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A GENERALISATION TO SEVERAL DIMENSIONS
OF THE NEUBERG-PEDOE INEQUALITY,

WITH APPLICATIONS

YANG LU AND ZHANG JING-ZHONG

Communicated by B.H. Neumann

A well-known inequality relating the areas and squares of the

sides of two triangles is generalised to higher-dimensional

euclidean spaces. Extension of the results to non-euclidean

spaces is also considered.

0. Notation and main results

Let £ . , £„ be two non-degenerate simplices in the n-dimensional

/i. D

euclidean space E , with vertices a , a.-, ..., « M + 1
 aa^

b , i> , ..., b , respectively. Let the lengths of their edges be

a- • = \a.<z .\ , b . . = \b .b .\ (i , j = 1, 2, ... , n+l) , and their volumes

be V(A) , V(.B) , respectively. Denote the determinants of the following

bordered matrices
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A =

0 1
1

B =

0 1
1

2 2

by A, B , and t h e i r co factors of -ha.., -hb. . by A..,B..

(£ , J = 1 , 2 , . . . , n+1) , respect ively.

We sha l l prove the following asser t ion .THEOREM 1. If £ . , E_ are too non-degenerate simpliaes in E ,
/i. D

then

(1.1) a2.B..>2n • (nl)2V(A)2/nV(B)2-{2/n) ,

and equality holds if, and only if, the two simpliaes are similar.

Note that if we take n = 2 , then Theorem 1 gives as a special case

the well-known Neuberg-Pedoe inequality

(*) a'2[-a2+b2+c2) + b'2{a2-b2+a2) + e'2(a2+b2-c2) > 16AA' .

Here A, A' denote the areas of tvo triangles, whose sides have lengths

a, b, a and a', b', a' , respectively. A necessary and sufficient

condition for equality to hold is that the two triangles are similar.

Thus Theorem 1 is an extension of the Neuberg-Pedoe inequality to

higher-dimensional spaces. We consider the following theorem as one of i ts

interesting applications.

THEOREM 2. If £ . , £_ are two non-degenerate simpliaes in E such

that

1° ai;j Sb^ {i, 3 = 1, 2, . . . , «+l) ,

2° £D is not obtuse [that is to say, none of the interior
D

angles formed by the (n-1)-dimensional faces of E is

obtuse], then V(A) i V(B) .

This theorem can be written in the following equivalent form, where i t
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is not necessary to assume a. . 5 b. . .
t<7 13

THEOREM 2*. If Z B is not obtuse, then

t \n

B

1. Proof of Theorem 1

For the proof we introduce the following notations:

(1.2)

(1.3)

o o o
q. . = k\a. +a. -a. .

- f c 2 .
1-0ij \ i , j = 1 , 2 , . . . , rt+1) ;

0 = 1, 2 , . . . , n)

so t ha t § , i? are n x w matr ices;

(I.1*) s . .(X) = <?£ . + Xr. . ,

S(X) = [s^X)) , ( i , j = 1, 2 , . . . . n) ,

so tha t S(X) = S + Xi? i s also an n * n matrix;

(1.5) f.AX) = -h[a..+X>\.

'o i

1

"̂(A) = : f....(X) , ( i , J = 1, 2, . . . . n+l) ,

so that F(X) is an (n+2) x (n+2) matrix.

First we investigate the roots of the equation

det F(\) = 0 .

Adding -/. (X) times the first row to the ith row and -f .(X)

times the first column to the jth column, we get
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d e t

Put

(1.6)

0 1

1

a..U)

0

= -det S{\) = -&et(Q+\R) .

-det F{\) = iet(Q+XB) = + . . . +

Observe that both Q and R are real symmetric positive definite

matrices; hence a l l the coefficients a , a , ..., a are non-negative,

and the roots of the equation are real and non-positive. By Maclaurin's

Inequality ( [7] , Theorem 52, or [2], pp. 10-11) we obtain

(1 7)

Hence

( 1 8)

1
n c o~

2
n(n-l)

°2
°0

1/2

n(n-l)(n-2) a

1/3 1/n

l-(l/n) 1/n
1 0 n

On the other hand, expanding the polynomial (1.6) directly, we obtain

(1.9)

e = -det B = -B ,

a = -det A = -A ,
n

n+1 n+1 .
e, = h I Y a2..B.. .

Using the well-known formula for the volume of a simplex (see, for example,

[*] or [3]) ,

(1.10) V(A)2 = -{n\)~2A , V(B)2 = -{n\)~2B ,

and subs t i t u t i ng ( 1 . 9 ) , (1.10) into ( 1 . 8 ) , we get

n+1
(1.1) I

We shall now prove the sufficiency and then the necessity of the stated
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condition for equality. First suppose the two simplices T, , E are

similar sequentially (that is to say, there is a similarity transformation

mapping a. on b. for i = 1, 2, . . . , n+1 ); define y. by

(1.11) a.. = VJ> , where U > 0 and i , j = X, 2, . . . , n+1 .

From (1.2) and ( 1 . 3 ) , we have

(1.12) q<j = & . . , that is Q = /QR .

By a linear transformation, R is transformed to the unit matrix:

TRT' = E ,

and then

(1.13) T(Q+XR)T' = TSJ" + A£ .

2
Putting A = - p 0 , we obtain

T(Q+XR)T' = 0 .

It follows from (1.13) that

(l.lU) TQT' - \?QE = 0 .

2
Equation (l.lU) means that yfl is n-fold eigenvalue of the matrix TQT' ,

that is to say, i t is the n-fold root of the equation

det(T§2"-uE') = 0 .

2
Then, from (1.13), -yn is the w-fold root of the equation

det[T(Q+\R)T') = (det T)2iet(Q+XR) = 0 ,

2
that is to say, -p. is the n-fold root of the equation

&et(Q+\R) = -det F(\) = 0 .

Therefore equality holds in Maclaurin's Inequality:
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(1'15) n ^ = h

Thus equality holds also in (l.l), and the sufficiency is proved.

Conversely, suppose equality holds in (l.l). This means that

o

&et(Q+XR) = 0 has an n-fold root. Denote this root by -\i . Then

TQT' - \i^E = 0 .

From (1.13) we obtain Q - ufT? = 0 , or Q - uR , that is to say,
p

q. . = u r. . . Finally, from (1.2) we obtain

which means that E. and ER are similar. This proves the necessity.

2. Proof of Theorem 2

Let 6. .(B) be the interior angle formed by the two (n-l)-

dimensional faces opposite the vertices b., b . of the simplex Z . In
2- 3 D

order to prove Theorem 2, we first state the following lemma.

LEMMA. With the same notation as before,

B. .
( 2 . 1 ) c o s e . . ( B ) = *r7 ( i , J = 1 , 2 , . . . , n + 1 ) .

3

This lemma, which is the higher dimensional cosine law, can be found

in C/3].

Let S.(B) and S .(B) be the (n-l)-dimensional volumes of the

(n-l)-dimensional faces opposite the vertices b. and b, , respectively.
t 3

By the well-known formula quoted above, we obtain
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(2.2)

S.(B)2 = -((„-!)!)-%. ,

SAB)* = -((""DO B

Substituting (2.1) and (2.2) into (l.l) , we have

(1.1*)- I £ a2JS.(B)SAB) cos Q.AB) >
i=l J=l J J *J

This inequality we call our Theorem 1*. Now we go on to prove Theorem 2.

It is very easy to check the following equality:

(2.3)
n+1 n+1

i=l 3=1 " "

Next, by the hypothesis 2° of Theorem 2, the simplex ED is non-obtuse,

that is cos 6. .(B) > 0 , hence

S

(2.U) B.. > 0 , (i, J = 1, 2, ..., n+1) .

Moreover, since, by condition 1° of Theorem 2, a..£&.., we obtain, from

(2.3),

n+1 „
(2.5)

2
i2n(n«)

± 2

2n(n!)2 i=l ,7=1 i(7 i<7'

Hence

and Theorem 2 i s proved.

V(A) 2 V(B) ,

3. Non-euclidean cases

In this section we consider the possibility of extending Theorem 2 to

non-euclidean spaces with constant curvature. Theorem 2 is not valid, in

general, in hyperbolic space. We can find counter-examples even in 2
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dimensions.

THEOREM 3 . 1 . There are two triangles A., A_ in the hyperbolic (or

Lobachevsky) plane such that

1° the length of each side of A. does not exceed the length of

the corresponding side of AD ,
D

2° AD is non-obtuse3

D

but

area A > area AR .

Proof. Let A. be an equilateral triangle with each of i ts angles

equal to TT/6 ; and let A_ be a right isosceles triangle, with the two

sides adjacent to the right angle of the same length as a side of A. .

First of a l l , as we know, in hyperbolic spaces the hypotenuse of a

right triangle is the longest side, so we have

1° the length of each side of A. does not exceed the length of

the corresponding side of A_, .
D

Next, since A-. is a right triangle, and because the sum of the
D

interior angles is less than IT in any triangle, A can not have an
D

obtuse angle, that is to say

2° A_ is non-obtuse.

Finally, compare the areas of A. and A . As the defect of A is

equal to TT/2 , we have

a r e a AA = W 2 '

where K is the curvature of the hyperbolic plane. On the other hand, the

sum of the interior angles of L

is less than TT/2 , and we have

sum of the interior angles of A is greater than TT/2 , hence its defect

. , 1 1
AS < flf 2 •
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Comparing these, we obtain

area A > area A

and the proof of Theorem 3.1 is completed.

Theorem 2 i s , however, valid in 2-dimensional e l l ip t ic geometry, or,
equivalently, in spherical trigonometry. We prove:

THEOREM 3.2. If A. and Ag are two spherical triangles on the

same {2-dimensional) spherical surface, such that

1° the length of each side of A. does not exceed the length of

the corresponding side of AD ,
a

2° AD is non-obtuse,

D

then

area A . 5 area A .

Proof. Without loss of generality we take the radius of the sphere to

be unity; and we denote the corresponding side-lengths of A. and A by

a. . and b. . (i, j = 1, 2, 3) , and the corresponding interior angles by
I'd I'd

a. . and 6. . , respectively. Let

A* =

B* =

cos a2 1 1

cos a cos a

cos b
21

cos b cos b

cos

cos a23

cos Z?12 cos b

cos b
23

det A* = A* , det 8* = B* .

Because A* and 8* are positive definite, the equation

(3.1) det(A*+AB*) = 0

has only negative real roots. Expanding (3-1), we obtain
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(3 .2 )
3 3

cos a,,B*.. X +
3 3

cos &. . 4 * .
-7T 1 1

X + A = 0

[i=l 3=1

Using the arithmetic-geometric inequality, we have, from (3.2),

(3.3)

o r

&i

I I cos a. J* > 3A*1/3B*2/3 .
=i j=i J %3

On the other hand, by the spherical cosine law we have

Then (3-1*) can be written as

I B* - I cos a V&* VB*T COS 6 >(3-6)

Now a. . 5 b. . , by 1°; hence . cos a. . > cos b. . . Furthermore, by

2°, AD is non-obtuse, so cos 0.. > 0 . Thus the value of the left-hand
D I'd

side of (3-6) does not decrease if we replace cos a. . by cos b. . , that

is to say,

I B,*7 - I cos b. .VBT7 y/W. cos g. . > 34*1 / 3B*2 / 3 .
j £ i ^ „.£.. *«7 vi 33 13

Hence , u s i n g ( 3 - 5 ) ,

( 3 . 7 ) I I cos bB* > 3A*1/3B*2/3 .
i=l 3=1 3 3

On the other hand, expanding B* directly, we have

(3.8) I I cos b 3* = 3B* .
i=i 3=1 ° 3

Comparing (3-7) w i th ( 3 . 8 ) , one ge t s then

( 3 . 9 ) A* < B* .
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Again as a consequence of 1 ° , cos [a. ./2\ > cos (b. ./2) , and we obtain

(3.10) ^
cos (a23/2j cos Ia31/2j cos [a12/2) ~ cos [b^/2] cos [b /2) cos

By the area formula for spherical triangles

sin I* area

U c o s ^2 3 /2J cos [a^/2] cos 10^/2J '

) /2]cos [b /2)cos [b /2l

e~i ' 31 ' 1̂ -

Thus f i n a l l y , we get

sin(^ area A.) 5 sin(^ area A_) ,
and thus

area A. S area A_ ,

and the proof of Theorem 3-2 is completed.

The method used in this paper can not extend Theorem 2 to higher-
dimensional e l l ip t ic spaces. We propose the following conjecture and hope
the reader either proves or disproves i t .

CONJECTURE. Let E*, E* be two simplices in an n-dimensional

elliptical space {or on an n-sphere) such that

1° a^ < b^ (i, j = 1 , 2 , . . . , M+l) ,

2° E* is non-obtuse;

then

V{A*) < V(B*) .
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