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Abstract
We show that the size-Ramsey number of the

√
n× √

n grid graph isO(n5/4), improving a previous bound
of n3/2+o(1) by Clemens, Miralaei, Reding, Schacht, and Taraz.
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1. Introduction
For graphs G and H, we say that G is Ramsey for H, and write G→H, if every 2-colouring of the
edges of G contains a monochromatic copy of H. In 1978, Erdős, Faudree, Rousseau, and Schelp
[9] pioneered the study of the size-Ramsey number r̂(H), defined as the smallest integer m for
which there exists a graph G with m edges such that G→H. The existence of the usual Ramsey
number r(H) shows that this notion is sensible, since, for anyH, it is easy to see that r̂(H)�

(r(H)
2

)
.

WhenH is a complete graph, this inequality is an equality, a simple fact first observed by Chvátal.
An early example showing that size-Ramsey numbers can exhibit interesting behaviour was

found by Beck [1], who showed that Pn, the path with n vertices, satisfies r̂(Pn)=O(n), which is
significantly smaller than theO(n2) bound that follows from applying the inequality above and the
corresponding bound r(Pn)=O(n) for the usual Ramsey number of Pn. In a follow-up paper, Beck
[2] asked whether a similar phenomenon occurs for all bounded-degree graphs, that is, whether,
for any integer�� 3, there exists a constant c such that any graphH with n vertices andmaximum
degree� has size-Ramsey number at most cn. Although Rödl and Szemerédi [19] showed that this
question has a negative answer already for� = 3,muchwork has gone into extending Beck’s result
to other natural families of graphs, including: cycles [14], bounded-degree trees [10], powers of
paths and bounded-degree trees [3, 5, 13], and more besides.

Most of the known families with linear size-Ramsey numbers have a bounded structural param-
eter, such as bandwidth [5] or, more generally, treewidth [15] (though see the recent papers [8, 18]
for examples with a somewhat different flavour). However, a fairly simple family of graphs which
does not fall into any of these categories, but may still have linear size-Ramsey numbers, is the
family of two-dimensional grid graphs. For s ∈N, the s× s grid is the graph with vertex set [s]× [s]
where two pairs are adjacent if and only if they differ by one in exactly one coordinate. Obviously,
the maximum degree of the s× s grid is four, but its bandwidth and treewidth are both exactly s
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(see, e.g., [4]), so the problem of estimating the size-Ramsey number of this graph, and usually
we will take s= √

n so that the graph has n vertices, provides an interesting test case for exploring
new ideas and techniques.

Regarding upper bounds for the size-Ramsey number of the
√
n× √

n grid, an important result
of Kohayakawa, Rödl, Schacht, and Szemerédi [17], which says that every graph H with n vertices
andmaximumdegree� satisfies r̂(H)� n2−1/�+o(1), immediately yields the bound n7/4+o(1). This
was recently improved by Clemens, Miralaei, Reding, Schacht, and Taraz [6] to n3/2+o(1) (and an
alternative proof of this bound was also noted in our recent paper [7]). The goal of this short note
is to provide an elementary proof of an improved upper bound.

Theorem 1.1 There exists a constant C > 0 such that the size-Ramsey number of the
√
n× √

n grid
graph is at most Cn5/4.

Like much of the work on size-Ramsey numbers, the previous bounds for grids were obtained
by applying the sparse regularity method to show that every 2-colouring of the edges of the Erdős–
Rényi random graph Gn,p, for some appropriate density p, contains a monochromatic copy of the
grid. However, it is a simple exercise in the first moment method to show that for p� n−1/2 the
random graph Gn,p with high probability does not contain the s× s grid graph as a subgraph if
s= �(

√
n), so the bound O(n3/2) is the best that one can hope to achieve using this procedure.

To see how it is that we gain on this bound, suppose that s= √
n. It is known [14] that there

are K,� > 0 and a graphH with Ks vertices and maximum degree at most � which is Ramsey for
Cs, the cycle of length s. Consider now a ‘blow-up’ � of H obtained by replacing every x ∈V(H)
by an independent set Vx of order �(s) and every xy ∈H by a bipartite graph (Vx,Vy) in which
every edge exists independently with probability p= �(s−1/2).With high probability, such a blow-
up contains �(s5/2)= �(n5/4) edges. That is, instead of revealing a random graph Gn,p on all
n= �(s2) vertices, we only reveal edges that lie within �(s) bipartite subgraphs, each with parts
of order �(s). This salvages a significant number of edges which would otherwise go to waste.

Consider now a 2-colouring of � and recall that H was chosen so that H → Cs. A key lemma,
Lemma 2.3 below, then allows us to conclude that there are sets V1, . . . ,Vs in � and a collection
Ui ⊆Vi of large subsets such that all (Ui,Ui+1) with i ∈ [s], where addition is taken modulo s, are
‘regular’ in the same colour. We may then sequentially embed the vertices of the grid so that the
first row is embedded into U1, . . . ,Us, the second into U2, . . . ,Us,U1, and so on.

2. Definitions and key lemmas
In this section, we recall several standard definitions and note two key lemmas that will be needed
in the proof of Theorem 1.1. Most of these revolve around the concept of sparse regularity (for a
thorough overview of which we refer the reader to the survey by Gerke and Steger [12]).

For ε > 0 and p ∈ (0, 1], a pair of sets (V1,V2) is said to be (ε, p)-lower-regular in a graph G
if, for all Ui ⊆Vi, i ∈ {1, 2}, with |Ui|� ε|Vi|, the density dG(U1,U2)= eG(U1,U2)/(|U1||U2|) of
edges between U1 and U2 satisfies

dG(U1,U2)� (1− ε)p.

Immediately from this definition, we get that in every (ε, p)-lower-regular pair (V1,V2), for each
i ∈ {1, 2}, all but at most ε|Vi| vertices in Vi have degree at least (1− ε)p|V3−i| into V3−i – a fact
we will make use of in the proof of Theorem 1.1. Another useful and well-known property is that
lower-regularity is inherited on large sets.

Lemma 2.1. Let 0< ε < δ, p ∈ (0, 1], and let (V1,V2) be an (ε, p)-lower-regular pair. Then any pair
of subsets V ′i ⊆Vi, i ∈ {1, 2}, with |V ′i|� δ|Vi| form an (ε/δ, p)-lower-regular pair.

For λ > 0 and p ∈ (0, 1], a graph G is said to be (λ, p)-uniform if, for all disjoint X, Y ⊆V(G)
with |X|, |Y|� λ|V(G)|, the density of edges between X and Y satisfies dG(X, Y)= (1± λ)p. If
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only the upper bound holds, the graph is said to be upper-uniform.1 For example, it is easy to
see that the random graph Gn,p is with high probability (o(1), p)-uniform whenever p	 1/n. If
G= (V1,V2; E) is bipartite, we say that G is (λ, p)-uniform or upper-uniform if the same con-
ditions hold for all X ⊆V1 and Y ⊆V2 with |X|� λ|V1| and |Y|� λ|V2|. In order to prove our
main technical lemma, we rely on the following result, a simple corollary of [16, Lemma 6], whose
proof follows a density increment argument. The same conclusion can also be obtained by an
application of the sparse regularity lemma.

Lemma 2.2. For all 0< ε < 1/2 and α ∈ (0, 1), there exists λ > 0 such that the following holds for
every p ∈ (0, 1]. Let G= (V1,V2; E) be a (λ, p)-upper-uniform bipartite graph with |V1| = |V2| and
|E|� α|V1||V2|p. Then there exist Ui ⊆Vi, i ∈ {1, 2}, with |Ui| = λ|Vi| such that (U1,U2) is (ε, αp)-
lower-regular in G.

The next lemma is the crux of our argument. Here and elsewhere, we say that (X, Y ; E) is lower-
regular if (X, Y) is lower-regular with respect to the set of edges E.

Lemma 2.3. For every r,�� 2 and ε > 0, there exists λ > 0 such that the following holds for every
p ∈ (0, 1]. Let H be a graph on at least two vertices with�(H)�� and let� be obtained by replacing
every x ∈V(H) with an independent set Vx of sufficiently large order n and every xy ∈H by a (λ, p)-
uniform bipartite graph between Vx and Vy. Then, for every r-colouring of the edges of�, there exists
an r-colouring ϕ of the edges of H and, for every x ∈V(H), a subset Ux ⊆Vx of order |Ux| = λn such
that (Ux,Uy; Eϕ(xy)) is (ε, p/(2r))-lower-regular for each xy ∈H, where Eϕ(xy) ⊆ E(�) stands for the
edges in colour ϕ(xy).

Proof. Given ε, r, and �, we let α = 1/(2r), ε�+1 := ε, λ�+1 = λ2.2(ε�+1, α), and, for every i=
�, . . . , 1, sequentially take εi = εi+1λi+1 and λi = λ2.2(εi, α). Lastly, let λ = ∏

i∈[�+1] λi.
Fix any r-colouring of (the edges of) � and, for every c ∈ [r], let �c stand for the subgraph

(in terms of edges) in colour c. Note that H has edge-chromatic number at most � + 1. In other
words, there exists a partition of the edges ofH intoH1, . . . ,H�+1 such that eachHi is a matching.
We find the required collection {Ux}x∈V(H) by maintaining the following condition for every i ∈
[� + 1]: for every x ∈V(H), there exists a chain Vx =U0

x ⊇U1
x ⊇U2

x ⊇ · · · ⊇Ui
x such that

(i) |Uj
x| = λj|Uj−1

x | for all j ∈ [i] and
(ii) for every xy ∈ ⋃

j�i Hj, (Ui
x,Ui

y) is (εi, αp)-lower-regular in �c for some c ∈ [r].

Consequently, for i= � + 1, we obtain sets Ux ⊆Vx, for every x ∈V(H), of order |Ux| =(∏
i∈[�+1] λi

)
n= λn such that (Ux,Uy) is (ε�+1, αp)-lower-regular and, thus, (ε, αp)-lower-

regular for every xy ∈H. It remains to show that we can indeed do this.
Consider first i= 1. For each xy ∈H1, let c ∈ [r] be the majority colour in �[Vx,Vy]. As

e�c(Vx,Vy)� (1− λ)n2p/r, we may apply Lemma 2.2 with ε1 (as ε) and �c[Vx,Vy] (as G) to
obtain sets U1

x ,U1
y with the desired properties. For every x ∈V(H) which is isolated in H1, we

simply take an arbitrary subset U1
x ⊆Vx of order λ1|U0

x |. Thus, the required condition holds for
i= 1.

Suppose now that the condition holds for some i� 1 and let us show that it also holds for i+ 1.
As above, for every xy ∈Hi+1, let c ∈ [r] be the majority colour in �[Vx,Vy]. Since �[Vx,Vy] is
(λ, p)-uniform and, by (i), |Ui

x|, |Ui
y|� λn, we have e�(Ui

x,Ui
y)= (1± λ)|Ui

x||Ui
y|p and, hence,

(1− λ)|Ui
x||Ui

y|p/r� e�c(Ui
x,U

i
y)� (1+ λ)|Ui

x||Ui
y|p.

Lemma 2.2 applied to �c
[
Ui
x,Ui

y

]
with εi+1 (as ε) gives sets Ui+1

x ⊆Ui
x and Ui+1

y ⊆Ui
y of order

1For consistency with the existing literature and for historical reasons, we use both ‘regular’ and ‘uniform’ as terms, even
though they are basically the same concept.
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∣∣Ui+1
x

∣∣ = λi+1
∣∣Ui

x
∣∣ and

∣∣∣Ui+1
y

∣∣∣ = λi+1

∣∣∣Ui
y

∣∣∣

for which
(
Ui+1
x ,Ui+1

y

)
is (εi+1, αp)-lower-regular in �c. For every x ∈V(H) which is isolated

in Hi+1, we again take an arbitrary subset Ui+1
x ⊆Ui

x of order λi+1|Ui
x|. Observe also that, for

every xz ∈ ⋃
j�i Hj, since (Ui

x,Ui
z) was (εi, αp)-lower-regular in �c′ for some c′ ∈ [r] and |Ui+1

x | =
λi+1|Ui

x|, Lemma 2.1 and the fact that εi/λi+1 = εi+1 imply that
(
Ui+1
x ,Ui+1

z
)
is (εi+1, αp)-lower-

regular in �c′ , as desired. This completes the proof. �
We also need a variant of a result from our previous paper [7, Lemma 3.5] about regularity

inheritance. While that result was stated for the usual (full) notion of regularity, we only need
lower-regularity here, allowing us to save a factor of ( log n)1/2.

Lemma 2.4. For all ε, α, λ > 0, there exist positive constants ε′(ε, α) and C(ε, α, λ) such that for p�
Cn−1/2, with probability at least 1− o(n−5), the random graph � ∼Gn,p has the following property.

Suppose G⊆ � and V1,V2 ⊆V(�) are disjoint subsets of order ñ= λn such that (V1,V2)
is (ε′, αp)-lower-regular in G. Then there exists B⊆V(�) of order |B|� εñ such that, for each
v,w ∈V(�) \ (V1 ∪V2 ∪ B) (not necessarily distinct), the following holds: for any two subsets
Nv ⊆N�(v,V1) and Nw ⊆N�(w,V2) of order αñp/4, both (Nv,V2) and (Nv,Nw) are (ε, αp)-lower-
regular in G.

Sketch of the proof. The proof proceeds along the same lines as the proof of [7, Lemma 3.5].
The only difference is that there we made use of an inheritance lemma for full regularity (namely,
Corollary 3.5 in [20]), which requires the sets on which regularity is inherited to be of order at least
C log n/p, resulting in the requirement that p� C( log n/n)1/2. However, for lower-regularity, one
can instead use the inheritance lemma of Gerke, Kohayakawa, Rödl, and Steger [11, Corollary 3.8],
which only requires the sets to be of order at least C/p, resulting in p� Cn−1/2. The rest of the
proof remains exactly the same. �

3. Proof of Theorem 1.1
Since it requires no additional work, we will actually prove the r-colour analogue of Theorem 1.1.
More precisely, we will show that for every integer r� 2 there exists a graph of order n with
O(n5/4) edges for which every r-colouring of the edges contains a monochromatic copy of the
δ
√
n× δ

√
n grid for some δ > 0.

By a result of Haxell, Kohayakawa, and Łuczak [14, Theorem 10], there exist constants
K,� > 0, both depending only on r, such that, for every sufficiently large s ∈N, there is a graphH
on Ks vertices with maximum degree at most � which has the property that every r-colouring of
its edges contains a monochromatic copy of C
, the cycle of length 
, for every log s� 
� s. Let
α = 1/(2r), ε = α/256, ε′ = ε′

2.4(ε/9, α), λ = λ2.3(r,�, ε′), and δ =min{1/(4K), ελ/4}.
We show that the size-Ramsey number of the δs× δs grid is O(s5/2), which, for s= √

n, implies
the desired statement.

Let � be a graph obtained by replacing every vertex x ∈V(H) by an independent set Vx of
order s and every edge xy ∈H by a bipartite graph between Vx and Vy in which each edge exists
independently with probability p= Cs−1/2 for some sufficiently large constant C > 0. With high
probability, � has the following property:

(A1) e�(V ′x,V ′y)= (1± λ)|V ′x||V ′y|p for every xy ∈H and V ′x ⊆Vx and V ′y ⊆Vy with
|V ′x||V ′y|p� 100s/λ2.

This is a standard feature of random graphs and follows from the Chernoff bound together
with an application of the union bound. In particular, it establishes that with high probability
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�[Vx,Vy] is (λ, p)-uniform for every xy ∈H and, therefore, � has at most

Ks · �/2 · (1+ λ)s2p=O(s5/2)
edges. Additionally, with high probability, � is such that every �[Vx ∪Vy ∪Vz] has the property
of Lemma 2.4 (applied with ε/9 as ε, λ/3 as λ, and 3s as n) for every path xyz of length two inH.2
This again follows from the union bound, as there are O(s) such paths in total and the conclusion
of Lemma 2.4 holds with probability 1− o(s−5) for every fixed path. We now fix an outcome of �
which satisfies all of these properties.

Consider some r-colouring of the edges of � and let ϕ be the colouring of the edges of H given
by Lemma 2.3 (applied with ε′ as ε). By the choice ofH, this colouring contains a monochromatic
copy of Cδs, which, without loss of generality, we may assume has vertices 1, . . . , δs. Therefore,
there is a colour c ∈ [r] and sets Ui of order s̃= λs in � such that, for every i ∈ [δs], the pair
(Ui,Ui+1) is (ε′, αp)-lower-regular in the subgraph of � induced by colour c, where we identify
δs+ i with i. Let G be the graph induced by these sets whose edges are the edges of � of colour c.
We will show that G contains the δs× δs grid as a subgraph.

For every i ∈ [δs], let B⊆Ui ∪Ui+1 ∪Ui+2 be the set given by Lemma 2.4 (which was applied
with ε/9 as ε, λ/3 as λ, and 3s as n) on �[Ui ∪Ui+1 ∪Ui+2], which is a set of ‘bad vertices’ for the
pair (Ui+1,Ui+2). As eachUi is a part of three such applications, by the chosen properties of �, for
every i ∈ [δs] there exists a set Bi ⊆Ui of order |Bi|� εs̃ such that:

(B1) (Nv,Ui+2 \ Bi+2) is (ε, αp)-lower-regular3 in G for every v ∈Ui \ Bi and Nv ⊆NG(v,Ui+1)
of order αs̃p/4 and

(B2) (Nv,Nu) is (ε, αp)-lower-regular in G for every v ∈Ui \ Bi, u ∈Ui+1 \ Bi+1 and Nv ⊆
NG(v,Ui+1), Nu ⊆NG(u,Ui+2), each of order αs̃p/4.

Our plan is to embed the vertex (i, j) of the δs× δs grid into Ui+j−1. The next claim helps us
achieve this.

Claim 3.1 Let i ∈ [δs]. Suppose that sets Si+j−1 ⊆Ui+j−1 \ Bi+j−1 of order αs̃p/4 are given for
each j ∈ [δs] and that (Si+j−1, Si+j) and (Si+j−1,Ui+j \ Bi+j) are (ε, αp)-lower-regular. Then, for
every Qi+j−1 ⊆Ui+j−1, j ∈ [δs], of order |Qi+j−1|� 2εs̃, there exists a path v1, . . . , vδs with each
vj ∈ Si+j−1 such that |NG(vj,Ui+j \Qi+j)|� αs̃p/4.

Before proving the claim, we show how to complete the embedding of the grid assuming that
it holds. We start by embedding the first row. Let v1 ∈U1 \ B1 be a vertex for which there is S2 ⊆
NG(v1,U2 \ B2) of order αs̃p/4 such that (S2,U3 \ B3) is (ε, αp)-lower-regular. As (U1 \ B1,U2 \
B2) is (2ε′, αp)-lower-regular, there are at least (1− 2ε′)(1− ε)s̃ vertices v ∈U1 \ B1 that satisfy

degG (v,U2 \ B2)� (1− 2ε′)|U2 \ B2|αp� αs̃p/4,
by our choice of constants. Thus, by property (B1) almost any choice of v1 ∈U1 \ B1 will do.
Sequentially, for every i� 2, let vi ∈ Si be a vertex for which there is Si+1 ⊆NG(vi,Ui+1 \ Bi+1) of
order αs̃p/4 and both (Si+1,Ui+2 \ Bi+2) and (Si, Si+1) are (ε, αp)-lower-regular. This is possible
as (Si,Ui+1 \ Bi+1) is (ε, αp)-lower-regular and properties (B1) and (B2) hold. We continue until
we have embedded the first row of the grid as v1, . . . , vδs, with vi ∈Ui for every i ∈ [δs].

Consider now sets S2, . . . , Sδs, S1 which we previously chose, where we note that S1 was defined
when we embedded vδs. In particular, S1+j ⊆U1+j \ B1+j and (S1+j, S2+j) and (S1+j,U2+j \ B2+j)
are both (ε, αp)-regular for every j ∈ [δs]. Then, by setting Q1+j := B1+j ∪ {v1+j} and invoking
Claim 3.1 with i= 2, we can embed the second row of the grid as u1, . . . , uδs, with uj ∈ S1+j for

2Technically, to apply the lemma, we must also temporarily reveal the edges between Vx and Vz and within each Vx ,Vy,Vz ,
but, unless xz is itself an edge of H, these are all then removed from �.

3The conclusion of Lemma 2.4 states that (Nv,Ui+2) is (ε/9, αp)-lower-regular, but, as Bi+2 is small, Lemma 2.1 implies that
(Nv,Ui+2 \ Bi+2) is (ε, αp)-lower-regular.
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Figure 1. A picture showing the first two rows of the grid already embedded (the thick black lines), the candidate sets for
the third row (the grey blobs S3, S4, . . . , Sδs, S1, S2), and (in red) the path v1, v2, . . . , vδs given by Claim 3.1, together with the
corresponding neighbourhoods NG(vj, Ui+j \ Qi+j) (the red blobs).

every j ∈ [δs]. By the conclusion of Claim 3.1 and a slight abuse of notation, there is a collection
of sets S2+j ⊆NG(uj,U2+j \Q2+j) for every j ∈ [δs], each of order αs̃p/4, which, by (B1) and (B2),
as uj ∈U1+j \ B1+j and uj+1 ∈U1+j+1 \ B1+j+1, are such that (S2+j, S2+j+1) and (S2+j,U2+j+1 \
B2+j+1) are (ε, αp)-lower-regular.

The same process can now be repeated for any i� 3 (see Figure 1) by setting the sets Qi+j−1 ⊆
Ui+j−1 for every j ∈ [δs] to be the union of Bi+j−1 and the vertices of the grid that were previously
embedded intoUi+j−1, that is, the images of the vertices (1, i+ j− 1), (2, i+ j− 2), . . . , (i− 1, j+
1). Since |Bi+j−1|� εs̃, δ < ελ, and the lower-regularity conditions hold by (B1) and (B2), we may
apply Claim 3.1 to embed the ith row. It only remains to prove this claim.

Proof of Claim 3.1. Without loss of generality, we may assume that all the Qi+j−1 are of order
2εs̃, as we can take arbitrary supersets if this is not the case. Let S′i+j−1 ⊆ Si+j−1 be the set of all
v ∈ Si+j−1 with at least αs̃p/4 neighbours in Ui+j \Qi+j. On the one hand, as (Si+j−1,Ui+j \ Bi+j)
is (ε, αp)-lower-regular and, thus, there are fewer than ε|Si+j−1| vertices in Si+j−1 with degree less
than αs̃p/2 in Ui+j \ Bi+j, we have

eG(Si+j−1 \ S′i+j−1,Qi+j)�
(|Si+j−1 \ S′i+j−1| − ε|Si+j−1|

)
αs̃p/4.

On the other hand, assuming Si+j−1 \ S′i+j−1 is of order at least αs̃p/16 and, hence,

|Si+j−1 \ S′i+j−1||Qi+j|p� αs̃p/16 · 2εs̃p� 100s/λ2

for C > 0 sufficiently large, property (A1) implies that
eG(Si+j−1 \ S′i+j−1,Qi+j)� (1+ λ)2εs̃|Si+j−1 \ S′i+j−1|p.

Since ε < α/128, this is a contradiction. Therefore, there are sets S′i+j−1 ⊆ Si+j−1 of order at
least |Si+j−1| − αs̃p/16 for each j ∈ [δs] such that every v ∈ S′i+j−1 satisfies |NG(v,Ui+j \Qi+j)|�
αs̃p/4.

We will now find a collection of sets S′′i+j−1 ⊆ S′i+j−1 of order at least |Si+j−1| − αs̃p/8 such
that, for every 2� j� δs, every v ∈ S′′i+j−2 has a non-empty NG(v, S′′i+j−1). First, choose S′′i+δs−1 ⊆
S′i+δs−1 of order |Si+δs−1| − αs̃p/8 arbitrarily, noting that such a set exists by the bound on
|S′i+δs−1|. Having chosen S′′i+j−1 for some 2� j� δs, we choose S′′i+j−2 as follows. Recall that
(Si+j−2, Si+j−1) is (ε, αp)-lower-regular and, thus, by Lemma 2.1 and the bounds on the orders
of S′i+j−2 and S′′i+j−1, (S′i+j−2, S′′i+j−1) is (2ε, αp)-lower-regular. It follows that there are at least
(1− 2ε)|S′i+j−2|� |Si+j−2| − αs̃p/8 vertices v ∈ S′i+j−2 which satisfy

degG (v, S′′i+j−1)� (1− 2ε)|S′′i+j−1|αp� α2s̃p2/16> 0.
We declare the set of such vertices to be S′′i+j−2 and continue on to the next index j.
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Starting with an arbitrary v1 ∈ S′′i and sequentially choosing vj ∈NG(vj−1, S′′i+j−1) now com-
pletes the proof. �
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