CIRCLES OF NUMBERS

by M. BURMESTER, R. FORCADE and E. JACOBS

(Received 12 November, 1976)
Introduction. Arrange any n integers around a circle. The following procedure can be used to obtain another circle of n integers. For each adjacent pair of the first integers, form the absolute value of their difference and place it between them; then remove the original numbers. This procedure can be repeated over and over. When $n=4$ this always leads eventually to a circle of zeros. On the other hand when $n=3$, unless the original numbers are equal, this never happens. We treat below the general case and related problems, using for convenience a slightly different formulation. Surprisingly there is enough structure to lead to some interesting mathematics.

Definitions. Let $C=\left(x_{i}\right)_{i=1}^{\infty}$ be an infinite sequence of numbers. Let $\Psi(C)=\left(x_{i}^{\prime}\right)_{i=1}^{\infty}$ where $x_{i}^{\prime}=\left|x_{i+1}-x_{i}\right|$ for all i. We call C an n-cycle if and only if $x_{i+n}=x_{i}$ for all i. We shall also represent an n-cycle as an n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ when it is convenient.

Remarks.

1. If C is an n-cycle so is $\Psi(C)$.
2. Any n-cycle is also a $k n$-cycle (k any natural number).
3. After one application of Ψ all x_{i} 's are non-negative.
4. Let $m(C)=\max _{i}\left(x_{i}\right)$ (which exists for n-cycles). Then $m(\Psi(C)) \leq m(C)$ if all entries in C are non-negative.

Definition. C will be called repeating if and only if $\Psi^{k}(C)=C$ for some k. The smallest such k will be called the period of C.
5. The 0 -cycle $(0,0, \ldots, 0)$ is the only repeating cycle with period 1 .
6. In view of Remark 4, every n-cycle made up of integers (or rational numbers) must eventually, under repeated application of Ψ, be reduced to a repeating one. This is not always true for cycles made up of irrational numbers (for example, if $C=$ $\left(1, r, r^{2}, \ldots, r^{n}\right)$ where $r^{n}=1+r+r^{2}+\ldots+r^{n-1}$, then $\left.\Psi^{t}(C)=(r-1)^{t} C, t=1,2, \ldots\right)$.
7. Observe that $\Psi\left(F_{n}, F_{n+1}, F_{n+2}\right)=\left(F_{n-1}, F_{n}, F_{n+1}\right)$, where F_{n} is the n-th Fibonacci number. The 3 -cycle (F_{n}, F_{n+1}, F_{n+2}) requires n applications of Ψ to reach a repeating cycle. Note also that $F_{n}=5^{-\frac{1}{2}}\left(t^{n}-s^{n}\right)$ where t and s are respectively the positive and negative roots of $x^{2}=x+1$ (see Remark 6).

Discussion and definitions. We are concerned primarily with n-cycles made up of integers, and with what happens to such cycles after repeated application of Ψ. In view of Remark 3 we may as well assume that all entries are non-negative (so Remark 4 applies). We are interested in knowing which cycles lead finally to the 0 -cycle. These will be called terminating cycles, and all others will be called non-terminating.

Definition. A cycle made up only of 0 's and 1 's will be called a primitive cycle.
Glasgow Math. J. 19 (1978) 115-119

Theorem 1. Every repeating n-cycle is a constant multiple of a primitive n-cycle.
Proof. By Remark 4, it is clear that $m(C)=m\left(\Psi^{t}(C)\right), t=1,2, \ldots$, for any repeating cycle C. Thus C is made up entirely of non-negative numbers $\leq m$, where $m=m(C)$. Furthermore there must be at least one occurrence of m in C. Now let C_{1} be C 's unique repeating preimage under $\Psi\left(C_{1}=\Psi^{k-1}(C)\right.$, where k is the period of $\left.C\right)$. Since $m\left(C_{1}\right)=m$, the two entries of C_{1} whose absolute difference is the entry m of C must be $0, m$ (or $m, 0$). Similarly if C_{2} is the repeating preimage of C_{1}, the three entries of C_{2} whose absolute difference give us $0, m$ (or $m, 0$) must be taken from the set $\{0, m\}$. If we continue working backwards in this way through the repeating preimages of C, we get that the n-th preimage C_{n} of C has a string of n successive entries all taken from $\{0, m\}$ (with m occurring at least once). Since C_{n} is an n-cycle it has to be a constant multiple of a primitive cycle. The proof is completed by observing that $C=\Psi^{n}\left(C_{n}\right)$.

Theorem 2. Let C be a primitive n-cycle, $n=2^{k} L$ where L is odd.
(i) C is terminating if and only if it is a 2^{k}-cycle.
(ii) C is repeating if and only if it (as an n-tuple vector over \mathbf{Z}_{2}) is orthogonal to every primitive terminating n-cycle.

Proof. Observe that if $C=\left(x_{i}\right)_{i=1}^{\infty}$ then $\left|x_{i+1}-x_{i}\right| \equiv x_{i+1}+x_{i}(\bmod 2)$. Thus Ψ becomes a linear operator on the n-dimensional vector space (over \mathbf{Z}_{2}) of primitive n-cycles. Also notice that $\Psi=I+E$ where $E\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Thus $\Psi^{r}=(I+E)^{r}=\sum_{j=0}^{r}\binom{r}{j} E^{j}$ and therefore $\Psi^{r}(C)=\left(y_{r i}\right)_{i=1}^{\infty}$ where $y_{r i}=\sum_{j=0}^{r}\binom{r}{j} x_{i+j}$ (addition being over \mathbf{Z}_{2}). So C is terminating if and only if $\sum_{j=0}^{r}\binom{r}{j} x_{i+j}=0$ for some r and all i. We may assume, without loss of generality, that r is a power of 2 , in which case $\binom{r}{0}$ and $\binom{r}{r}$ are odd and all other $\binom{r}{j}$ are even ($\equiv 0$ in \mathbf{Z}_{2}). Thus C is terminating if and only if $x_{i}=x_{i+r}$ for some r (a power of 2) and for all i. This is equivalent to C being a r-cycle which, since C is already a $2^{k} L$-cycle, is equivalent to C being a 2^{k}-cycle.

For the second part of the theorem notice that $E(u) . v=u . E^{-1}(v)$ (for any vectors u and v), so the fact that E leaves invariant the subspace T of primitive n-cycles implies that E leaves invariant its orthogonal complement R (all n-cycles orthogonal to T). Thus $\Psi=I+E$ must also preserve R. But T already contains the kernel of Ψ so Ψ must be a nonsingular linear transformation when restricted to R. Thus R must consist entirely of repeating n-cycles. Since R is the orthogonal complement of T any element not in R is representable (uniquely) as the sum of a non-zero vector of T and an element of R. Since this sum under repeated application of Ψ is reduced to an element of R, all repeating (primitive) n-cycles lie in R and the proof is finished.

Observe that in the proof of Theorem 2 we have also established that any primitive n-cycle can be uniquely represented as the sum of a repeating and a terminating n-cycle.

Theorem 3. (i) If n is a power of 2 then every rational n-cycle is terminating.
(ii) If n is odd then the only terminating rational n-cycles are the trivial ones (those with all entries equal).
(iii) If n is neither a power of 2 nor odd, there are non-terminating rational n-cycles as well as non-trivial terminating rational n-cycles.

Proof. Every rational n-cycle will eventually be reduced to a repeating one (Remark 6) which must be a constant multiple of a primitive cycle by Theorem 1. If n is a power of 2 then (by Theorem 2) every primitive n-cycle is terminating, hence so is every n-cycle. If n is odd the only primitive terminating n-cycles (by Theorem 2) are (m, m, \ldots, m) where $m=0$ or $m=1$. A simple parity argument shows that ($m, m, \ldots m$) has no Ψ-preimage for any $m>0$. If n is neither a power of 2 nor odd then $n=2^{k} L$ where $k \geq 1$ and L is an odd number greater than 1 . Then there must be terminating 2^{k}-cycles (which are n-cycles by Remark 2) and non-terminating L-cycles (which are n-cycles).

Definition and discussion. If $n=2$ it is easy to see that each n-cycle terminates in two Ψ-steps. One might conjecture that the terminating n-cycles which (by Theorem 3) exist for every even $n>2$ are all as trivial (vanishing in only a few Ψ-steps). That is not the case. Let the life-span of an n-cycle be the minimum number of Ψ-steps required to make it a repeating cycle. It turns out that both the terminating and non-terminating n-cycles whose existence is predicted by Theorem 3 can be specified to have an arbitrary long life-span in every case (except for $n=2$). These remarks are an easy consequence of the following theorem.

Theorem 4. Let C be an n-cycle $(n>2)$. Then there exists another n-cycle C_{1} and $k>0$ such that $k . \Psi(C)=\Psi^{2}\left(C_{1}\right)$.

Note that C_{1} has a longer life-span than C but that they are of the same type (either terminating or non-terminating).

Before proving Theorem 4 we shall need a few lemmas and definitions.
Lemma 1. Let $C=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an n-cycle. Then C has a Ψ-preimage if and only if there exists $A \subseteq\{1,2, \ldots, n\}$ for which $\sum_{i \in A} x_{i}=\sum_{i \in A} x_{i}$.

Proof. If $C=\Psi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ let $A=\left\{i \mid x_{i}=y_{i}-y_{i+1}\right\}$. Then

$$
\sum_{i \in A} x_{i}=\sum_{i \in A}\left(y_{i}-y_{i+1}\right) \quad \text { and } \quad \sum_{i \in A} x_{i}=\sum_{i \neq A}\left(y_{i+1}-y_{i}\right)
$$

So

$$
\sum_{i \in A} x_{i}-\sum_{i \notin A} x_{i}=\sum_{i=1}^{n}\left(y_{i}-y_{i+1}\right)=0
$$

since $y_{n+1}=y_{1}$. Conversely, if there exists such a set A, let $y_{1}=\sum_{i \in A} x_{i}$, and $y_{i+1}=y_{i}+\delta_{i} x_{i}$ where $\delta_{i}=1$ if $i \in A$ and $\delta_{i}=-1$ if $i \notin A$. Then $C=\Psi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

DEFINTIION. If $C=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an n-cycle, a weak predecessor of C is an n-cycle C_{1} for which $\Psi\left(C_{1}\right)=\left(a x_{1}+b, a x_{2}+b, \ldots, a x_{n}+b\right)$, where a, b are integers, $a>0$ (Note that in this case C, C_{1} satisfy the equation of Theorem 4).

Lemma 2. Let $C=\left(x_{1}, x_{2}, \ldots, x_{n}\right), n>2$. Rearrange the x^{\prime} 's into a non-increasing list $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$ and assume that $y_{n}=0$. Then C has a weak predecessor if and only if $\sum_{i=1}^{s} y_{i} \geq \sum_{i=s+1}^{n} y_{i}$, where $s=[(n-1) / 2]$.

Proof. If C has a weak predecessor then by Lemma 1 there exists $A \subseteq\{1,2, \ldots, n\}$, $a>0$ and b such that

$$
\begin{equation*}
\sum_{i \in A}\left(a y_{i}+b\right)=\sum_{i \notin A}\left(a y_{i}+b\right) . \tag{1}
\end{equation*}
$$

Note that $b \geq 0$ because $y_{n}=0$ and all $a y_{i}+b$ are non-negative by Remark 3. We can assume without loss of generality that $|A| \leq n-|A|$ (or replace A by its complement in $\{1,2, \ldots, n\}$. Let $t=|A|$ and let $B=\{1,2, \ldots, t\}$. Then

$$
\sum_{i \in B}\left(a y_{i}+b\right) \geq \sum_{i \in A}\left(a y_{i}+b\right)=\sum_{i \notin A}\left(a y_{i}+b\right) \geq \sum_{i \notin B}\left(a y_{i}+b\right) .
$$

Thus $a\left(\sum_{i \in B} y_{i}\right)+b t \geq a\left(\sum_{i \notin B} y_{i}\right)+b(n-t)$, and since $t \leq n-t$ and $b \geq 0$ and $a>0, \sum_{i \in B} y_{i} \geq$ $\sum_{i \in B} y_{i}$. If $t<n / 2$, by taking $s=[(n-1) / 2]$ we certainly get $\sum_{i=1}^{s} y_{i} \geq \sum_{i=s+1}^{n} y_{i}$. If $t=n / 2$ equation (1) reduces to $\sum_{i \in A} y_{i}=\sum_{i \in A} y_{i}$. But since $y_{n}=0$ we may by dropping n from either A or its complement choose a new A with $t-1$ elements for which this equation still holds, and then proceed as before with $a=1, b=0$.

Conversely, if the above equation holds, let $a=n-2 s, b=\sum_{i=1}^{s} y_{i}-\sum_{i=s+1}^{n} y_{i}$. Then $a y_{i}+b \geq 0$ for all i and $\sum_{i=1}^{s}\left(a y_{i}+b\right)=\sum_{i=s+1}^{n}\left(a y_{i}+b\right)$. By Lemma 1 it follows that C has a weak predecessor. We now restate Theorem 4 in the following way.

Theorem 4A. If n is odd every n-cycle has a weak predecessor. If n is even and greater than 2 and $C=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an n-cycle, then either C has a weak predecessor or $C^{\prime}=\left(m-x_{1}, m-x_{2}, \ldots, m-x_{n}\right)$ does (here $m=m(C)$).

Proof: If $t=\min _{i}\left(x_{i}\right)$ then $C=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has a weak predecessor if and only if $\left(x_{1}-t, x_{2}-t, \ldots, x_{n}-t\right)$ does. Thus the added assumption that $y_{n}=0$ of Lemma 2 applies. But clearly the inequality in Lemma 2 always holds when n is odd (compare the two sums involving the same number of elements, element by element). When n is even the inequality may sometimes fail to hold. If so consider C^{\prime} (which will have the same
Ψ-image as C), so that in effect we replace the y_{i} by $y_{i}^{\prime}=y_{1}-y_{n-i+1}$. Then, letting $n=2 k$, we get

$$
\begin{aligned}
\sum_{i=1}^{k-1} y_{i}^{\prime}-\sum_{i=k}^{n} y_{i}^{\prime} & =-y_{1}+\sum_{i=2}^{k+1} y_{i}-\sum_{i=k+2}^{n-1} y_{i} \\
& =-y_{1}+y_{k}+y_{k+1}+\sum_{i=2}^{k-1} y_{i}-\sum_{i=k+2}^{n-1} y_{i} \\
& \geq-y_{1}+y_{k}+y_{k+1}+\sum_{i=k+2}^{n-1} y_{i}-\sum_{i=2}^{k-1} y_{i} \\
& =\sum_{i=k}^{n-1} y_{i}-\sum_{i=1}^{k-1} y_{i}
\end{aligned}
$$

which is >0 by the assumption that C does not have a weak predecessor. Thus we have shown that C^{\prime} does have a weak predecessor.

If n is neither odd nor a power of 2 , the problem of distinguishing between terminating and non-terminating n-cycles seems quite difficult. It is clear, for example, that an n-cycle which is congruent mod 2 to a repeating primitive n-cycle must be non-terminating. But the converse is untrue as shown by the following 6-cycle: (18, 25 , $34,19,0,13$). Almost any kind of alteration in the n-cycle seems capable of changing it from terminating to non-terminating. For example ($89,140,83,0,45,56$) is terminating, but ($89,142,83,0,45,56$) is non-terminating. Similarly $(1,4,9,6,5,2)$ is terminating, but with the elements permuted $(1,6,9,2,5,4)$ is non-terminating.

The question of determining the life-span of an n-cycle also seems interesting but there appears to be no easy way of tackling it.

Finally, an interesting area to explore is that of n-cycles made up of real but possibly irrational numbers. For instance, for some n 's the cycle mentioned in Remark 6 and similar ones seem to be the only cycles having infinite life-span.

Department of Mathematics
Royal Holloway College
Egham
Surrey

1208 MAJOR
Normal
Illinois
Department of Mathematics
Illinois State University
Normal
Illinois

