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1. Introduction. The purpose of this paper is to study the following two questions.
(1) When does the group algebra of a soluble group have infinite dimensional

irreducible modules?
(2) When is the group algebra of a torsion free soluble group primitive?
In relation to the first question, Roseblade [13] has proved that if G is a polycyclic

group and k an absolute field then all irreducible fcG-modules are finite dimensional.
Here we prove a converse.

THEOREM A. Let G be a finitely generated hyperabelian group which is not polycyclic-
by-finite. If k is any field, then kG has an infinite dimensional irreducible module.

We remark that B. A. F. Wehrfritz has recently and independently proved a result
similar to Theorem A [17].

Recently some progress has been made on the second question. For instance,
Roseblade has solved the problem for polycyclic groups in [14], while in [2] Brown has
treated the case of torsion free metanilpotent groups whose Fitting subgroup has infinite
rank.

Here we study the finite rank case. In many situations a reduction to the case where
the group G has an abelian normal subgroup A with G/A infinite cyclic, seems possible,
for example [4, Theorem 4.6]. By a result of Passman [11, 9.3.2] the group algebra kG
will always be primitive if A(G) = 1, and the field k is large enough. Thus we are
concerned to find techniques which will work over any field.

We can adapt the definition of a plinth given on [11, p. 547] to this situation. If A is a
torsion free abelian subgroup of a group G, and A has finite rank, we say A is a plinth in
G if there is a subgroup Go containing A such that

(i) A « G 0 ,
(ii) |G:G0|<°° and G0/CGo(A) is abelian, and

(iii) Go and all its subgroups of finite index act rationally irreducibly on A.
If F is a group of automorphisms of the abelian group A, we say A is a F-plinth if A

is a plinth in the split extension G = A d F.
Suppose that A is an (x)-plinth and G = {A, x). The problem of deciding when kG is

primitive here splits into two cases. Suppose that Ao is a finitely generated subgroup of A
of maximum rank. If A^/AQ is finite then we may assume A 0 = A{Q\ In this case G is
locally polycyclic and the methods of [14] can be applied, at least if k is non-absolute (see
Corollary 4.6). We study the contrary case where A{

o
x)/Ao is infinite.

THEOREM B. Suppose that A is an {x)-plinth such that G = (A,x) is not locally
polycyclic. If k is any field, then kG is primitive.

To prove Theorem B, we need a variant of Bergman's Theorem [1], [11, Chapter 9],
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for these groups. We prove that if A is an (x)-plinth and I is a non-zero ideal of kA such
that I" = I, then kA/I is algebraic (Corollary 4.3). We next look for maximal ideals M of
kA such that

n M*n=o.
neZ

This is closely related to the Ergodic Conjecture of Farkas and Passman [4] and is known
to imply primitivity.

We set Mt = Afl( l + M).

THEOREM C. Suppose that A is an (x)-plinth such that A = A ^ for a finitely generated
subgroup Ao of A and suppose G = (A, x) is not polycyclic-by-finite. If M is a maximal
ideal of kA, then Clnez Mx" = 0 if and only if A/Mt is infinite.

If A/Ao is a p-group and k is an absolute field of characteristic p, then kA has no
maximal ideal M with A/Mt infinite. However, in this case we deduce Theorem B from a
result of Irving, [8, Theorem 4.2].

Examples of groups satisfying the hypotheses of Theorems B and C, may be
constructed as follows. Let x be an algebraic number and Ao a Z-lattice in Q(x), A the
Z(x)-module generated by Ao, and G the split extension of A by x. If we assume that x"
.does not lie in any of the proper subfields of Q(x) for n > 1, then A will be an (x)-plinth.
If in addition we ensure that x is not a unit in the ring of algebraic integers of Q(x) then
G = (A, x) is not locally polycyclic.

We remark that Irving has shown that for any integer r> 1 the group algebra of the
group presented by (a, x | ax = ar) is primitive over any field, [8, Theorem 5.2].

As it turns out, Theorem C provides more information about x-invariant ideals of
kA. Given any non-zero x-invariant ideal I of kA, it is easily seen that VT is a semiprime
x-invariant ideal of kA, where VJ/J is the nil-radical of kA/I. Thus we may assume that I
is semiprime. In general, a semiprime ideal of kA is an infinite intersection of prime
ideals. However, Theorem C restricts the kinds of maximal ideals M which can contain I
to those with A/Mt finite.

We prove the following result, which is a sharper version of Corollary 4.3.

THEOREM D. Let A be an (x)-plinth and I a non-zero x-invariant semi-prime ideal of
kA. Suppose that A = A^c> where Ao is finitely generated, and A is not finitely generated.
Then \A : Jt|<°°, and I is a finite intersection of maximal ideals.

Theorem A is proved in §3 of this paper; Theorems B-D in §4. In §2, we prove
some preliminary results about abelian groups which are needed later.

I am very grateful for the hospitality of the University of Alberta, where this work
was carried out.

2. Abelian Groups of Finite Rank. Throughout this section A will denote a torsion
free abelian group of finite rank and Ao a finitely generated subgroup of maximum rank.

LEMMA 2.1. If M is a maximal ideal of kA then kA/M is algebraic over k.
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Proof. Since fcA is generated by elements which are integral over fcA0, kA is integral
over kA0. Hence by [10, Theorems 44 and 47], Mo = MC\ kA0 is a maximal ideal of kA0.
By the Nullstellensatz kA0/M0 is finite dimensional and the result follows since kA/M is
algebraic over kA0/M0.

LEMMA 2.2. Every maximal ideal M of kA satisfies \A : Mt| < °° if and only if k is an
absolute field of characteristic p, and A/Ao is a finite extension of a p-group.

Proof. Suppose the stated conditions hold, and that M is a maximal ideal of kA. By
Lemma 2.1 kA/M is an absolute field and A/Mt is periodic, and so is a finite extension of.
a p-group. As k has characteristic p, |A:Mt|<°°.

To see the necessity of the conditions, let k be the algebraic closure of k and
(p: A -* (fc)* a homomorphism from A to the multiplicative group (fc)* of fc, and let F be
the subfield of fc generated by k and <j>(A). Then any element of F may be written as a
finite sum £ A*$(*) where the coefficients Ax belong to k. We may regard F as a

xeA

kA -module. Suppose that V is a non-zero submodule of F and aeV, a^O. Then
a~1= X At(J(x)eF. For all x in this finite sum a(f>(x)eV. Therefore l = aa"1 =

IEA

X Ajca^)(x)€ V. Hence F is an irreducible kA-module and F=kA/M for some maximal
ideal M of kA. Clearly Mt = Ker <£.

Now suppose £ is an element of k which is not a root of unity and let a be a
non-trivial element of A. The map (a)-» k* given by a -» £ extends to a homomorphism
<j>: A -* (k)*, since (k)* is divisible. As Ker <ji> fl(a)= 1, A/Ker # is infinite.

Finally suppose that A/A0 = P®Q where P is a p-group and Q is an infinite
p'-group. Since Q has finite rank, we see that either 0 involves some Cq-jq^p or Q
involves a direct sum of cyclic groups of prime orders pf for infinitely many primes p(.
Since (k)* contains a copy of each of these groups this yields a homomorphism <$>: A -* k*
such that A/Ker $ is infinite.

LEMMA 2.3. Let x be an automorphism of A such that A = A ^ . If C is a subgroup of A
with A/C= Cp-, then there is an element a of Ao whose conjugates {a*' \ re2} lie in
infinitely many distinct cosets of C in A.

Proof. Let A0 = {au a2, • • •, an). There is no integer s such that (a^y'eC for all
i = 1 , . . . , n and re 1, since A/C has unbounded exponent, and A = A&° is generated by
the conjugates af. Since there are only finitely many af, there is an element a = a{ whose
conjugates have unbounded order modulo C.

We introduce some notation. Let B be a subgroup of the abelian group A and p a
prime. Let Vfi be the isolator of B in A, that is -JB/B is the torsion subgroup of A/B.
Similary we let \/B/B and VB/B denote the p-torsion and p'-torsion subgroups of A/B
respectively. We say B is isolated, p-isolated or p'-isolated according as B = \B, B = \/~B
or B = V-JB.

LEMMA 2.4. Let x be an automorphism of A such that A = Aox>. Suppose ^AQ/A0 is
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infinite. Then A has a subgroup B containing Ao such that either
(1) Bx g B and B/Bx is a finite p-group, or
(2) B c Bx and Bx/B is a finite p-group.

If in addition A<8>2<0> is irreducible as a Q(x)-module, then OnezBx" = 1.

Proof. Let A, = (TA0 and A2 = LLeo AoAgA*,2... A*/. Then A5sA 2 . If o e A h

then a m e A 0 for some integer m prime to p, so (a*)m e A x s A 2 cA,A 2 . Since A,A2 is
p'-isolated we have ax eAlA2. Therefore (AlA2)

x ^ A,A2. If this inclusion is strict, then
1) holds with B = AXA2.

If (AlA2)
x = AlA2, then since AJ" is finitely generated, there is an integer r such

that

Since J3 is p'-isolated this gives Bx" c B as before. The inclusion is strict since
0 is infinite, and BIBX~' is a finite p-group, so 2) holds.

Finally, suppose that A<g>2Q is irreducible as a Q(x)-module and let C = f],,eZBx\
Since C = C, either C= 1 or C has rank n.

If C has rank n then C0=CC\A0 has finite index in Ao. But then A<
o
x>/Cox> has finite

exponent and is finite. This implies A/C is finite and so A/B is finite. This is inconsistent
with either (1) or (2).

We remark that if A®XQ is irreducible as a Q(x)-module, the conclusion of Lemma
2.4 is precisely what is required to apply Theorem 4.2 of Irving's paper [8]. This shows
that kG is primitive, where G = (A, x) and k is any field of characteristic p.

3. Infinite Dimensional Irreducible Modules

LEMMA 3.1. Let G be a polycyclic-by-finite group, k an absolute field and M a finitely
generated kG-module of infinite dimension over k. Then there are elements meM and
xeG such that mkX is infinite dimensional where X = (x).

Proof. Without loss of generality M is faithful for G and cyclic, and M s kG/I where
/ is a right ideal of kG. Since G must be infinite, it has a torsion free abelian normal
subgroup A = (au...,an). If in/c(ay) = 0 for some / then we can take x = ay and
m = l + IeM. Otherwise for all ;', fc(aJ)/(/n fc(a;)) has finite dimension, and so kA/(in
kA) is finite dimensional. Hence, T = {ae A | a - l e i n kA} satisfies \A : T |<» since k is
absolute (see [11, 12.3.8]). Therefore, \A :coreG(T)|<c° and since M is faithful A is
finite, a contradiction.

Proof of Theorem A. Since G is finitely generated, and the class of polycyclic-by-
finite groups is finitely presented, we can suppose that G is not polycyclic-by-finite but
that every proper homomorphic image of G is polycyclic-by-finite by [12, Lemma 6.17].
Let A be a non-trivial abelian normal subgroup of G. Then G/A is polycyclic-by-finite
and we may treat A as a Z(G/A)-module.

Case 1. A has infinite rank. We can suppose that A = {a)a, where a e A, a^ 1. Hence,
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A is a cyclic Z G-module. Suppose that A is Z-torsion-free. By [11, Theorem 12.2.7] there is
a free abelian subgroup Ao of A such that A/Ao is a 7r-torsion group where TT is a finite
set of primes. If pi IT, then A p n A 0 = Ag and so A0/Ag = AO/(AP n Ao) =(A0Ap)/Apg
AIAP. Now as A is Z-torsion free and has infinite rank, Ao also has infinite rank.
Therefore, AJA% is an infinite elementary abelian p-group and hence so is A/Ap.
Therefore, G/Ap is not polycyclic-by-finite. Our assumption on homomorphic images
gives Ap = 1, a contradiction since A is Z-torsion free.

Hence, for some prime p, Ap = {a 6 A | ap = 1}^ 1. By assumption, G/Ap is
polycyclic-by-finite. Hence Ap is an infinite elementary abelian p-group. We can regard
Ap as an infinite dimensional FpG/A-module. By Lemma 3.1 there are elements aeAp

and xeG such that a¥pX is infinite dimensional, where X = (x). It follows that the
elements {ax" | n eZ} are linearly independent over Fp.

Hence ( a ) x s e n 6 2 a x " , and H = (a,x)=Cp~ Ca<G. Now by [11, Lemma 9.2.8] kH
is primitive for any field k. Therefore, kH has an infinite dimensional irreducible module
and so does kG.

Case 2. A has finite rank. Clearly A is not finitely generated. We first reduce to the
case where G = {A,x) is abelian-by-(infinite cyclic). Let W be an irreducible QG-
submodule of A<8>ZQ and B = ADW. Then B is finitely generated as a ZG-module but
not as an abelian group since GIB is polycyclic-by-finite. We can suppose that A = B, so
that A is rationally irreducible. By passing to a subgroup of finite index we can suppose
GICc(A) = (xu ..., xr) is abelian. It follows that there is an element a of A and x = xt

such that {a)M is not finitely generated as an abelian group. Now the group (a, x) is
finitely generated and metabelian but not polycyclic-by-finite so we can suppose that
G = (a,x) and A=(a)G. As before A®2Q is an irreducible Q(x)-module. Let Ao be a
finitely generated subgroup of A of maximum rank such that A = A^x>. Let k be a field of
characteristic psO. There are now two subcases depending on the structure of A/Aa.

Suppose first that $A^IA0 is infinite. Then by Lemma 2.4 and [8, Theorem 4.2] kG is
primitive.

Finally suppose s[A~0IA0 is finite. Since A/Ao involves only finitely many primes,
there is a maximal ideal M of kA such that A/Aft — Cq- where q^ p, by Lemma 2.2. Let
V=kA/M and W=V®kAkG. We claim that W is an irreducible kG-module. Let
C = Mt and using Lemma 2.3 choose an element aeC- whose conjugates {ax' | r e Z} lie in
infinitely many distinct cosets of C in A. Then for all r > l , C<x')/C is infinite and so
£<*'> _ ^ Suppose that W is a non-zero submodule of W and that w =
i)0 + D,x + . . . + i)rx

reW' where ^ e V , with uo^0 and ur^0. If r>\, then as CM = A
there is an element c of C such that either x'cx~'$. C or x~rcxr£ C. In the first case
voc = vo and v.x'c^v.x1' while in the second vox~rcxr=fi v0 and vrx

r(x~rcxr) = vrx
r. A

standard 'shortest length' argument shows that W'P\ V^O. Hence, Vg W since V is an
irreducible /cA-module. However, W is generated by the conjugates of V under x so
W = W. This completes the proof of Theorem A.

REMARKS. (1) Part of the motivation for Theorem A lies in obtaining a converse to
the result of Jategaonkar [9] that a finitely generated abelian-by-polycyclic group is
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residually finite. For suppose that the group G satisfies the hypothesis of Theorem A, then
there is an irreducible FpG-module A such that the split extension A d G is finitely
generated but not residually finite.

(2) We might ask, as in [3, Questions 2 and 9] for general conditions under which all
irreducible fcG-modules are finite dimensional over k. At present only special cases are
known. For countable locally finite groups with no elements of order p see [5], [7] and for
soluble groups over C, see [15]. If G is a finitely generated linear group, then by [16,
Theorem 10.16], G is either soluble-by-finite or contains a non-cyclic free subgroup.
Since the group algebra of a free group is primitive, it follows from Theorem A that if all
the irreducible kG-modules are finite dimensional then G is polycyclic-by-finite.

Finally, we remark that if G is a finitely generated infinite p-group, and k a field of
characteristic p, it is not known whether J(kG) = (okG, see discussion on page 415 of [11].
If this is the case then the only irreducible fcG-module is the trivial one.

4. Primitive Group Algebras. Throughout this section A will denote a torsion-free
abelian group of finite rank and I an ideal of kA, Ii= kA. We first outline how the results
of Bergman [1] may be extended to this situation. With minor changes we can follow the
proof given in [11, Chapter 9] using log subgroups. A log subgroup for I is a subgroup W
of A such that for all a e I, a f 0 there exist x, y e Supp a with xy"1 e W and xy"1 f 1.
Whenever these subgroups appear as kernels of valuations as in [11, Lemma 9.3.5] they
are necessarily isolated in A since the value group is torsion-free. Thus we can work with
isolated log subgroups.

LEMMA 4.1. Let A be torsion-free abelian of finite rank and 3> = {Fa \ a e 7} a collection
of finite non-empty subsets of A. Let W= W(2F) be the set of all isolated subgroups W of A
such that WC\Fa^ 0 for all a. Then every member of W contains a minimal member, and
W has only finitely many minimal members.

Proof. Note that if A is any proper torsion-free image of A, then A has smaller rank
than A. Hence we can use induction on rank(A). If rank (A) = 0 then A = (1) while if
rank(A) = 1 the only isolated subgroups of A are (1) and A and the result is trivial in
these cases. If 1 e Fa for all a, then (1) is the unique minimal member of W. Suppose that
for some (3, l<£Fe={au a2 , . . . , a j . Let Wt ={We W | Oj 6 W}. Then we have W =
Wx U W2 U . . . U Wn and it suffices to show that each Wt has only finitely many minimal
members and that any member of Wx contains a minimal member.

Consider Wx. Let A1 = -/{a^) the isolator of (a,) in A, and let ~ denote the natural
homomorphism A -» A/Ax = A.liWeWl then W H F ^ 0 for all a and so W f i F ^ 0 .
Moreover, if Wu W2e Wx with W1 = W2, then since ax e Wu W2 and the Wt are isolated,
Aj c Wj n W2 and hence Wx = W2.

Conversely, if We W(S') and W denotes the full inverse image of W under "then W
is isolated in A, since W is isolated in A. Hence " gives a one-one correspondence
between members of Wx and W{§) and the result follows by induction.

Let I be an ideal of kA. We define the rank of I by
rank(I) = rank(A) - max{rank(B) 11D kB = 0}.
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The proof of the next theorem and the corollary may now be adapted from [11,
Chapter 9].

THEOREM 4.2. Let A be a torsion-free abelian group of finite rank, and Ij= kA an ideal
of kA. Then any isolated log subgroup for I contains a minimal isolated log subgroup, and I
has only finitely many minimal isolated log subgroups Wx, W2,..., Wm. Furthermore,
rank(I) = min{rank(Wi)}. Finally if a is any automorphism of A, then W", W%,..., W%
are the minimal isolated log subgroups for I".

COROLLARY 4.3. Let A be torsion-free abelian of finite rank, and T a group of
automorphisms of A. Suppose that A is a Y'-plinth. If lisa Y'-invariant ideal ofk A, then either
1 = 0 or kAII is algebraic over k, that is given aeA, there is a polynomial f(t)e k[t] such
that f(a)el.

We remark that in the situation of the corollary, any prime ideal of kA containing I
must be a maximal ideal.

In proving Theorem B, we may assume that A = A(
o
x> where Ao is finitely generated.

LEMMA 4.4. Let Ao be a finitely generated subgroup of A of maximum rank. Let x be
an automorphism of A such that no power of x centralises A and A, = A(o\ G = A3(x)
and G, = A,C]<;c>.

(i) Suppose there is a maximal ideal M of fcA, such that C\n<=z Mx" = 0, then there is a
maximal ideal N of kA such that f)nzz Nx" = 0.

(ii) If kGi is primitive then kG is primitive.

Proof, (i) Choose a maximal ideal N of kA containing M, by Zorn's Lemma. Then
M=NnfcA,. If I = r U z W x " ^ 0 , then i n k A , ^ 0 , since kA is a domain which is
integral over kAx. However, i n fcA, = f]neZ Mx" =0. Hence 7=0.

(ii) This follows by a similar argument using the fact that any non-zero ideal of kG
has non-zero intersection with kA, [11, Lemma 7.4.9].

As in [4] the primitivity problem for torsion free soluble groups of finite rank may
often be reduced to the abelian-by-(infinite cyclic) case.

In the next result and the corollary, A will denote the Zalesskii subgroup of the
group G (see [11, section 9.1]). If I is a non-zero ideal of kG then IfifcA^O.

LEMMA 4.5. If G is a torsion-free soluble group of finite rank such that A(G) = 1, then
A((A, x)) = 1 for some x e G.

Proof. This is essentially the same as the proof of [4, Lemma 4.5]. We merely
indicate the modifications that must be made. First we note that for G torsion-free soluble
of finite rank, G is nilpotent-by-finite if and only if G is f.c. hypercentral. The crucial
point here is that if B = A(G) and Bo is a finitely generated subgroup of G such that B/Bo

is torsion, then Go= CC(BO) has finite index in G and Go centralizes B since extraction of
roots in B is unique. It now follows as in Lemma 4.2 of [4] that H= GICG(A) is abelian-
by-finite and we may suppose this group is actually abelian. The action of G on A by
conjugation induces a representation of H as matrices with rational entries. If the result is
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false, then by Lemmas 3.2 and 4.4 of [4] each matrix in H has a complex eigenvalue
which is a root of unity.

let Vo = A<8>ZQ, V = A<8>ZC. By Lemma 4.3 of [4] there is a finitely generated
subgroup Ho of H with H/Ho torsion such that Ho acts trivially on a non-zero subspace W
of V. We can assume that

W=V"" = {veV\vh = v for all heH0}.

Then W is a submodule of V. Also by choosing a basis of C over Q we see that
W = W0®QC where Wo= VjV If Hi = CH(W0) then H/H^ is isomorphic to a periodic
group of matrices over the rational numbers. Hence HI Hi is finite, see [12, Part I, p. 85],
so there is an integer k>0 such that Gk s Ca(Wo). The proof may now be completed as
in [4, Lemma 4.5].

COROLLARY 4.6. Let G be a torsion-free soluble group of finite rank with A(G) = 1 and
suppose that G is locally polycyclic. If k is a non-absolute field, then kG is primitive.

Proof. By Lemma 4.5 there is an element x in G such that H = (A, x) satisfies
A(H) = 1. It suffices to show that kH is primitive. Since k is non-absolute there is an
irreducible kA -module V which is faithful for A. It is easy to see that the induced module
y H = V®kAkH is irreducible since A is self-centralising in H. Let J = annkH(VH). If
7^ 0, then ID kA is a non-zero x-invariant ideal of kA. Since H is locally polycyclic there
is a finitely generated x-invariant subgroup Ao of A such that A/Ao is torsion. Then by
the argument of Lemma 4.4 J = 10 kA0 ^ 0 and J is a non-zero x-prime ideal of fcA0 with
J t = l. This contradicts [14, Theorem D].

If A®ZQ is irreducible as aQ(x)-module we can extend Lemma 2.3.

LEMMA 4.7. Let x be an automorphism of A such that A = Aft0 for a finitely generated
subgroup Ao. Suppose that A itself is not finitely generated and that A®ZQ is an irreducible
Q(x)-module. If B is a subgroup of A with A/B infinite then there is an element a of Ao

whose conjugates {a"' | rel} lie in infinitely many distinct cosets of B in A.

Proof. By Lemma 2.3, it is enough to show that A/B has an image isomorphic to C~
for some prime p. If 4BJB is infinite, we observe that -JBIB can involve only finitely many
primes, so this follows from the structure of Cernikov groups, [6, Theorem 19.2]. If Vfi/B
is finite we can suppose that B = Vfi. If in addition A/A0B is infinite the result follows
again since AIA0 is Cernikov.

Suppose that A/A0B is finite. Then A/B is finitely generated and since B is isolated

A = BxC with C = A/B

by [6, Corollary 25.3]. Since A/B is infinite, rank(B)<rank(A), and so fUz Bx" = 1. In
fact, some finite intersection is trivial. To see this note that each finite intersection
B*"1 fl Bx"2n.. . fl B*"r is isolated in A and that A has the minimum condition on isolated
subgroups. Therefore Bx"' D Bx"2fl... ("I Bx"' = 1 for finitely many conjugates of B. Hence
A embeds in AIBX"1 x AIBx"*x...x AIBX"' which is finitely generated. This contradiction
shows that AIA0B cannot be finite if B is isolated.
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Proof of Theorem C. We have A = A ^ where Ao is a finitely generated subgroup of
A, and A is an (x)-plinth. Let M be a maximal ideal of kA. We must show that
Plnez M*" = 0 if and only if A/Mt is infinite.

If |A:Mt | = n<ooj let B = {an\aeA} then B g M t , and since B is characteristic
Hnez Mx" contains <okB and so is non-zero. Now suppose that A/Mt is infinite and using
Lemma 4.7 choose an element a of A whose conjugates {ax' | reZ} lie in infinitely many
distinct cosets of Mt in A. If J= f]neZ Mx" ^ 0, then by Corollary 4.3, there is a non-zero
polynomial f(t)ek[t] such that f(a)el. Since Ix = I we have f(ax')el for all re2 .
However, since the elements {ax' \ rel} lie in infinitely many distinct cosets of Mf, they
represent infinitely many distinct elements of the field kA/M. In other words the non-zero
polynomial f(t) has infinitely many distinct roots in some extension field. This contradic-
tion shows that 1 = 0.

Proof of Theorem B. We have a group G of the form G = (A, x) where A is an
(x)-plinth, and G is not locally polycyclic. We have to show that kG is primitive for all
fields k.

By Lemma 4.4, we may assume that A = A<
o
x> where Ao is a finitely generated

subgroup of A. Let k be a field of characteristic p>0 . If %~AQIA0 is infinite than kG is
primitive by Lemma 2.4 and [8, Theorem 4.2]. On the other hand, if $A^IA0 is finite,
then since A/Ao is infinite, it is not a finite extension of a p-group. Therefore, by Lemma
2.2 there is a maximal ideal M of kA such that A/Mt is infinite. Hence, flnsz Mx" = 0 by
Theorem C and again kG is primitive.

Proof of Theorem D. We have an (x)-plinth A and a non-zero x-invariant semiprime
ideal I of kA. We have to show that A/It is finite and that I is a finite intersection of
maximal ideals.

Corollary 4.3 shows that kA/I is algebraic so any prime ideal containing I is maximal.
Let a be an element of A and f(t)e k[t] a polynomial such that f(a)el. For a maximal
ideal M containing I we have \A : Mt|<°° by Theorem C. Let n be the least integer such
that a " - l e M , then 4>n(a)eM where <&„(«) is the nth cyclotomic polynomial. Note that n
is prime to the characteristic of k. If g(f) is a polynomial of least degree such that
g(a)eM, then g(t) is irreducible, and g(t) divides <t>n(t) and f(t) since $n(a) and f(a)
belong to I. Therefore, for each such integer n, <£>n(t) and /(() have a common factor.
Since the cyclotomic polynomials •!>„(() are relatively prime we obtain only finitely many
integers n as M ranges over all maximal ideals containing I. Hence, am-lel, for some
integer m so that A/It is periodic. If Io = I t D Ao then Ao/Io is finite, and so A<

o
x>/Iox> has

finite exponent so is finite. However, I^^. I t since the latter is (x)-invariant and contains
Io. Therefore, A/It is finite and dimk kAII is finite. Therefore, there are only finitely
many maximal ideals containing I, and I is their intersection.
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