ARTICLE

On the size-Ramsey number of grids

David Conlon ${ }^{1}$, Rajko Nenadov ${ }^{2}$ and Miloš Trujici ${ }^{3}$
${ }^{1}$ Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA, ${ }^{2}$ School of Computer Science, The University of Auckland, New Zealand, and ${ }^{3}$ Institute of Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland

Corresponding author: Miloš Trujić; Email: mtrujic@inf.ethz.ch
(Received 3 February 2022; revised 14 April 2023; accepted 18 April 2023; first published online 26 June 2023)

Abstract

We show that the size-Ramsey number of the $\sqrt{n} \times \sqrt{n}$ grid graph is $O\left(n^{5 / 4}\right)$, improving a previous bound of $n^{3 / 2+o(1)}$ by Clemens, Miralaei, Reding, Schacht, and Taraz.

Keywords: Ramsey theory; random graphs; grid graph
2020 MSC Codes: Primary: 05D10; Secondary: 05C55, 05C80

1. Introduction

For graphs G and H, we say that G is Ramsey for H, and write $G \rightarrow H$, if every 2-colouring of the edges of G contains a monochromatic copy of H. In 1978, Erdős, Faudree, Rousseau, and Schelp [9] pioneered the study of the size-Ramsey number $\hat{r}(H)$, defined as the smallest integer m for which there exists a graph G with m edges such that $G \rightarrow H$. The existence of the usual Ramsey number $r(H)$ shows that this notion is sensible, since, for any H, it is easy to see that $\hat{r}(H) \leqslant\binom{ r(H)}{2}$. When H is a complete graph, this inequality is an equality, a simple fact first observed by Chvátal.

An early example showing that size-Ramsey numbers can exhibit interesting behaviour was found by Beck [1], who showed that P_{n}, the path with n vertices, satisfies $\hat{r}\left(P_{n}\right)=O(n)$, which is significantly smaller than the $O\left(n^{2}\right)$ bound that follows from applying the inequality above and the corresponding bound $r\left(P_{n}\right)=O(n)$ for the usual Ramsey number of P_{n}. In a follow-up paper, Beck [2] asked whether a similar phenomenon occurs for all bounded-degree graphs, that is, whether, for any integer $\Delta \geqslant 3$, there exists a constant c such that any graph H with n vertices and maximum degree Δ has size-Ramsey number at most $c n$. Although Rödl and Szemerédi [19] showed that this question has a negative answer already for $\Delta=3$, much work has gone into extending Beck's result to other natural families of graphs, including: cycles [14], bounded-degree trees [10], powers of paths and bounded-degree trees [3,5,13], and more besides.

Most of the known families with linear size-Ramsey numbers have a bounded structural parameter, such as bandwidth [5] or, more generally, treewidth [15] (though see the recent papers [8, 18] for examples with a somewhat different flavour). However, a fairly simple family of graphs which does not fall into any of these categories, but may still have linear size-Ramsey numbers, is the family of two-dimensional grid graphs. For $s \in \mathbb{N}$, the $s \times s$ grid is the graph with vertex set $[s] \times[s]$ where two pairs are adjacent if and only if they differ by one in exactly one coordinate. Obviously, the maximum degree of the $s \times s$ grid is four, but its bandwidth and treewidth are both exactly s

[^0](see, e.g., [4]), so the problem of estimating the size-Ramsey number of this graph, and usually we will take $s=\sqrt{n}$ so that the graph has n vertices, provides an interesting test case for exploring new ideas and techniques.

Regarding upper bounds for the size-Ramsey number of the $\sqrt{n} \times \sqrt{n}$ grid, an important result of Kohayakawa, Rödl, Schacht, and Szemerédi [17], which says that every graph H with n vertices and maximum degree Δ satisfies $\hat{r}(H) \leqslant n^{2-1 / \Delta+o(1)}$, immediately yields the bound $n^{7 / 4+o(1)}$. This was recently improved by Clemens, Miralaei, Reding, Schacht, and Taraz [6] to $n^{3 / 2+o(1)}$ (and an alternative proof of this bound was also noted in our recent paper [7]). The goal of this short note is to provide an elementary proof of an improved upper bound.
Theorem 1.1 There exists a constant $C>0$ such that the size-Ramsey number of the $\sqrt{n} \times \sqrt{n}$ grid graph is at most $\mathrm{Cn}^{5 / 4}$.

Like much of the work on size-Ramsey numbers, the previous bounds for grids were obtained by applying the sparse regularity method to show that every 2-colouring of the edges of the ErdősRényi random graph $G_{n, p}$, for some appropriate density p, contains a monochromatic copy of the grid. However, it is a simple exercise in the first moment method to show that for $p \ll n^{-1 / 2}$ the random graph $G_{n, p}$ with high probability does not contain the $s \times s$ grid graph as a subgraph if $s=\Theta(\sqrt{n})$, so the bound $O\left(n^{3 / 2}\right)$ is the best that one can hope to achieve using this procedure.

To see how it is that we gain on this bound, suppose that $s=\sqrt{n}$. It is known [14] that there are $K, \Delta>0$ and a graph H with $K s$ vertices and maximum degree at most Δ which is Ramsey for C_{s}, the cycle of length s. Consider now a 'blow-up' Γ of H obtained by replacing every $x \in V(H)$ by an independent set V_{x} of order $\Theta(s)$ and every $x y \in H$ by a bipartite graph $\left(V_{x}, V_{y}\right)$ in which every edge exists independently with probability $p=\Theta\left(s^{-1 / 2}\right)$. With high probability, such a blowup contains $\Theta\left(s^{5 / 2}\right)=\Theta\left(n^{5 / 4}\right)$ edges. That is, instead of revealing a random graph $G_{n, p}$ on all $n=\Theta\left(s^{2}\right)$ vertices, we only reveal edges that lie within $\Theta(s)$ bipartite subgraphs, each with parts of order $\Theta(s)$. This salvages a significant number of edges which would otherwise go to waste.

Consider now a 2-colouring of Γ and recall that H was chosen so that $H \rightarrow C_{s}$. A key lemma, Lemma 2.3 below, then allows us to conclude that there are sets V_{1}, \ldots, V_{s} in Γ and a collection $U_{i} \subseteq V_{i}$ of large subsets such that all $\left(U_{i}, U_{i+1}\right)$ with $i \in[s]$, where addition is taken modulo s, are 'regular' in the same colour. We may then sequentially embed the vertices of the grid so that the first row is embedded into U_{1}, \ldots, U_{s}, the second into $U_{2}, \ldots, U_{s}, U_{1}$, and so on.

2. Definitions and key lemmas

In this section, we recall several standard definitions and note two key lemmas that will be needed in the proof of Theorem 1.1. Most of these revolve around the concept of sparse regularity (for a thorough overview of which we refer the reader to the survey by Gerke and Steger [12]).

For $\varepsilon>0$ and $p \in(0,1]$, a pair of sets $\left(V_{1}, V_{2}\right)$ is said to be (ε, p)-lower-regular in a graph G if, for all $U_{i} \subseteq V_{i}, i \in\{1,2\}$, with $\left|U_{i}\right| \geqslant \varepsilon\left|V_{i}\right|$, the density $d_{G}\left(U_{1}, U_{2}\right)=e_{G}\left(U_{1}, U_{2}\right) /\left(\left|U_{1}\right|\left|U_{2}\right|\right)$ of edges between U_{1} and U_{2} satisfies

$$
d_{G}\left(U_{1}, U_{2}\right) \geqslant(1-\varepsilon) p
$$

Immediately from this definition, we get that in every (ε, p)-lower-regular pair $\left(V_{1}, V_{2}\right)$, for each $i \in\{1,2\}$, all but at most $\varepsilon\left|V_{i}\right|$ vertices in V_{i} have degree at least $(1-\varepsilon) p\left|V_{3-i}\right|$ into V_{3-i} - a fact we will make use of in the proof of Theorem 1.1. Another useful and well-known property is that lower-regularity is inherited on large sets.
Lemma 2.1. Let $0<\varepsilon<\delta, p \in(0,1]$, and let $\left(V_{1}, V_{2}\right)$ be an (ε, p)-lower-regular pair. Then any pair of subsets $V_{i}^{\prime} \subseteq V_{i}, i \in\{1,2\}$, with $\left|V_{i}^{\prime}\right| \geqslant \delta\left|V_{i}\right|$ form an $(\varepsilon / \delta, p)$-lower-regular pair.

For $\lambda>0$ and $p \in(0,1]$, a graph G is said to be (λ, p)-uniform if, for all disjoint $X, Y \subseteq V(G)$ with $|X|,|Y| \geqslant \lambda|V(G)|$, the density of edges between X and Y satisfies $d_{G}(X, Y)=(1 \pm \lambda) p$. If
only the upper bound holds, the graph is said to be upper-uniform. ${ }^{1}$ For example, it is easy to see that the random graph $G_{n, p}$ is with high probability ($o(1), p$)-uniform whenever $p \gg 1 / n$. If $G=\left(V_{1}, V_{2} ; E\right)$ is bipartite, we say that G is (λ, p)-uniform or upper-uniform if the same conditions hold for all $X \subseteq V_{1}$ and $Y \subseteq V_{2}$ with $|X| \geqslant \lambda\left|V_{1}\right|$ and $|Y| \geqslant \lambda\left|V_{2}\right|$. In order to prove our main technical lemma, we rely on the following result, a simple corollary of [16, Lemma 6], whose proof follows a density increment argument. The same conclusion can also be obtained by an application of the sparse regularity lemma.
Lemma 2.2. For all $0<\varepsilon<1 / 2$ and $\alpha \in(0,1)$, there exists $\lambda>0$ such that the following holds for every $p \in(0,1]$. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a (λ, p)-upper-uniform bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|$ and $|E| \geqslant \alpha\left|V_{1}\right|\left|V_{2}\right| p$. Then there exist $U_{i} \subseteq V_{i}, i \in\{1,2\}$, with $\left|U_{i}\right|=\lambda\left|V_{i}\right|$ such that $\left(U_{1}, U_{2}\right)$ is $(\varepsilon, \alpha p)$ -lower-regular in G.

The next lemma is the crux of our argument. Here and elsewhere, we say that $(X, Y ; E)$ is lowerregular if (X, Y) is lower-regular with respect to the set of edges E.
Lemma 2.3. For every $r, \Delta \geqslant 2$ and $\varepsilon>0$, there exists $\lambda>0$ such that the following holds for every $p \in(0,1]$. Let H be a graph on at least two vertices with $\Delta(H) \leqslant \Delta$ and let Γ be obtained by replacing every $x \in V(H)$ with an independent set V_{x} of sufficiently large order n and every $x y \in H$ by a (λ, p) uniform bipartite graph between V_{x} and V_{y}. Then, for every r-colouring of the edges of Γ, there exists an r-colouring φ of the edges of H and, for every $x \in V(H)$, a subset $U_{x} \subseteq V_{x}$ of order $\left|U_{x}\right|=\lambda n$ such that $\left(U_{x}, U_{y} ; E_{\varphi(x y)}\right)$ is $(\varepsilon, p /(2 r))$-lower-regular for each $x y \in H$, where $E_{\varphi(x y)} \subseteq E(\Gamma)$ stands for the edges in colour $\varphi(x y)$.
Proof. Given ε, r, and Δ, we let $\alpha=1 /(2 r), \varepsilon_{\Delta+1}:=\varepsilon, \lambda_{\Delta+1}=\lambda_{2.2}\left(\varepsilon_{\Delta+1}, \alpha\right)$, and, for every $i=$ $\Delta, \ldots, 1$, sequentially take $\varepsilon_{i}=\varepsilon_{i+1} \lambda_{i+1}$ and $\lambda_{i}=\lambda_{2.2}\left(\varepsilon_{i}, \alpha\right)$. Lastly, let $\lambda=\prod_{i \in[\Delta+1]} \lambda_{i}$.

Fix any r-colouring of (the edges of) Γ and, for every $c \in[r]$, let Γ_{c} stand for the subgraph (in terms of edges) in colour c. Note that H has edge-chromatic number at most $\Delta+1$. In other words, there exists a partition of the edges of H into $H_{1}, \ldots, H_{\Delta+1}$ such that each H_{i} is a matching. We find the required collection $\left\{U_{x}\right\}_{x \in V(H)}$ by maintaining the following condition for every $i \in$ [$\Delta+1$]: for every $x \in V(H)$, there exists a chain $V_{x}=U_{x}^{0} \supseteq U_{x}^{1} \supseteq U_{x}^{2} \supseteq \cdots \supseteq U_{x}^{i}$ such that
(i) $\left|U_{x}^{j}\right|=\lambda_{j}\left|U_{x}^{j-1}\right|$ for all $j \in[i]$ and
(ii) for every $x y \in \bigcup_{j \leqslant i} H_{j}$, $\left(U_{x}^{i}, U_{y}^{i}\right)$ is $\left(\varepsilon_{i}, \alpha p\right)$-lower-regular in Γ_{c} for some $c \in[r]$.

Consequently, for $i=\Delta+1$, we obtain sets $U_{x} \subseteq V_{x}$, for every $x \in V(H)$, of order $\left|U_{x}\right|=$ $\left(\prod_{i \in[\Delta+1]} \lambda_{i}\right) n=\lambda n$ such that $\left(U_{x}, U_{y}\right)$ is $\left(\varepsilon_{\Delta+1}, \alpha p\right)$-lower-regular and, thus, $(\varepsilon, \alpha p)$-lowerregular for every $x y \in H$. It remains to show that we can indeed do this.

Consider first $i=1$. For each $x y \in H_{1}$, let $c \in[r]$ be the majority colour in $\Gamma\left[V_{x}, V_{y}\right]$. As $e_{\Gamma_{c}}\left(V_{x}, V_{y}\right) \geqslant(1-\lambda) n^{2} p / r$, we may apply Lemma 2.2 with ε_{1} (as ε) and $\Gamma_{c}\left[V_{x}, V_{y}\right]$ (as G) to obtain sets U_{x}^{1}, U_{y}^{1} with the desired properties. For every $x \in V(H)$ which is isolated in H_{1}, we simply take an arbitrary subset $U_{x}^{1} \subseteq V_{x}$ of order $\lambda_{1}\left|U_{x}^{0}\right|$. Thus, the required condition holds for $i=1$.

Suppose now that the condition holds for some $i \geqslant 1$ and let us show that it also holds for $i+1$. As above, for every $x y \in H_{i+1}$, let $c \in[r]$ be the majority colour in $\Gamma\left[V_{x}, V_{y}\right]$. Since $\Gamma\left[V_{x}, V_{y}\right]$ is (λ, p) -uniform and, by (i), $\left|U_{x}^{i}\right|,\left|U_{y}^{i}\right| \geqslant \lambda n$, we have $e_{\Gamma}\left(U_{x}^{i}, U_{y}^{i}\right)=(1 \pm \lambda)\left|U_{x}^{i}\right|\left|U_{y}^{i}\right| p$ and, hence,

$$
(1-\lambda)\left|U_{x}^{i}\left\|U_{y}^{i}\left|p / r \leqslant e_{\Gamma_{c}}\left(U_{x}^{i}, U_{y}^{i}\right) \leqslant(1+\lambda)\right| U_{x}^{i}\right\| U_{y}^{i}\right| p
$$

Lemma 2.2 applied to $\Gamma_{c}\left[U_{x}^{i}, U_{y}^{i}\right]$ with ε_{i+1} (as ε) gives sets $U_{x}^{i+1} \subseteq U_{x}^{i}$ and $U_{y}^{i+1} \subseteq U_{y}^{i}$ of order

[^1]$$
\left|U_{x}^{i+1}\right|=\lambda_{i+1}\left|U_{x}^{i}\right| \quad \text { and } \quad\left|U_{y}^{i+1}\right|=\lambda_{i+1}\left|U_{y}^{i}\right|
$$
for which $\left(U_{x}^{i+1}, U_{y}^{i+1}\right)$ is $\left(\varepsilon_{i+1}, \alpha p\right)$-lower-regular in Γ_{c}. For every $x \in V(H)$ which is isolated in H_{i+1}, we again take an arbitrary subset $U_{x}^{i+1} \subseteq U_{x}^{i}$ of order $\lambda_{i+1}\left|U_{x}^{i}\right|$. Observe also that, for every $x z \in \bigcup_{j \leqslant i} H_{j}$, since (U_{x}^{i}, U_{z}^{i}) was ($\varepsilon_{i}, \alpha p$)-lower-regular in $\Gamma_{c^{\prime}}$ for some $c^{\prime} \in[r]$ and $\left|U_{x}^{i+1}\right|=$ $\lambda_{i+1}\left|U_{x}^{i}\right|$, Lemma 2.1 and the fact that $\varepsilon_{i} / \lambda_{i+1}=\varepsilon_{i+1}$ imply that $\left(U_{x}^{i+1}, U_{z}^{i+1}\right)$ is $\left(\varepsilon_{i+1}, \alpha p\right)$-lowerregular in $\Gamma_{c^{\prime}}$, as desired. This completes the proof.

We also need a variant of a result from our previous paper [7, Lemma 3.5] about regularity inheritance. While that result was stated for the usual (full) notion of regularity, we only need lower-regularity here, allowing us to save a factor of $(\log n)^{1 / 2}$.

Lemma 2.4. For all $\varepsilon, \alpha, \lambda>0$, there exist positive constants $\varepsilon^{\prime}(\varepsilon, \alpha)$ and $C(\varepsilon, \alpha, \lambda)$ such that for $p \geqslant$ $C n^{-1 / 2}$, with probability at least $1-o\left(n^{-5}\right)$, the random graph $\Gamma \sim G_{n, p}$ has the following property.

Suppose $G \subseteq \Gamma$ and $V_{1}, V_{2} \subseteq V(\Gamma)$ are disjoint subsets of order $\tilde{n}=\lambda n$ such that $\left(V_{1}, V_{2}\right)$ is $\left(\varepsilon^{\prime}, \alpha p\right)$-lower-regular in G. Then there exists $B \subseteq V(\Gamma)$ of order $|B| \leqslant \varepsilon \tilde{n}$ such that, for each $v, w \in V(\Gamma) \backslash\left(V_{1} \cup V_{2} \cup B\right)$ (not necessarily distinct), the following holds: for any two subsets $N_{v} \subseteq N_{\Gamma}\left(v, V_{1}\right)$ and $N_{w} \subseteq N_{\Gamma}\left(w, V_{2}\right)$ of order $\alpha \tilde{n} p / 4$, both $\left(N_{v}, V_{2}\right)$ and $\left(N_{v}, N_{w}\right)$ are $(\varepsilon, \alpha p)$-lowerregular in G.

Sketch of the proof. The proof proceeds along the same lines as the proof of [7, Lemma 3.5]. The only difference is that there we made use of an inheritance lemma for full regularity (namely, Corollary 3.5 in [20]), which requires the sets on which regularity is inherited to be of order at least $C \log n / p$, resulting in the requirement that $p \geqslant C(\log n / n)^{1 / 2}$. However, for lower-regularity, one can instead use the inheritance lemma of Gerke, Kohayakawa, Rödl, and Steger [11, Corollary 3.8], which only requires the sets to be of order at least C / p, resulting in $p \geqslant \mathrm{Cn}^{-1 / 2}$. The rest of the proof remains exactly the same.

3. Proof of Theorem 1.1

Since it requires no additional work, we will actually prove the r-colour analogue of Theorem 1.1. More precisely, we will show that for every integer $r \geqslant 2$ there exists a graph of order n with $O\left(n^{5 / 4}\right)$ edges for which every r-colouring of the edges contains a monochromatic copy of the $\delta \sqrt{n} \times \delta \sqrt{n}$ grid for some $\delta>0$.

By a result of Haxell, Kohayakawa, and Łuczak [14, Theorem 10], there exist constants $K, \Delta>0$, both depending only on r, such that, for every sufficiently large $s \in \mathbb{N}$, there is a graph H on $K s$ vertices with maximum degree at most Δ which has the property that every r-colouring of its edges contains a monochromatic copy of C_{ℓ}, the cycle of length ℓ, for every $\log s \ll \ell \leqslant s$. Let

$$
\alpha=1 /(2 r), \quad \varepsilon=\alpha / 256, \quad \varepsilon^{\prime}=\varepsilon_{2.4}^{\prime}(\varepsilon / 9, \alpha), \quad \lambda=\lambda_{2.3}\left(r, \Delta, \varepsilon^{\prime}\right), \quad \text { and } \quad \delta=\min \{1 /(4 K), \varepsilon \lambda / 4\}
$$

We show that the size-Ramsey number of the $\delta s \times \delta s$ grid is $O\left(s^{5 / 2}\right)$, which, for $s=\sqrt{n}$, implies the desired statement.

Let Γ be a graph obtained by replacing every vertex $x \in V(H)$ by an independent set V_{x} of order s and every edge $x y \in H$ by a bipartite graph between V_{x} and V_{y} in which each edge exists independently with probability $p=C s^{-1 / 2}$ for some sufficiently large constant $C>0$. With high probability, Γ has the following property:
(A1) $e_{\Gamma}\left(V_{x}^{\prime}, V_{y}^{\prime}\right)=(1 \pm \lambda)\left|V_{x}^{\prime} \| V_{y}^{\prime}\right| p$ for every $x y \in H$ and $V_{x}^{\prime} \subseteq V_{x}$ and $V_{y}^{\prime} \subseteq V_{y}$ with $\left|V_{x}^{\prime}\right|\left|V_{y}^{\prime}\right| p \geqslant 100 s / \lambda^{2}$.
This is a standard feature of random graphs and follows from the Chernoff bound together with an application of the union bound. In particular, it establishes that with high probability
$\Gamma\left[V_{x}, V_{y}\right]$ is (λ, p)-uniform for every $x y \in H$ and, therefore, Γ has at most

$$
K s \cdot \Delta / 2 \cdot(1+\lambda) s^{2} p=O\left(s^{5 / 2}\right)
$$

edges. Additionally, with high probability, Γ is such that every $\Gamma\left[V_{x} \cup V_{y} \cup V_{z}\right]$ has the property of Lemma 2.4 (applied with $\varepsilon / 9$ as $\varepsilon, \lambda / 3$ as λ, and $3 s$ as n) for every path $x y z$ of length two in $H .{ }^{2}$ This again follows from the union bound, as there are $O(s)$ such paths in total and the conclusion of Lemma 2.4 holds with probability $1-o\left(s^{-5}\right)$ for every fixed path. We now fix an outcome of Γ which satisfies all of these properties.

Consider some r-colouring of the edges of Γ and let φ be the colouring of the edges of H given by Lemma 2.3 (applied with ε^{\prime} as ε). By the choice of H, this colouring contains a monochromatic copy of $C_{\delta s}$, which, without loss of generality, we may assume has vertices $1, \ldots, \delta s$. Therefore, there is a colour $c \in[r]$ and sets U_{i} of order $\tilde{s}=\lambda s$ in Γ such that, for every $i \in[\delta s]$, the pair $\left(U_{i}, U_{i+1}\right)$ is ($\varepsilon^{\prime}, \alpha p$)-lower-regular in the subgraph of Γ induced by colour c, where we identify $\delta s+i$ with i. Let G be the graph induced by these sets whose edges are the edges of Γ of colour c. We will show that G contains the $\delta s \times \delta s$ grid as a subgraph.

For every $i \in[\delta s]$, let $B \subseteq U_{i} \cup U_{i+1} \cup U_{i+2}$ be the set given by Lemma 2.4 (which was applied with $\varepsilon / 9$ as $\varepsilon, \lambda / 3$ as λ, and $3 s$ as n) on $\Gamma\left[U_{i} \cup U_{i+1} \cup U_{i+2}\right]$, which is a set of 'bad vertices' for the pair $\left(U_{i+1}, U_{i+2}\right)$. As each U_{i} is a part of three such applications, by the chosen properties of Γ, for every $i \in[\delta s]$ there exists a set $B_{i} \subseteq U_{i}$ of order $\left|B_{i}\right| \leqslant \varepsilon \tilde{s}$ such that:
(B1) $\left(N_{v}, U_{i+2} \backslash B_{i+2}\right)$ is $(\varepsilon, \alpha p)$-lower-regular ${ }^{3}$ in G for every $v \in U_{i} \backslash B_{i}$ and $N_{v} \subseteq N_{G}\left(v, U_{i+1}\right)$ of order $\alpha \tilde{s} p / 4$ and
(B2) $\left(N_{v}, N_{u}\right)$ is $(\varepsilon, \alpha p)$-lower-regular in G for every $v \in U_{i} \backslash B_{i}, u \in U_{i+1} \backslash B_{i+1}$ and $N_{v} \subseteq$ $N_{G}\left(v, U_{i+1}\right), N_{u} \subseteq N_{G}\left(u, U_{i+2}\right)$, each of order $\alpha \tilde{s} p / 4$.
Our plan is to embed the vertex (i, j) of the $\delta s \times \delta s$ grid into U_{i+j-1}. The next claim helps us achieve this.

Claim 3.1 Let $i \in[\delta s]$. Suppose that sets $S_{i+j-1} \subseteq U_{i+j-1} \backslash B_{i+j-1}$ of order $\alpha \tilde{s} p / 4$ are given for each $j \in[\delta s]$ and that $\left(S_{i+j-1}, S_{i+j}\right)$ and $\left(S_{i+j-1}, U_{i+j} \backslash B_{i+j}\right)$ are $(\varepsilon, \alpha p)$-lower-regular. Then, for every $Q_{i+j-1} \subseteq U_{i+j-1}, j \in[\delta s]$, of order $\left|Q_{i+j-1}\right| \leqslant 2 \varepsilon \tilde{s}$, there exists a path $v_{1}, \ldots, v_{\delta s}$ with each $v_{j} \in S_{i+j-1}$ such that $\left|N_{G}\left(v_{j}, U_{i+j} \backslash Q_{i+j}\right)\right| \geqslant \alpha \tilde{s} p / 4$.

Before proving the claim, we show how to complete the embedding of the grid assuming that it holds. We start by embedding the first row. Let $v_{1} \in U_{1} \backslash B_{1}$ be a vertex for which there is $S_{2} \subseteq$ $N_{G}\left(v_{1}, U_{2} \backslash B_{2}\right)$ of order $\alpha \tilde{s} p / 4$ such that $\left(S_{2}, U_{3} \backslash B_{3}\right)$ is ($\varepsilon, \alpha p$)-lower-regular. As ($U_{1} \backslash B_{1}, U_{2} \backslash$ $\left.B_{2}\right)$ is $\left(2 \varepsilon^{\prime}, \alpha p\right)$-lower-regular, there are at least $\left(1-2 \varepsilon^{\prime}\right)(1-\varepsilon) \tilde{s}$ vertices $v \in U_{1} \backslash B_{1}$ that satisfy

$$
\operatorname{deg}_{G}\left(v, U_{2} \backslash B_{2}\right) \geqslant\left(1-2 \varepsilon^{\prime}\right)\left|U_{2} \backslash B_{2}\right| \alpha p \geqslant \alpha \tilde{s} p / 4
$$

by our choice of constants. Thus, by property (B1) almost any choice of $v_{1} \in U_{1} \backslash B_{1}$ will do. Sequentially, for every $i \geqslant 2$, let $v_{i} \in S_{i}$ be a vertex for which there is $S_{i+1} \subseteq N_{G}\left(v_{i}, U_{i+1} \backslash B_{i+1}\right)$ of order $\alpha \tilde{s} p / 4$ and both $\left(S_{i+1}, U_{i+2} \backslash B_{i+2}\right)$ and $\left(S_{i}, S_{i+1}\right)$ are $(\varepsilon, \alpha p)$-lower-regular. This is possible as ($S_{i}, U_{i+1} \backslash B_{i+1}$) is ($\varepsilon, \alpha p$)-lower-regular and properties (B1) and (B2) hold. We continue until we have embedded the first row of the grid as $v_{1}, \ldots, v_{\delta s}$, with $v_{i} \in U_{i}$ for every $i \in[\delta s]$.

Consider now sets $S_{2}, \ldots, S_{\delta s}, S_{1}$ which we previously chose, where we note that S_{1} was defined when we embedded $v_{\delta s}$. In particular, $S_{1+j} \subseteq U_{1+j} \backslash B_{1+j}$ and $\left(S_{1+j}, S_{2+j}\right)$ and $\left(S_{1+j}, U_{2+j} \backslash B_{2+j}\right)$ are both $(\varepsilon, \alpha p)$-regular for every $j \in[\delta s]$. Then, by setting $Q_{1+j}:=B_{1+j} \cup\left\{v_{1+j}\right\}$ and invoking Claim 3.1 with $i=2$, we can embed the second row of the grid as $u_{1}, \ldots, u_{\delta s}$, with $u_{j} \in S_{1+j}$ for

[^2]

Figure 1. A picture showing the first two rows of the grid already embedded (the thick black lines), the candidate sets for the third row (the grey blobs $S_{3}, S_{4}, \ldots, S_{\delta s}, S_{1}, S_{2}$), and (in red) the path $v_{1}, v_{2}, \ldots, v_{\delta s}$ given by Claim 3.1, together with the corresponding neighbourhoods $N_{G}\left(v_{j}, U_{i+j} \backslash Q_{i+j}\right)$ (the red blobs).
every $j \in[\delta s]$. By the conclusion of Claim 3.1 and a slight abuse of notation, there is a collection of sets $S_{2+j} \subseteq N_{G}\left(u_{j}, U_{2+j} \backslash Q_{2+j}\right)$ for every $j \in[\delta s]$, each of order $\alpha \tilde{s} p / 4$, which, by (B1) and (B2), as $u_{j} \in U_{1+j} \backslash B_{1+j}$ and $u_{j+1} \in U_{1+j+1} \backslash B_{1+j+1}$, are such that $\left(S_{2+j}, S_{2+j+1}\right)$ and $\left(S_{2+j}, U_{2+j+1} \backslash\right.$ B_{2+j+1}) are ($\varepsilon, \alpha p$)-lower-regular.

The same process can now be repeated for any $i \geqslant 3$ (see Figure 1) by setting the sets $Q_{i+j-1} \subseteq$ U_{i+j-1} for every $j \in[\delta s]$ to be the union of B_{i+j-1} and the vertices of the grid that were previously embedded into U_{i+j-1}, that is, the images of the vertices $(1, i+j-1),(2, i+j-2), \ldots,(i-1, j+$ 1). Since $\left|B_{i+j-1}\right| \leqslant \varepsilon \tilde{s}, \delta<\varepsilon \lambda$, and the lower-regularity conditions hold by (B1) and (B2), we may apply Claim 3.1 to embed the i th row. It only remains to prove this claim.
Proof of Claim 3.1. Without loss of generality, we may assume that all the Q_{i+j-1} are of order $2 \varepsilon \tilde{s}$, as we can take arbitrary supersets if this is not the case. Let $S_{i+j-1}^{\prime} \subseteq S_{i+j-1}$ be the set of all $v \in S_{i+j-1}$ with at least $\alpha \tilde{s} p / 4$ neighbours in $U_{i+j} \backslash Q_{i+j}$. On the one hand, as $\left(S_{i+j-1}, U_{i+j} \backslash B_{i+j}\right)$ is $(\varepsilon, \alpha p)$-lower-regular and, thus, there are fewer than $\varepsilon\left|S_{i+j-1}\right|$ vertices in S_{i+j-1} with degree less than $\alpha \tilde{s} p / 2$ in $U_{i+j} \backslash B_{i+j}$, we have

$$
e_{G}\left(S_{i+j-1} \backslash S_{i+j-1}^{\prime}, Q_{i+j}\right) \geqslant\left(\left|S_{i+j-1} \backslash S_{i+j-1}^{\prime}\right|-\varepsilon\left|S_{i+j-1}\right|\right) \alpha \tilde{s} p / 4
$$

On the other hand, assuming $S_{i+j-1} \backslash S_{i+j-1}^{\prime}$ is of order at least $\alpha \tilde{s} p / 16$ and, hence,

$$
\left|S_{i+j-1} \backslash S_{i+j-1}^{\prime}\right|\left|Q_{i+j}\right| p \geqslant \alpha \tilde{s} p / 16 \cdot 2 \varepsilon \tilde{s} p \geqslant 100 s / \lambda^{2}
$$

for $C>0$ sufficiently large, property (A1) implies that

$$
e_{G}\left(S_{i+j-1} \backslash S_{i+j-1}^{\prime}, Q_{i+j}\right) \leqslant(1+\lambda) 2 \varepsilon \tilde{s}\left|S_{i+j-1} \backslash S_{i+j-1}^{\prime}\right| p
$$

Since $\varepsilon<\alpha / 128$, this is a contradiction. Therefore, there are sets $S_{i+j-1}^{\prime} \subseteq S_{i+j-1}$ of order at least $\left|S_{i+j-1}\right|-\alpha \tilde{s} p / 16$ for each $j \in[\delta s]$ such that every $v \in S_{i+j-1}^{\prime}$ satisfies $\left|N_{G}\left(v, U_{i+j} \backslash Q_{i+j}\right)\right| \geqslant$ $\alpha \tilde{s} p / 4$.

We will now find a collection of sets $S_{i+j-1}^{\prime \prime} \subseteq S_{i+j-1}^{\prime}$ of order at least $\left|S_{i+j-1}\right|-\alpha \tilde{s} p / 8$ such that, for every $2 \leqslant j \leqslant \delta s$, every $v \in S_{i+j-2}^{\prime \prime}$ has a non-empty $N_{G}\left(v, S_{i+j-1}^{\prime \prime}\right)$. First, choose $S_{i+\delta s-1}^{\prime \prime} \subseteq$ $S_{i+\delta s-1}^{\prime}$ of order $\left|S_{i+\delta s-1}\right|-\alpha \tilde{s} p / 8$ arbitrarily, noting that such a set exists by the bound on $\left|S_{i+\delta s-1}^{\prime}\right|$. Having chosen $S_{i+j-1}^{\prime \prime}$ for some $2 \leqslant j \leqslant \delta s$, we choose $S_{i+j-2}^{\prime \prime}$ as follows. Recall that $\left(S_{i+j-2}, S_{i+j-1}\right)$ is $(\varepsilon, \alpha p)$-lower-regular and, thus, by Lemma 2.1 and the bounds on the orders of S_{i+j-2}^{\prime} and $S_{i+j-1}^{\prime \prime},\left(S_{i+j-2}^{\prime}, S_{i+j-1}^{\prime \prime}\right)$ is ($2 \varepsilon, \alpha p$)-lower-regular. It follows that there are at least $(1-2 \varepsilon)\left|S_{i+j-2}^{\prime}\right| \geqslant\left|S_{i+j-2}\right|-\alpha \tilde{s} p / 8$ vertices $v \in S_{i+j-2}^{\prime}$ which satisfy

$$
\operatorname{deg}_{G}\left(v, S_{i+j-1}^{\prime \prime}\right) \geqslant(1-2 \varepsilon)\left|S_{i+j-1}^{\prime \prime}\right| \alpha p \geqslant \alpha^{2} \tilde{s} p^{2} / 16>0
$$

We declare the set of such vertices to be $S_{i+j-2}^{\prime \prime}$ and continue on to the next index j.

Starting with an arbitrary $v_{1} \in S_{i}^{\prime \prime}$ and sequentially choosing $v_{j} \in N_{G}\left(v_{j-1}, S_{i+j-1}^{\prime \prime}\right)$ now completes the proof.

References

[1] Beck, J. (1983) On size Ramsey number of paths, trees, and circuits. I. J. Graph Theory 7 115-129.
[2] Beck, J. (1990) On size Ramsey number of paths, trees and circuits. II. In Mathematics of Ramsey theory, Vol. 5 of Algorithms and Combinatorics, Springer, pp. 34-45.
[3] Berger, S., Kohayakawa, Y., Maesaka, G. S., et al. (2021) The size-Ramsey number of powers of bounded degree trees. J. Lond. Math. Soc. 103(4) 1314-1332.
[4] Chvátalová, J. (1975) Optimal labelling of a product of two paths. Discrete Math. 11(3) 249-253.
[5] Clemens, D., Jenssen, M., Kohayakawa, Y., et al. (2019) The size-Ramsey number of powers of paths. J. Graph Theory 91(3) 290-299.
[6] Clemens, D., Miralaei, M., Reding, D., Schacht, M. and Taraz, A. (2021) On the size-Ramsey number of grid graphs. Combin. Probab. Comput. 30(5) 670-685.
[7] Conlon, D., Nenadov, R. and Trujić, M. (2022) The size-Ramsey number of cubic graphs. Bull. Lond. Math. Soc. 54(6) 2135-2150.
[8] Draganić, N., Krivelevich, M. and Nenadov, R. (2022) Rolling backwards can move you forward: on embedding problems in sparse expanders. Trans. Am. Math. Soc. 375(7) 5195-5216.
[9] Erdős, P., Faudree, R. J., Rousseau, C. C. and Schelp, R. H. (1977) The size Ramsey number. Period. Math. Hungar. 9(1-2) 145-161.
[10] Friedman, J. and Pippenger, N. (1987) Expanding graphs contain all small trees. Combinatorica 7(1) 71-76.
[11] Gerke, S., Kohayakawa, Y., Rödl, V. and Steger, A. (2007) Small subsets inherit sparse ε-regularity. J. Combin. Theory Ser. B 97(1) 34-56.
[12] Gerke, S. and Steger, A. (2005) The sparse regularity lemma and its applications. In Surveys in Combinatorics 2005, London Mathematical Society Lecture Note series. Cambridge University Press, pp. 227-258.
[13] Han, J., Jenssen, M., Kohayakawa, Y., Mota, G. O. and Roberts, B. (2020) The multicolour size-Ramsey number of powers of paths. J. Combin. Theory Ser. B 145 359-375.
[14] Haxell, P. E., Kohayakawa, Y. and Łuczak, T. (1995) The induced size-Ramsey number of cycles. Combin. Probab. Comput. 4(3) 217-239.
[15] Kamčev, N., Liebenau, A., Wood, D. R. and Yepremyan, L. (2021) The size Ramsey number of graphs with bounded treewidth. SIAM J. Discrete Math. 35(1) 281-293.
[16] Kohayakawa, Y., Konstadinidis, P. B. and Mota, G. O. (2018) On an anti-Ramsey threshold for sparse graphs with one triangle. J. Graph Theory 87(2) 176-187.
[17] Kohayakawa, Y., Rödl, V., Schacht, M. and Szemerédi, E. (2011) Sparse partition universal graphs for graphs of bounded degree. Adv. Math. 226(6) 5041-5065.
[18] Letzter, S., Pokrovskiy, A. and Yepremyan, L. (2021) Size-Ramsey numbers of powers of hypergraph trees and long subdivisions. arXiv preprint arXiv: 2103.01942.
[19] Rödl, V. and Szemerédi, E. (2000) On size Ramsey numbers of graphs with bounded degree. Combinatorica 20(2) 257-262.
[20] Škorić, N., Steger, A. and Trujić, M. (2018) Local resilience of an almost spanning k-cycle in random graphs. Random Struct. Algorithms 53(4) 728-751.

Cite this article: Conlon D, Nenadov R, and Trujić M (2023). On the size-Ramsey number of grids. Combinatorics, Probability and Computing 32, 874-880. https://doi.org/10.1017/S0963548323000147

[^0]: David Conlon: Research supported by NSF Award DMS-2054452.
 Miloš Trujić: Research supported by grant no. 200020197138 of the Swiss National Science Foundation.

[^1]: ${ }^{1}$ For consistency with the existing literature and for historical reasons, we use both 'regular' and 'uniform' as terms, even though they are basically the same concept.

[^2]: ${ }^{2}$ Technically, to apply the lemma, we must also temporarily reveal the edges between V_{x} and V_{z} and within each V_{x}, V_{y}, V_{z}, but, unless $x z$ is itself an edge of H, these are all then removed from Γ.
 ${ }^{3}$ The conclusion of Lemma 2.4 states that $\left(N_{v}, U_{i+2}\right)$ is $(\varepsilon / 9, \alpha p)$-lower-regular, but, as B_{i+2} is small, Lemma 2.1 implies that $\left(N_{v}, U_{i+2} \backslash B_{i+2}\right)$ is $(\varepsilon, \alpha p)$-lower-regular.

