorem 10.16], G is either soluble-by-finite or contains a non-cyclic free subgroup. Since the group algebra of a free group is primitive, it follows from Theorem A that if all the irreducible $k G$-modules are finite dimensional then G is polycyclic-by-finite.

Finally, we remark that if G is a finitely generated infinite p-group, and k a field of characteristic p, it is not known whether $J(k G)=\omega k G$, see discussion on page 415 of [11]. If this is the case then the only irreducible $k G$-module is the trivial one.
4. Primitive Group Algebras. Throughout this section A will denote a torsion-free abelian group of finite rank and I an ideal of $k A, I \neq k A$. We first outline how the results of Bergman [1] may be extended to this situation. With minor changes we can follow the proof given in [11, Chapter 9] using log subgroups. A log subgroup for I is a subgroup W of A such that for all $\alpha \in I, \alpha \neq 0$ there exist $x, y \in \operatorname{Supp} \alpha$ with $x y^{-1} \in W$ and $x y^{-1} \neq 1$. Whenever these subgroups appear as kernels of valuations as in [11, Lemma 9.3.5] they are necessarily isolated in A since the value group is torsion-free. Thus we can work with isolated log subgroups.

Lemma 4.1. Let A be torsion-free abelian of finite rank and $\mathscr{F}=\left\{F_{\alpha} \mid \alpha \in I\right\}$ a collection of finite non-empty subsets of A. Let $W=W(\mathscr{F})$ be the set of all isolated subgroups W of A such that $W \cap F_{\alpha} \neq \varnothing$ for all α. Then every member of \mathscr{W} contains a minimal member, and W has only finitely many minimal members.

Proof. Note that if \bar{A} is any proper torsion-free image of A, then \bar{A} has smaller rank than A. Hence we can use induction on $\operatorname{rank}(A)$. If $\operatorname{rank}(A)=0$ then $A=\langle 1\rangle$ while if $\operatorname{rank}(A)=1$ the only isolated subgroups of A are $\langle 1\rangle$ and A and the result is trivial in these cases. If $1 \in F_{\alpha}$ for all α, then $\langle 1\rangle$ is the unique minimal member of \mathcal{W}. Suppose that for some $\beta, 1 \notin F_{\beta}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Let $\left.W_{i}=\{W \in W) a_{i} \in W\right\}$. Then we have $\mathcal{W}=$ $\mathscr{W}_{1} \cup \mathscr{W}_{2} \cup \ldots \cup \mathscr{W}_{n}$ and it suffices to show that each \mathscr{W}_{i} has only finitely many minimal members and that any member of W_{i} contains a minimal member.

Consider \mathscr{W}_{1}. Let $A_{1}=\sqrt{\left\langle a_{1}\right\rangle}$ the isolator of $\left\langle a_{1}\right\rangle$ in A, and let ${ }^{-}$denote the natural homomorphism $A \rightarrow A / A_{1}=\bar{A}$. If $W \in W_{1}$ then $W \cap F_{\alpha} \neq \varnothing$ for all α and so $\bar{W} \cap \bar{F}_{\alpha} \neq \varnothing$. Moreover, if $W_{1}, W_{2} \in W_{1}$ with $\bar{W}_{1}=\bar{W}_{2}$, then since $a_{1} \in W_{1}, W_{2}$ and the W_{i} are isolated, $A_{1} \subseteq W_{1} \cap W_{2}$ and hence $W_{1}=W_{2}$.

Conversely, if $\bar{W} \in \mathscr{W}(\overline{\mathscr{F}})$ and W denotes the full inverse image of \bar{W} under ${ }^{-}$then W is isolated in A, since \bar{W} is isolated in \bar{A}. Hence ${ }^{-}$gives a one-one correspondence between members of \mathcal{W}_{1} and $W(\overline{\mathscr{F}})$ and the result follows by induction.

Let I be an ideal of $k A$. We define the rank of I by

$$
\operatorname{rank}(I)=\operatorname{rank}(A)-\max \{\operatorname{rank}(B) \mid I \cap k B=0\}
$$

The proof of the next theorem and the corollary may now be adapted from [11, Chapter 9].

Theorem 4.2. Let A be a torsion-free abelian group of finite rank, and $I \neq k A$ an ideal of $k A$. Then any isolated log subgroup for I contains a minimal isolated log subgroup, and I has only finitely many minimal isolated log subgroups $W_{1}, W_{2}, \ldots, W_{m}$. Furthermore, $\operatorname{rank}(I)=\min \left\{\operatorname{rank}\left(W_{i}\right)\right\}$. Finally if α is any automorphism of A, then $W_{1}^{\alpha}, W_{2}^{\alpha}, \ldots, W_{m}^{\alpha}$ are the minimal isolated log subgroups for I^{α}.

Corollary 4.3. Let A be torsion-free abelian of finite rank, and Γ a group of automorphisms of A. Suppose that A is a Γ-plinth. If I is a Γ-invariant ideal of $k A$, then either $I=0$ or $k A / I$ is algebraic over k, that is given $a \in A$, there is a polynomial $f(t) \in k[t]$ such that $f(a) \in I$.

We remark that in the situation of the corollary, any prime ideal of $k A$ containing I must be a maximal ideal.

In proving Theorem B, we may assume that $A=A_{0}^{\langle x\rangle}$ where A_{0} is finitely generated.
Lemma 4.4. Let A_{0} be a finitely generated subgroup of A of maximum rank. Let x be an automorphism of A such that no power of x centralises A and $A_{1}=A_{0}^{(x)}, G=A J\langle x\rangle$ and $G_{1}=A_{1} J\langle x\rangle$.
(i) Suppose there is a maximal ideal M of $k A_{1}$ such that $\bigcap_{n \in \mathbb{Z}} M^{x^{n}}=0$, then there is a maximal ideal N of $k A$ such that $\bigcap_{n \in \mathbb{Z}} N^{x^{n}}=0$.
(ii) If $k G_{1}$ is primitive then $k G$ is primitive.

Proof. (i) Choose a maximal ideal N of $k A$ containing M, by Zorn's Lemma. Then $M=N \cap k A_{1}$. If $I=\bigcap_{n \in \mathbf{Z}} N^{x^{n}} \neq 0$, then $I \cap k A_{1} \neq 0$, since $k A$ is a domain which is integral over $k A_{1}$. However, $I \cap k A_{1}=\bigcap_{n \in Z} M^{x^{n}}=0$. Hence $I=0$.
(ii) This follows by a similar argument using the fact that any non-zero ideal of $k G$ has non-zero intersection with $k A$, [11, Lemma 7.4.9].

As in [4] the primitivity problem for torsion free soluble groups of finite rank may often be reduced to the abelian-by-(infinite cyclic) case.

In the next result and the corollary, A will denote the Zalesskii subgroup of the group G (see [11, section 9.1]). If I is a non-zero ideal of $k G$ then $I \cap k A \neq 0$.

Lemma 4.5. If G is a torsion-free soluble group of finite rank such that $\Delta(G)=1$, then $\Delta(\langle A, x\rangle)=1$ for some $x \in G$.

Proof. This is essentially the same as the proof of [4, Lemma 4.5]. We merely indicate the modifications that must be made. First we note that for G torsion-free soluble of finite rank, G is nilpotent-by-finite if and only if G is f.c. hypercentral. The crucial point here is that if $B=\Delta(G)$ and B_{0} is a finitely generated subgroup of G such that B / B_{0} is torsion, then $G_{0}=C_{G}\left(B_{0}\right)$ has finite index in G and G_{0} centralizes B since extraction of roots in B is unique. It now follows as in Lemma 4.2 of [4] that $H=G / C_{G}(A)$ is abelian-by-finite and we may suppose this group is actually abelian. The action of G on A by conjugation induces a representation of H as matrices with rational entries. If the result is
false, then by Lemmas 3.2 and 4.4 of [4] each matrix in H has a complex eigenvalue which is a root of unity.
let $V_{0}=A \otimes_{\mathbb{Z}} \mathbb{Q}, V=A \otimes_{\mathbb{Z}} \mathbb{C}$. By Lemma 4.3 of [4] there is a finitely generated subgroup H_{0} of H with H / H_{0} torsion such that H_{0} acts trivially on a non-zero subspace W of V. We can assume that

$$
W=V^{H_{0}}=\left\{v \in V \mid v h=v \quad \text { for all } h \in H_{0}\right\} .
$$

Then W is a submodule of V. Also by choosing a basis of \mathbb{C} over \mathbb{Q} we see that $W=W_{0} \otimes_{\mathbb{Q}} \mathbb{C}$ where $W_{0}=V_{0}^{H_{0}}$. If $H_{1}=C_{H}\left(W_{0}\right)$ then H / H_{1} is isomorphic to a periodic group of matrices over the rational numbers. Hence H / H_{1} is finite, see [12, Part I, p. 85], so there is an integer $k>0$ such that $G^{k} \subseteq C_{G}\left(W_{0}\right)$. The proof may now be completed as in [4, Lemma 4.5].

Corollary 4.6. Let G be a torsion-free soluble group of finite rank with $\Delta(G)=1$ and suppose that G is locally polycyclic. If k is a non-absolute field, then $k G$ is primitive.

Proof. By Lemma 4.5 there is an element x in G such that $H=\langle A, x\rangle$ satisfies $\Delta(H)=1$. It suffices to show that $k H$ is primitive. Since k is non-absolute there is an irreducible $k A$-module V which is faithful for A. It is easy to see that the induced module $V^{H}=V \otimes_{k A} k H$ is irreducible since A is self-centralising in H. Let $I=\operatorname{ann}_{k H}\left(V^{H}\right)$. If $I \neq 0$, then $I \cap k A$ is a non-zero x-invariant ideal of $k A$. Since H is locally polycyclic there is a finitely generated x-invariant subgroup A_{0} of A such that A / A_{0} is torsion. Then by the argument of Lemma $4.4 J=I \cap k A_{0} \neq 0$ and J is a non-zero x-prime ideal of $k A_{0}$ with $J \dagger=1$. This contradicts [14, Theorem D].

If $A \otimes_{\mathbb{Z}} \mathbb{Q}$ is irreducible as a $\mathbb{Q}\langle x\rangle$-module we can extend Lemma 2.3.
Lemma 4.7. Let x be an automorphism of A such that $A=A_{0}^{\langle x\rangle}$ for a finitely generated subgroup A_{0}. Suppose that A itself is not finitely generated and that $A \otimes_{\mathbf{z}} \mathbb{Q}$ is an irreducible $\mathbb{Q}\langle x\rangle$-module. If B is a subgroup of A with A / B infinite then there is an element a of A_{0} whose conjugates $\left\{a^{x^{\boldsymbol{r}}} \mid r \in \mathbb{Z}\right\}$ lie in infinitely many distinct cosets of B in A.

Proof. By Lemma 2.3, it is enough to show that A / B has an image isomorphic to C_{p}^{∞} for some prime p. If \sqrt{B} / B is infinite, we observe that \sqrt{B} / B can involve only finitely many primes, so this follows from the structure of Černikov groups, [6, Theorem 19.2]. If \sqrt{B} / B is finite we can suppose that $B=\sqrt{B}$. If in addition $A / A_{0} B$ is infinite the result follows again since A / A_{0} is C̆ernikov.

Suppose that $A / A_{0} B$ is finite. Then A / B is finitely generated and since B is isolated

$$
A=B \times C \quad \text { with } \quad C \cong A / B
$$

by [6, Corollary 25.3]. Since A / B is infinite, $\operatorname{rank}(B)<\operatorname{rank}(A)$, and so $\bigcap_{n \in \mathbb{Z}} B^{x^{n}}=1$. In fact, some finite intersection is trivial. To see this note that each finite intersection $B^{x_{1}} \cap B^{x^{n_{2}}} \cap \ldots \cap B^{x^{n_{r}}}$ is isolated in A and that A has the minimum condition on isolated subgroups. Therefore $B^{x_{1}} \cap B^{x_{2}} \cap \ldots \cap B^{x_{n}}=1$ for finitely many conjugates of B. Hence A embeds in $A / B^{x_{1}} \times A / B^{x_{2}} \times \ldots \times A / B^{x^{n_{r}}}$ which is finitely generated. This contradiction shows that $A / A_{0} B$ cannot be finite if B is isolated.

Proof of Theorem C. We have $A=A_{0}^{\langle x\rangle}$ where A_{0} is a finitely generated subgroup of A, and A is an $\langle x\rangle$-plinth. Let M be a maximal ideal of $k A$. We must show that $\bigcap_{n \in \mathbf{Z}} M^{x^{n}}=0$ if and only if $A / M \dagger$ is infinite.

If $|A: M \dagger|=n<\infty$, let $B=\left\{a^{n} \mid a \in A\right\}$ then $B \subseteq M \dagger$, and since B is characteristic $\bigcap_{n \in \mathbf{Z}} M^{x^{n}}$ contains $\omega k B$ and so is non-zero. Now suppose that $A / M \dagger$ is infinite and using Lemma 4.7 choose an element a of A whose conjugates $\left\{a^{x^{r}} \mid r \in \mathbb{Z}\right\}$ lie in infinitely many distinct cosets of $M \dagger$ in A. If $I=\bigcap_{n \in \mathbb{Z}} M^{x^{n}} \neq 0$, then by Corollary 4.3, there is a non-zero polynomial $f(t) \in k[t]$ such that $f(a) \in I$. Since $I^{x}=I$ we have $f\left(a^{x^{x}}\right) \in I$ for all $r \in \mathbb{Z}$. However, since the elements $\left\{a^{x^{r}} \mid r \in \mathbb{Z}\right\}$ lie in infinitely many distinct cosets of $M \dagger$, they represent infinitely many distinct elements of the field $k A / M$. In other words the non-zero polynomial $f(t)$ has infinitely many distinct roots in some extension field. This contradiction shows that $I=0$.

Proof of Theorem B. We have a group G of the form $G=\langle A, x\rangle$ where A is an $\langle x\rangle$-plinth, and G is not locally polycyclic. We have to show that $k G$ is primitive for all fields k.

By Lemma 4.4, we may assume that $A=A_{0}^{(x)}$ where A_{0} is a finitely generated subgroup of A. Let k be a field of characteristic $p \geq 0$. If $\sqrt[p]{A_{0}} / A_{0}$ is infinite than $k G$ is primitive by Lemma 2.4 and [8, Theorem 4.2]. On the other hand, if $\sqrt[p]{A_{0}} / A_{0}$ is finite, then since A / A_{0} is infinite, it is not a finite extension of a p-group. Therefore, by Lemma 2.2 there is a maximal ideal M of $k A$ such that $A / M \dagger$ is infinite. Hence, $\bigcap_{n \in \mathbb{Z}} M^{x^{n}}=0$ by Theorem C and again $k G$ is primitive.

Proof of Theorem D. We have an $\langle x\rangle$-plinth A and a non-zero x-invariant semiprime ideal I of $k A$. We have to show that $A / I \dagger$ is finite and that I is a finite intersection of maximal ideals.

Corollary 4.3 shows that $k A / I$ is algebraic so any prime ideal containing I is maximal. Let a be an element of A and $f(t) \in k[t]$ a polynomial such that $f(a) \in I$. For a maximal ideal M containing I we have $|A: M \dagger|<\infty$ by Theorem C. Let n be the least integer such that $a^{n}-1 \in M$, then $\Phi_{n}(a) \in M$ where $\Phi_{n}(t)$ is the nth cyclotomic polynomial. Note that n is prime to the characteristic of k. If $g(t)$ is a polynomial of least degree such that $g(a) \in M$, then $g(t)$ is irreducible, and $g(t)$ divides $\Phi_{n}(t)$ and $f(t)$ since $\Phi_{n}(a)$ and $f(a)$ belong to I. Therefore, for each such integer $n, \Phi_{n}(t)$ and $f(t)$ have a common factor. Since the cyclotomic polynomials $\Phi_{n}(t)$ are relatively prime we obtain only finitely many integers n as M ranges over all maximal ideals containing I. Hence, $a^{m}-1 \in I$, for some integer m so that $A / I \dagger$ is periodic. If $I_{0}=I \dagger \cap A_{0}$ then A_{0} / I_{0} is finite, and so $A_{0}^{\langle x\rangle} / I_{0}^{\langle x\rangle}$ has finite exponent so is finite. However, $I_{0}^{\langle x\rangle} \subseteq I \dagger$ since the latter is $\langle x\rangle$-invariant and contains I_{0}. Therefore, $A / I \dagger$ is finite and $\operatorname{dim}_{k} k A / I$ is finite. Therefore, there are only finitely many maximal ideals containing I, and I is their intersection.

REFERENCES

1. G. M. Bergman, The logarithmic limit set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459-469.
2. K. A. Brown, Primitive group rings of soluble groups, Arch. Math. (Basel) 36 (1981), 404-413.
3. D. R. Farkas, Group rings, an annotated questionaire, Comm. Alg. 8 (1980), 585-602.
4. D. R. Farkas and D. S. Passman, Primitive Noetherian group rings, Comm. Alg. 5 (1978), 301-315.
5. D. R. Farkas and R. L. Snider, Group algebras whose simple modules are injective, Trans. Amer. Math. Soc. 194 (1974), 241-248.
6. L. Fuchs, Abelian groups (Pergamon, 1960).
7. B. Hartley, Injective modules over group rings, Quart. J. Math. 28 (1977), 1-29.
8. R. S. Irving, Some more primitive group rings, Israel J. Math. 37 (1980), 331-350.
9. A. V. Jategaonkar, Integral group rings of polycyclic-by-finite groups, J. Pure and Applied Algebra 4 (1974), 337-343.
10. I. Kaplansky, Commutative rings (University of Chicago Press, 1974).
11. D. S. Passman, The algebraic structure of group rings (Wiley-Interscience, 1977).
12. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, parts 1 and 2 (Springer-Verlag, 1972).
13. J. E. Roseblade, Group rings of polycyclic groups, J. Pure and Applied Algebra 3 (1974), 307-328.
14. J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. 36 (1978), 385-447.
15. R. L. Snider, Soluble groups whose representations are finite dimensional, Abstracts Amer. Math. Soc. (1980), Abstract 775-A6, page 250.
16. B. A. F. Wehrfritz, Infinite linear groups (Springer-Verlag, 1973).
17. B. A. F. Wehrfritz, Groups whose irreducible representations have finite degree I, Math. Proc. Cambridge Philos. Soc. 90 (1981), 411-421.

University of Wisconsin-Madison
Madison, WI 53706
USA

