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The Continuous Hochschild Cochain
Complex of a Scheme

Amnon Yekutieli

Abstract. Let X be a separated finite type scheme over a noetherian base ring K. There is a complex

Ĉ·(X) of topological OX-modules, called the complete Hochschild chain complex of X. To any OX-

moduleM—not necessarily quasi-coherent—we assign the complexHomcont
OX

(
Ĉ·(X),M

)
of contin-

uous Hochschild cochains with values inM. Our first main result is that when X is smooth over K

there is a functorial isomorphism

Homcont
OX

(
Ĉ
·(X),M

)
∼= RHomO

X2
(OX ,M)

in the derived category D(ModOX2 ), where X2 := X ×K X.

The second main result is that if X is smooth of relative dimension n and n! is invertible in K, then

the standard maps π : Ĉ−q(X)→ Ω
q

X/K
induce a quasi-isomorphism

HomOX

(⊕

q

Ω
q

X/K
[q],M

)
→ Homcont

OX

(
Ĉ
·(X),M

)
.

WhenM = OX this is the quasi-isomorphism underlying the Kontsevich Formality Theorem.

Combining the two results above we deduce a decomposition of the global Hochschild cohomology

Exti
O

X2
(OX ,M) ∼=

⊕

q

Hi−q
(

X,
( q∧

OX

TX/K

)
⊗OX

M

)
,

where TX/K is the relative tangent sheaf.

0 Introduction and Statement of Results

Let K be a noetherian commutative ring and X a separated K-scheme of finite type.
The diagonal morphism∆ : X → X2

= X ×K X is then a closed embedding. This al-
lows us to identify the category Mod OX of OX-modules with its image inside

Mod OX2 under the functor∆∗.

We shall use derived categories freely in this paper, following the reference [RD].
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1320 Amnon Yekutieli

Definition 0.1 (Hochschild Cohomology, First Definition)

(1) Given an OX-module M the Hochschild cochain complex of X with values in M

is R HomOX2 (OX ,M) ∈ D(Mod OX2 )
(2) The q-th Hochschild cohomology of X with values in M is

Ext
q
OX2

(OX ,M) = Hq
(

X2,R HomOX2 (OX ,M)
)
.

This definition of Hochschild cohomology was considered by Kontsevich [Ko]
and Swan [Sw] among others. We observe that if K is a field, A is a commutative K-

algebra, Ae := A⊗K A, X := Spec A, M is an A-module and M is the quasi-coherent
OX-module associated to M, then Ext

q
OX2

(OX ,M) ∼= Ext
q
Ae (A,M) ∼= HHq(A,M) is

the usual Hochschild cohomology. This partly justifies the definition. As we shall see,

Definition 0.1 agrees with two other plausible definitions of Hochschild cohomology
of a scheme.

In Section 1 we introduce the complex Ĉ·(X) of complete Hochschild chains of

X. For any q the sheaf Ĉ−q(X) = Ĉq(X) is a topological OX-module. (Note the

unusual indexing, due to our use of derived categories.) If q < 0 then Ĉq(X) =

0, whereas for any q ≥ 0 and any affine open set U = Spec A ⊂ X the group

of sections Γ
(

U , Ĉq(X)
)

is an adic completion of the usual module of Hochschild

chains Cq(A) = A⊗(q+2) ⊗Ae A. The coboundary operator ∂ : Ĉ−q(X)→ Ĉ−q+1(X) is

continuous.

Definition 0.2 (Hochschild Cohomology, Second Definition)

(1) Given an OX-module M the continuous Hochschild cochain complex of X with

values in M is Homcont
OX

(
Ĉ·(X),M

)
, where M has the discrete topology.

(2) In the special case M = OX we write

C
q
cd (X) := Homcont

OX

(
Ĉq(X),OX

)
.

(3) The q-th Hochschild cohomology of X with values in M is

Hq
(

X,Homcont
OX

(
Ĉ·(X),M

))
.

It turns out that on any open set U as above we get

Γ
(

U ,C
q
cd (X)

)
∼=

{ f ∈ HomK(A⊗q,A) | f is a differential operator in each factor}.

Hence this is the same kind of Hochschild cochain complex considered by Kontsevich
in [Ko].

Theorem 0.3 Suppose K is a noetherian ring and X is a smooth separated K-scheme.

Given an OX-module M there is an isomorphism

Homcont
OX

(
Ĉ·(X),M

)
∼= R HomOX2 (OX ,M)
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Hochschild Cochain Complex 1321

in D(Mod OX2 ). This isomorphism is functorial in M. In particular for M = OX we

get

C·cd (X) ∼= R HomOX2 (OX ,OX).

The theorem is proved in Section 2, where it is restated as Corollary 2.9, and is

deduced from the more general Theorem 2.8.

Theorem 0.3 says that on a smooth scheme the two definitions of Hochschild

cochain complexes coincide. In Section 3 we examine a third definition of Hochschild
cohomology, due to Swan [Sw]. We prove (Theorem 3.1) that when X is flat over K

this third definition also agrees with Definition 0.1.

In Section 4 we look at the homomorphism π : Ĉq(X)→ Ω
q
X = Ω

q

X/K
given by the

formula

π
(

(1⊗ a1 ⊗ · · · ⊗ aq ⊗ 1)⊗ 1
)
= d a1 ∧ · · · ∧ d aq.

Let us denote by TX = TX/K := HomOX
(Ω1

X ,OX) the tangent sheaf, and
∧q

TX :=∧q
OX

TX . Consider the complexes
⊕

q Ω
q

X/K
[q] and

⊕
q(
∧q

TX)[−q] with trivial co-

boundaries.

Theorem 0.4 (Decomposition) Let K be a noetherian ring, let X be a separated

smooth K-scheme of relative dimension n, and assume n! is invertible in K. Then for

any M ∈ Mod OX the homomorphism of complexes

HomOX

(⊕

q

Ω
q
X[q],M

)
→ Homcont

OX

(
Ĉ·(X),M

)

induced by π is a quasi-isomorphism. In particular for M = OX we get a quasi-

isomorphism

πcd :
⊕

q

( q∧
TX

)
[−q]→ C·cd (X).

Theorem 0.4 is restated (in slightly more general form) in Section 4 as Theo-

rem 4.5 and proved there.

The quasi-isomorphism πcd underlies Kontsevich’s Formality Theorem. The fact
that πcd is a quasi-isomorphism in the case of a C∞ real manifold is [Ko, Theo-

rem 4.6.11]; cf. also [Ts, Theorem 2.2.2].

Putting Theorems 0.3 and 0.4 together we obtain a decomposition of the Hochs-

child cochain complex

R HomOX2 (OX ,M) ∼=
⊕

q

( q∧
TX

)
[−q]⊗OX

M(0.5)

in D(Mod OX2 ).

Passing to global cohomology in (0.5) we obtain the following corollary. It extends
Corollary 2.6 of [Sw] where the assumptions are that K is a field of characteristic 0
and X is smooth and quasi-projective.
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Corollary 0.6 Let K be a noetherian ring, let X be a separated smooth K-scheme of

relative dimension n, and assume n! is invertible in K. Then for any M ∈ Mod OX the

Hochschild cohomology decomposes:

Exti
OX2

(OX ,M) ∼=
⊕

q

Hi−q

(
X,
( q∧

TX

)
⊗OX

M

)
.

Observe that for M = OX , X affine and A := Γ(X,OX) we recover the Hochschild-
Kostant-Rosenberg Theorem Ext i

Ae (A,A) ∼=
∧i

TA.

Remark 0.7 This paper replaces “Decomposition of the Hochschild Complex of a

Scheme in Arbitrary Characteristic”, which has been withdrawn. The proof of the
main result of that paper, which relied on minimal injective resolutions, turned out
to have a serious gap in it. The gap was discovered by M. Van den Bergh.

Acknowledgments The paper grew out of an inspiring series of discussions with
Monique Lejeune-Jalabert in 1997 on the subject of characteristic classes and Hochs-
child complexes. I wish to thank her, and the Université Joseph Fourier, Grenoble, for

their kind hospitality. Also thanks to Vladimir Hinich, Colin Ingalls, Joseph Lipman,
Carlos Simpson and the referee for their helpful suggestions. Finally I want to thank
Michel Van den Bergh for detecting an error in an earlier version of the paper (see

Remark above).

1 Complete Hochschild Chains

Let K be a commutative ring and A a commutative K-algebra. As usual we write Ae :=
A⊗A where⊗ := ⊗K . For any natural number q let Bq(A) := A⊗(q+2)

= A⊗· · ·⊗A.

Bq(A) is an Ae-module via the ring homomorphism a1⊗a2 7→ a1⊗1⊗· · ·⊗1⊗a2.
The (unnormalized) bar resolution is

· · · → B2(A)
∂
−→ B1(A)

∂
−→ B0(A)→ A→ 0,(1.1)

where ∂ is the Ae -linear homomorphism

∂(a0 ⊗ · · · ⊗ aq+1) =

q∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq+1.

The coboundary ∂ is Ae -linear, and the complex (1.1) is split-exact with splitting
homomorphism s(a0 ⊗ · · · ⊗ aq+1) = a0 ⊗ · · · ⊗ aq+1 ⊗ 1. The homomorphism s is
A-linear when A acts via a 7→ a⊗ 1. Cf. [Lo, Section 1.1].

For any q let

Cq(A) := Bq(A)⊗Ae A.

Cq(A) is the module of degree q Hochschild chains of A.
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Since we will be using derived categories, whose objects are cochain complexes,
we shall unfortunately have to abandon the conventional notations for Hochschild

chains. The first departure will be to write the bar resolution as a cochain complex,
with B−q(A) := Bq(A). Likewise we write C−q(A) := Cq(A).

From now on K is assumed to be a noetherian ring. Let A be a finitely gen-
erated K-algebra. Denote by Iq the kernel of the ring epimorphism Bq(A) → A,

a0 ⊗ · · · ⊗ aq+1 7→ a0 · · · aq+1. Let B̂q(A) be the Iq-adic completion of Bq(A). The

homomorphisms ∂ and s are continuous for the Iq-adic topologies, and hence B̂·(A)

is a complex and B̂·(A) → A is a continuously A-split quasi-isomorphism. We call

B̂·(A) the complete bar resolution.

Next define

Ĉ−q(A) = Ĉq(A) := B̂q(A)⊗Âe A ∼= B̂q(A)⊗Ae A

and
C

q
cd (A) := Homcont

Âe

(
B̂q(A),A

)
∼= Homcont

A

(
Ĉq(A),A

)
,

where the superscript “cont” refers to continuous homomorphisms with respect to

the adic topology, and “cd” stands for “continuous dual”. We call Ĉq(A) the module
of complete Hochschild chains, and C

q
cd (A) the module of continuous Hochschild

cochains.

Lemma 1.2 Assume A is flat over K. Then B̂·(A) is a flat resolution of A as B̂0(A)-

module.

Proof Let’s write Bq(A) = B0(A) ⊗ A⊗q. Since A is a flat K-algebra, it follows that

B̂0(A)→ B̂0(A)⊗A⊗q is flat. Now B̂0(A)⊗A⊗q is noetherian, and B̂q(A) is an adic

completion of it, so B̂0(A)⊗ A⊗q → B̂q(A) is flat.

Suppose Y is a noetherian scheme and Y0 ⊂ Y is a closed subset. The formal com-

pletion of Y along Y0 is a noetherian formal scheme Y with underlying topological
space Y0. The structure sheaf OY is a sheaf of topological rings with I-adic topology,
where I ⊂ OY is any coherent ideal sheaf defining the closed set Y0. The canonical
morphism Y → Y is flat, i.e., OY is a flat OY -algebra. See [EGA I, Section 10.8] for

details.

Definition 1.3 Let X be a finite type separated K-scheme. For any q ≥ 2 let Xq

be the formal completion of the scheme Xq := X ×K · · · ×K X along the diagonal

embedding of X.

(1) For any q ≥ 0 let B̂q(X) := OXq+2 .

(2) For any q ≥ 0 the sheaf of degree q complete Hochschild chains of X is Ĉq(X) :=

B̂q(X)⊗O
X2 OX .

The benefit of the complete sheaves B̂q(X) and Ĉq(X) is they are coherent (al-
though over different ringed spaces). Indeed:
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Proposition 1.4 On any affine open set U = Spec A ⊂ X one has Γ
(

U , B̂q(X)
)
=

B̂q(A) and Γ
(

U , Ĉq(X)
)
= Ĉq(A).

Proof See [EGA I, Section 10.10].

The homomorphisms ∂ : B̂q(A) → B̂q−1(A) and s : B̂q(A) → B̂q+1(A) sheafify;

hence B̂·(X) and Ĉ·(X) are complexes with continuous coboundary operators, and

B̂·(X)→ OX is a continuously OX-split quasi-isomorphism.
Given an OX-module M we consider M ⊗L

OX2
OX
∼= L∆∗M as an object of

D(Mod OX).

Proposition 1.5 Assume X is flat over K. Then there is an isomorphism

Ĉ·(X) ∼= OX ⊗
L
OX2

OX

in D(Mod OX).

Proof As in any completion of a noetherian scheme, B̂0(X) = OX2 is a flat OX2 -

algebra. From Lemma 1.2 we see that B̂q(X) is a flat B̂0(X)-module. Hence B̂·(X) is

a flat resolution of OX as OX2 -module. But Ĉ·(X) ∼= B̂·(X)⊗OX2 OX .

Given an OX-module M we have sheaves Homcont
OX

(
Ĉq(X),M

)
, where “Homcont ”

refers to continuous homomorphisms for the adic topology on Ĉq(X) and the dis-

crete topology on M. The continuous coboundary ∂ makes Homcont
OX

(
Ĉ·(X),M

)

into a complex. In Definition 0.2 this was called the continuous Hochschild cochain
complex with values in M.

Proposition 1.6

(1) If M is quasi-coherent then Homcont
OX

(
Ĉq(X),M

)
is also quasi-coherent.

(2) For any affine open set U = Spec A ⊂ X, with M := Γ(U ,M), one has

Γ

(
U ,Homcont

OX

(
Ĉq(X),M

))
= Homcont

A

(
Ĉq(A),M

)
.

(3) With U as above,

Γ
(

U ,C
q
cd (X)

)
= C

q
cd (A)

∼= { f ∈ HomK(A⊗q,A) | f is a differential operator in each factor}.

Proof (1), (2) We have

Homcont
OX

(
Ĉq(X),M

)
∼= lim

m→
HomOX2

(
B̂q(X)/Îm

q ,M
)

where Îq = Ker
(
B̂q(X)→ OX

)
. But the sheaf B̂q(X)/Îm

q is a coherent OX2 -module.

(3) This is immediate from the results in [EGA IV, Section 16.8].

We see from part (3) of the proposition that this approach to Hochschild cochains
is the same as the one used by Kontsevich [Ko].
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2 Comparison of Two Definitions

In this section we prove that the two definitions of Hochschild cohomology, Defini-
tions 0.1 and 0.2, coincide when X is smooth over K (Corollary 2.9). Throughout we

assume K is a noetherian ring and X is a separated finite type scheme over K.

We start by recalling the notion of discrete OY-module on a noetherian formal
scheme Y. An OY-module M is called discrete if it is discrete for the adic topology of
OY; in other words, if any local section of M is annihilated by some defining ideal of

Y. The subcategory Moddisc OY ⊂ Mod OY of discrete modules is abelian and closed
under direct limits. Moreover Moddisc OY is locally noetherian, so every injective ob-
ject in Moddisc OY is a direct sum of indecomposable ones. The category Moddisc OY

has enough injectives, but we do not know if every injective in Moddisc OY is also

injective in the bigger category Mod OY. See [RD, Section II.7] and [Ye2, Sections
3–4] for details.

Given a point y ∈ Y let k(y) be the residue field and OY,y the local ring. Denote
by J(y) an injective hull of k(y) as OY,y-module. If y ′ is a specialization of y define

J(y, y ′) to be a constant sheaf on the closed set {y ′} with stalk J(y).

Proposition 2.1 Let Y be a noetherian formal scheme. The indecomposable injective

objects in Moddisc OY are the sheaves J(y, y ′).

Proof Exactly as in the proof of [Ye2, Proposition 4.2].

In particular this applies to Y = X2, and we shall denote by J(x, x ′) the indecom-
posable injective objects in Moddisc OX2 . Therefore any injective J in Moddisc OX2 has
a decomposition J ∼=

⊕
x,x ′ J(x, x ′)µ(x,x ′), where µ(x, x ′) are cardinal numbers and

J(x, x ′)µ(x,x ′) means a direct sum of µ(x, x ′) copies.

If M ∈ Moddisc OX2 then Homcont
O

X2

(
B̂q(X),M

)
makes sense. The formula is

Homcont
O

X2

(
B̂q(X),M

)
= lim

m→
HomO

X2

(
B̂q(X)/Im

q ,M
)

where Iq := Ker
(
B̂q(X) → OX

)
. Hence given a complex M· ∈ D(Moddisc OX2 ) we

obtain a total complex Homcont
O

X2

(
B̂·(X),M·

)
with the usual indexing and signs.

Recall that OX2 is an OX-algebra via the first projection X2 → X, namely a 7→ a⊗1.

Lemma 2.2 Let J be an injective object in Moddisc OX2 , and define JX :=
HomO

X2 (OX , J). Then there is a homomorphism of OX-modules τ : J → JX , such

that for any q the induced homomorphism

τq : Homcont
O

X2

(
B̂q(X), J

)
→ Homcont

OX

(
B̂q(X), JX

)

is an isomorphism.
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Proof For any pair of points x, x ′ ∈ X such that x ′ is a specialization of x let
JX(x, x ′) ∼= HomO

X2

(
OX , J(x, x ′)

)
be the indecomposable injective OX-module.

Let Iq := Ker
(
B̂q(X) → OX

)
, a defining ideal of the formal scheme Xq+2. For

any m ≥ 1 the sheaf of rings B̂q(X)/Im
q is coherent both as an OX2 -module

and as an OX-module. We see that both HomO
X2

(
B̂q(X)/Im

q , J(x, x ′)
)

and

HomOX

(
B̂q(X)/Im

q , JX(x, x ′)
)

are constant sheaves on {x ′} with stalks being injec-

tive hulls of k(x) as
(
B̂q(X)/Im

q

)
x
-module. Therefore

HomO
X2

(
B̂q(X)/Im

q , J(x, x ′)
)
∼= HomOX

(
B̂q(X)/Im

q , JX(x, x ′)
)
.

This isomorphism is not canonical, yet we can fit it into a compatible direct system
as m varies. Thus there is a (noncanonical) isomorphism

Homcont
O

X2

(
B̂q(X), J(x, x ′)

)
∼= lim

m→
HomO

X2

(
B̂q(X)/Im

q , J(x, x ′)
)

∼= lim
m→

HomOX

(
B̂q(X)/Im

q , JX(x, x ′)
)

∼= Homcont
OX

(
B̂q(X), JX(x, x ′)

)
.

(2.3)

Taking q = 0 above, and composing with homomorphism “evaluation at 1”, we ob-
tain τx,x ′ : J(x, x ′)→ JX(x, x ′).

Now consider the given injective object J. Choosing a decomposition J ∼=⊕
x,x ′ J(x, x ′)µ(x,x ′), and summing up the homomorphisms τx,x ′ , we obtain a ho-

momorphism τ : J→ JX . Because

Homcont
O

X2

(
B̂q(X), J

)
∼=
⊕

x,x ′

Homcont
O

X2

(
B̂q(X), J(x, x ′)

)µ(x,x ′)

and

Homcont
OX

(
B̂q(X), JX

)
∼=
⊕

x,x ′

Homcont
OX

(
B̂q(X), JX(x, x ′)

)µ(x,x ′)

it follows from (2.3) that τq is an isomorphism.

Let A be a K-algebra. For an element a ∈ A, an index q and any 1 ≤ j ≤ q, let us

define

d̃ ja := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j

⊗ (a⊗ 1− 1⊗ a)⊗ 1⊗ · · · ⊗ 1 ∈ Bq(A).(2.4)

Also let

d̃0a := a⊗ 1⊗ · · · ⊗ 1− 1⊗ · · · ⊗ 1⊗ a ∈ Bq(A).(2.5)

The ring Bq(A) is an A-algebra by the map a 7→ a⊗ 1⊗ · · · ⊗ 1.
Let C be a noetherian commutative ring. A C-algebra A is étale if it is finitely

generated and formally étale.
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Lemma 2.6 Denote by K[t1, . . . , tn] the polynomial algebra in n variables, and let

K[t1, . . . , tn]→ A be an étale ring homomorphism. Then for any q ≥ 0 the ring B̂q(A)

is a formal power series algebra over A in the n(q + 1) elements d̃ jti .

Proof For any q the homomorphism A ⊗ K[t1, . . . , tn]⊗(q+1) → Bq(A) is étale,
which implies that A→ Bq(A) is formally smooth of relative dimension n(q + 1). In

particular Ω1
Bq(A)/A is a free Bq(A)-module with basis {d ti, j}, where 1 ≤ j ≤ q + 1

and

ti, j := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j

⊗ ti ⊗ 1⊗ · · · ⊗ 1 ∈ Bq(A).

Now for 1 ≤ j ≤ q we have d̃ jti = ti, j − ti, j+1, whereas d̃0ti − ti,q+1 ∈ A. We see that

the set {d(d̃ jti)}
q
j=0 is also a basis of Ω1

Bq(A)/A.

Since the elements d̃ jti are all in the defining ideal Iq and since Bq(A)→ B̂q(A) is
formally étale, we get a formally étale homomorphism

φ : A[[d̃0t1, . . . , d̃qtn]]→ B̂q(A).

Because φ lifts the identity φ0 : A→ A it follows that φ is bijective.

Recall that X is said to be smooth over K if it is formally smooth and finite type
(see [EGA IV, Section 17]). A smooth scheme is also flat.

Lemma 2.7 Suppose X is smooth over K. Then for any q ≥ 0 the functor

Homcont
O

X2

(
B̂q(X),−

)
: Moddisc OX2 → Moddisc OX2

is exact.

Proof The statement can be verified locally on X, so let U = Spec A ⊂ X be an
affine open set that is étale over affine space An

K
; cf. [EGA IV, Corollary 17.11.3]. In

other words there is an étale ring homomorphism K[t1, . . . , tn] → A. According to

Lemma 2.6, B̂q(A) is a formal power series algebra over Âe = B̂0(A) in the elements

d̃ jti , where 1 ≤ j ≤ q.

Denote by Iq,e the kernel of the ring homomorphism Bq(A)→ Ae , a0⊗a1⊗· · ·⊗

aq+1 7→ a0 ⊗ a1 · · · aq+1. Let Îq,e be its completion. For any m ≥ 0 the Âe-module

B̂q(A)/Îm
q,e is free of finite rank—with basis consisting of monomials in the d̃ jti—and

it has the Î0-adic topology.

Passing to sheaves we see that for any m the functor HomO
X2

(
B̂q(X)/Îm

q,e ,−
)

is
exact. But for any discrete module M,

Homcont
O

X2

(
B̂q(X),M

)
∼= lim

m→
HomO

X2

(
B̂q(X)/Îm

q,e ,M
)
.
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Theorem 2.8 Suppose K is a noetherian ring and X is a smooth separated K-scheme.

Given a complex M· ∈ D+(Moddisc OX2 ) there is an isomorphism

Homcont
O

X2

(
B̂·(X),M·

)
∼= R HomOX2 (OX ,M

·)

in D(Mod OX2 ). This isomorphism is functorial in M·.

Proof Let M· → J· be an injective resolution of M· in Moddisc OX2 . By this we
mean that M· → J· is a quasi-isomorphism and J· is a bounded below complex of

injectives objects in Moddisc OX2 . Then each Jq is an injective OX2 -module supported
on X, and

Homcont
O

X2
(OX , J

·) = HomOX2 (OX , J
·) = R HomOX2 (OX ,M

·).

Since the homomorphism B̂·(X) → OX is split by the continuous OX-linear ho-
momorphism s, Lemma 2.2 says that for any q ≥ 0 the homomorphism

Homcont
O

X2
(OX , J

q)→ Homcont
O

X2

(
B̂·(X), Jq

)

is a quasi-isomorphism. Because B̂·(X) is bounded above and J· is bounded below,
the usual spectral sequence shows that

Homcont
O

X2
(OX , J

·)→ Homcont
O

X2

(
B̂·(X), J·

)

is a quasi-isomorphism.
Next by Lemma 2.7 for any q ≤ 0 the homomorphism

Homcont
O

X2

(
B̂q(X),M·

)
→ Homcont

O
X2

(
B̂q(X), J·

)

is a quasi-isomorphism. Therefore

Homcont
O

X2

(
B̂·(X),M·

)
→ Homcont

O
X2

(
B̂·(X), J·

)

is a quasi-isomorphism.

Now we may compare the two definitions of Hochschild cochain complexes.

Corollary 2.9 Suppose K is a noetherian ring and X is a smooth separated K-scheme.

Given an OX-module M there is an isomorphism

Homcont
OX

(
Ĉ·(X),M

)
∼= R HomOX2 (OX ,M)

in D(Mod OX2 ). This isomorphism is functorial in M. In particular for M = OX we

get

C·cd (X) ∼= R HomOX2 (OX ,OX).
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Proof This is immediate from the theorem, since Mod OX ⊂ Moddisc OX2 , and
Ĉ·(X) = OX ⊗OX2 B̂·(X).

Remark 2.10 Assume K is a field, and let K·X be the residue complex of X, see [Ye3].
If X is smooth of dimension n over K then 0 → Ωn

X → K
−n
X → · · · → K0

X → 0 is a

minimal injective resolution. Hence Homcont
OX

(
Ĉ·(X),K·X

)
is a bounded below com-

plex of flasque sheaves isomorphic to R HomOX2 (OX ,Ω
n
X)[n]. Moreover if f : X → Y

is a proper morphism the trace Tr f : f∗KX → KY induces a homomorphism of com-

plexes

f∗Homcont
OX

(
Ĉ·(X),K·X

)
→ Homcont

OY

(
Ĉ·(Y ),K·Y

)
.

This angle ought to be explored.

3 A Third Definition

In the paper [Sw] Swan makes the following definition. Let K be a commutative
ring and X a K-scheme. Let Cq(X) be the sheaf on X associated to the presheaf

U 7→ Cq

(
Γ(U ,OX)

)
. Then C·(X) is a complex of OX-modules. Given an OX-module

M choose an injective resolution M→ J0 → J1 → · · · . The q-th Hochschild coho-
mology of X with values in M is defined to be

HHq(X,M) := Hq
Γ

(
X,HomOX

(
C·(X), J·

))
.

This section is devoted to proving the following theorem.

Theorem 3.1 Let K be a noetherian ring and X a flat finite type separated K-scheme.

Let M· ∈ D+(Mod OX) be a complex. Assume either of the following:

(i) X is embeddable as a closed subscheme of some smooth K-scheme, and K is a regular

ring.

(ii) Each Hq M· is quasi-coherent.

Then there is an isomorphism

R HomOX

(
C·(X),M·

)
∼= R HomOX2 (OX ,M

·)

in D+(Mod OX2 ). This isomorphism is functorial in M·.

Corollary 3.2 Under the assumptions of the theorem, with M·
= M a single OX-

module, there is an isomorphism

HHq(X,M) ∼= Ext
q
OX2

(OX ,M).

Corollary 3.2 was proved by Swan in the case of a field K and a quasi-projective
scheme X [Sw, Theorem 2.1].

The proofs of Theorem 3.1 and Corollary 3.2 are at the end of the section, after
some preparation.
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The sheaves Cq(X) are ill behaved; they are not quasi-coherent except in trivial

cases. The sheaves Bq(X), associated to the presheaves U 7→ Bq

(
Γ(U ,OX)

)
, are

even more troublesome: we do not know if Bq(X) is an OX2 -module. We get around

these problems by using the completions Ĉq(X).

Proposition 3.3 Let K be a noetherian ring and X a flat finite type separated K-

scheme. Then there is an isomorphism

C·(X) ∼= OX ⊗
L
OX2

OX

in D(Mod OX).

Proof For any affine open set U = Spec A ⊂ X there is a quasi-isomorphism

C·(A) → Ĉ·(A); see Lemma 1.2. Therefore when we pass to sheaves we obtain a

quasi-isomorphism C·(X)→ Ĉ·(X). Now use Proposition 1.5.

Definition 3.4 Let Y be a noetherian scheme. An OY -module L is called finite

pseudo locally free if L ∼=
⊕n

i=1 gi!Li , where for each i, gi : Ui → Y is the inclusion
of an affine open set, gi! is extension by zero, and Li is a locally free OUi

-module of
finite rank.

According to [RD, Theorem II.7.8], for any noetherian scheme Y the category
Mod OY is locally noetherian.

Lemma 3.5 Suppose Y is a noetherian scheme.

(1) A finite pseudo locally free OY -module L is a noetherian object in Mod OY .

(2) Given a noetherian object M ∈ Mod OY there is a surjection L � M with L a

finite pseudo locally free OY -module.

(3) Let L be a finite pseudo locally free OY -module. Then L is a flat OY -module.

(4) If Y is separated and L is a finite pseudo locally free OY -module then the functor

HomOY
(L,−) : QCoh OY → QCoh OY

is exact.

Proof (1) By the proof of [RD, Theorem II.7.8], for any inclusion g : U → X of
an affine open set, the sheaf g!OU is noetherian in Mod OY . This implies that for any
coherent OU -module M, g!M is noetherian in Mod OY .

(2) For every affine open subset g : U → Y and every section of Γ(U ,M) we get a

homomorphism g!OU →M. By the ascending chain condition finitely many of these
cover M.

(3) In order to verify flatness we may restrict to a sufficiently small open subset
V ⊂ Y . Thus we can assume each Li in Definition 3.4 is free; and hence we reduce
to the case L = g!OU for an affine open subset g : U → Y .
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For any OY -module M we have

g!OU ⊗OY
M ∼= g!g

∗M.

Since both functors g∗ and g! are exact it follows that g!OU is flat.

(4) After the same reduction as in (3) we have

HomOY
(g!OU ,M) ∼= g∗g

∗M.

Since g is now an affine morphism the functor

g∗ : QCoh OU → QCoh OY

is exact.

Proof of Theorem 3.1 If condition (i) is satisfied then X2 is embeddable in a regular
scheme. Hence we can find a resolution · · · → L−1 → L0 → OX where all the OX2 -
modules Lq are locally free of finite rank. Otherwise by Lemma 3.5 we can at least

find such a resolution where the Lq are finite pseudo locally free OX2 -modules.
Since L· is a flat resolution of OX , by Proposition 3.3 we have

C·(X) ∼= OX ⊗OX2 L·

in D−(Mod OX).
Choose a quasi-isomorphism M· → K· where K· is a bounded below complex

of injective OX-modules. Then choose a quasi-isomorphism K· → J· where J· is a
bounded below complex of injective OX2 -modules. If condition (ii) holds then take
K· and J· to be complexes of quasi-coherent injective modules over OX and OX2

respectively (cf. [RD, Theorem II.7.18]).

We have
R HomOX2 (OX ,M

·) = HomOX2 (OX , J
·),

and there is a quasi-isomorphism

HomOX2 (OX , J
·)→ HomOX2 (L·, J·).

Since either all the Lq are locally free OY -modules of finite rank (in case condition (i)
holds), or all the Lq are finite pseudo locally free and all the Kq and Jq are quasi-
coherent (in case condition (ii) holds), it follows that we have a quasi-isomorphism

HomOX2 (L·,K·)→ HomOX2 (L·, J·).

But
HomOX2 (L·,K·) ∼= HomOX

(OX ⊗OX2 L·,K·).

Finally

HomOX
(OX ⊗OX2 L·,K·) = R HomOX

(OX ⊗OX2 L·,K·)

∼= R HomOX

(
C·(X),K·

)

= R HomOX

(
C·(X),M·

)

in D(Mod OX). To this isomorphism we apply the functor∆∗.
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Proof of Corollary 3.2 Choose an injective resolution M→ J·. Then

HomOX

(
C·(X), J·

)
= R HomOX

(
C·(X),M

)
.

Because each sheaf HomOX

(
Cq(X), Jp

)
is flasque it follows that

Hq
Γ

(
X,HomOX

(
C·(X), J·

))
= Hq R Γ

(
X,R HomOX

(
C·(X),M

))
.

The left hand side is by definition HHq(X,M). The right hand side is, according to
the theorem,

Hq R Γ
(

X,R HomOX2 (OX ,M)
)
∼= Ext

q
OX2

(OX ,M).

4 Decomposition in Characteristic 0

In this section we prove that the Hochschild cochain complex decomposes when X is
smooth and char K = 0. Throughout this section the base ring K is noetherian and
X is a separated finite type scheme over K.

Let A be a finitely generated K-algebra and Ω
q
A = Ω

q

A/K
the module of relative

Kähler differentials of degree q. We declare
⊕

q Ω
q
A[q] to be a complex with trivial

coboundary. For any q ≥ 0 there is an A-linear homomorphism

π : Cq(A) = Bq(A)⊗Ae A→ Ω
q
A,

π
(

(1⊗ a1 ⊗ · · · ⊗ aq ⊗ 1)⊗ 1
)
= d a1 ∧ · · · ∧ d aq.

Since π∂ = 0 we obtain a homomorphism of complexes π : C·(A)→
⊕

q Ω
q
A[q].

Recall that Iq = Ker
(
Bq(A)→ A

)
.

Lemma 4.1 Let m > q. Then π
(

Im
q · Cq(A)

)
= 0.

Proof Let us consider Ω
q
A as a Bq(A)-module. Then π is a differential operator of

order≤ q. Now use [Ye1, Proposition 1.4.6].

The lemma shows that π is continuous, so it extends to a homomorphism of com-

plexes

π : Ĉ·(A)→
⊕

q

Ω
q
A[q].

If we take A = K[t] := K[t1, . . . , tn] the polynomial algebra in n variables,
then Bq(K[t]) is a polynomial algebra over K[t] in the n(q + 1) elements d̃ jti , cf.

Lemma 2.6. Put a Z-grading on Bq(K[t]) by declaring deg d̃ jti := 1, and deg a := 0
for 0 6= a ∈ K[t]. This induces a grading on Cq(K[t]) = Bq(K[t]) ⊗B0(K[t]) K[t].
Also consider Ω

q
K[t] to be homogeneous of degree q.

Lemma 4.2 The homomorphism π : Cq(K[t])→ Ω
q
K[t] has degree 0.
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Proof Since Cq(K[t]) is a free K[t]-module with basis the monomials β =

d̃ j1
ti1
· · · d̃ jm

tim
with 1 ≤ j1, . . . , jm ≤ q and 1 ≤ i1, . . . , im ≤ n it suffices to look at

π(β). We note that degβ = m. Now

π
(

(1⊗ a1 ⊗ · · · ⊗ aq ⊗ 1)⊗ 1
)
= 0

if any ap ∈ K, 1 ≤ p ≤ q. Therefore π(β) = 0 unless { j1, . . . , jm} = {1, . . . , q}. We

conclude that π(β) = 0 if m < q. On the other hand, since each d̃ jti ∈ Iq, Lemma 4.1
tells us that π(β) = 0 if m > q.

The lemma says that π is a morphism in the category GrMod K[t] of Z-graded

K[t]-modules and degree 0 homomorphisms.

Lemma 4.3 Assume n! is invertible in K. Then π : C·(K[t]) →
⊕

q Ω
q
K[t][q] is a

homotopy equivalence of complexes over GrMod K[t].

Proof Write A := K[t]. For q > n we have Ω
q
A = 0, and q! is invertible for all

q ≤ n. So by [Lo, Proposition 1.3.16] the homomorphism of complexes π : C·(A)→⊕
q Ω

q
A[q] is a quasi-isomorphism. Now the complexes C·(A) and

⊕
q Ω

q
A[q] are

both bounded above complexes of projective objects in GrMod A. So the quasi-
isomorphism π : C·(A) →

⊕
qΩ

q
A[q] has to be a homotopy equivalence. Namely

there are homomorphisms φ : Ω
q
A → C−q(A) and h : C−q(A) → C−q−1(A) in

GrMod A satisfying: ∂φ = 0, 1C−q(A) − φπ = h∂ − ∂h and 1Ωq
A
− πφ = 0.

Proposition 4.4 Suppose K[t] → A is étale and n! is invertible in K. Then π :

Ĉ·(A) →
⊕

q Ω
q
A[q] is a homotopy equivalence of topological A-modules. Namely

there are continuous A-linear homomorphisms φ : Ω
q
A → Ĉ−q(A) and h : Ĉ−q(A) →

Ĉ−q−1(A) satisfying: ∂φ = 0, 1
Ĉ−q(A)

−φπ = h∂−∂h and 1Ωq
A
−πφ = 0. Furthermore

the homomorphisms φ and h are functorial in A.

Proof Declare A to be homogeneous of degree 0. From Lemma 4.3 we get homo-

morphisms

φ : A⊗K[t] Ω
q
K[t] → A⊗K[t] C−q(K[t])

and

h : A⊗K[t] C−q(K[t])→ A⊗K[t] C−q−1(K[t])

in GrMod A, satisfying the homotopy equations. Because K[t] → A is étale there

is an isomorphism A ⊗K[t] Ω
q
K[t]
∼= Ω

q
A. By Lemma 2.6, Ĉq(A) is the completion of

A ⊗K[t] Cq(K[t]) with respect to the grading. Therefore φ and h extend uniquely
to continuous homomorphisms as claimed. The functoriality in A follows from the
uniqueness.
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Theorem 4.5 Let K be a noetherian ring, let X be a separated smooth K-scheme of

relative dimension n, and assume n! is invertible in K. Then for any complex M· ∈
D(Mod OX) the homomorphism of complexes

HomOX

(⊕

q

Ω
q
X[q],M·

)
→ Homcont

OX

(
Ĉ·(X),M·

)

induced by π is a quasi-isomorphism.

Proof The assertion may be checked locally on X, so let U = Spec A ⊂ X be an
affine open set admitting an étale morphism U → An

K
. If U ′ = Spec A ′ ⊂ U is any

affine open subset then the ring homomorphisms K[t] → A → A ′ are étale. We

deduce from Proposition 4.4 that π : Ĉ·(U )→
⊕

qΩ
q
U [q] is a homotopy equivalence

of topological OU -modules, i.e., there are continuous OU -linear homomorphisms

φ : Ω
q
U → Ĉ−q(U ) and h : Ĉ−q(U )→ Ĉ−q−1(U ) satisfying the homotopy equations.

Corollary 4.6 Under the assumptions of the theorem, for any complex M· ∈
D+(Mod OX) there is an isomorphism

⊕

q

( q∧
TX

)
[−q]⊗OX

M· ∼= R HomOX2 (OX ,M
·)

in D(Mod OX2 ). This isomorphism is functorial in M·. In particular for M·
= OX we

obtain
⊕

q

( q∧
TX

)
[−q] ∼= R HomOX2 (OX ,OX)

in D(Mod OX2 ).

Proof Use Theorem 2.8.

Observe that the isomorphism
∧q

TX
∼= Ext

q
OX2

(OX ,OX) deduced from Corol-

lary 4.6 differs by a factor of q! from the Hochschild-Kostant-Rosenberg isomor-
phism (cf. [HKR, Theorem 5.2] and [Lo, Theorem 3.4.4]).

Taking global cohomology in Corollary 4.6 we deduce the next corollary.

Corollary 4.7 Under the assumptions of the theorem, for any OX-module M there is

an isomorphism

Exti
OX2

(OX ,M) ∼=
⊕

q

Hi−q

(
X,
( q∧

TX

)
⊗OX

M

)
.
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Corollary 4.7 was proved by Swan [Sw, Corollary 2.6] in the case X is smooth
quasi-projective over the field K = C.

Let us concentrate on the Hochschild cochain complex with values in OX . Here
we give notation to the homomorphism induced by π; it is

πcd :

q∧
TX → C

q
cd (X).

The precise formula on an affine open set U = Spec A is

πcd (v1 ∧ · · · ∧ vq)(1⊗ a1 ⊗ · · · ⊗ aq ⊗ 1) =
∑

σ∈Σq

sgn(σ)vσ(1)(a1) · · · vσ(q)(aq)

for vi ∈ TA = DerK(A) and ai ∈ A, where sgn(σ) denotes the sign of the permuta-
tion σ.

Theorem 4.5 says that πcd is a quasi-isomorphism if X is smooth of relative di-
mension n and n! is invertible in K. The next result is a converse.

Theorem 4.8 Let K be a Gorenstein noetherian ring of finite Krull dimension and let

X be a smooth separated K-scheme of relative dimension n. Then the following three

conditions are equivalent.

(i) π : Ĉ·(X)→
⊕

qΩ
q
X[q] is a quasi-isomorphism.

(ii) πcd :
⊕

q(
∧q

TX)[−q]→ C·cd (X) is a quasi-isomorphism.

(iii) n! is invertible in OX .

Proof All three conditions can be checked locally. So take a sufficiently small affine
open set U = Spec A ⊂ X such that there is an étale homomorphism K[t1, . . . , tn]→
A. We will prove that the three conditions are equivalent on U (cf. Propositions 1.4
and 1.6).

(i) ⇔ (ii): Denote by D the functor HomA(−,A) and by R D : D(Mod A) →
D(Mod A) its derived functor. Consider the homomorphism of complexes

πcd :
⊕

q

( q∧
TA

)
[−q]→ C·cd (A).

By Lemma 2.6, Ĉq(A) is a power series algebra over A in nq elements. Hence the
adjunction map

Ĉq(A)→ DC
q
cd (A) = HomA

(
Homcont

A

(
Ĉq(A),A

)
,A
)

is bijective, and we get

π = D(πcd ) : Ĉq(A)→ Ω
q
A.
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We claim that moreover Ĉ·(A) = R DC·cd (A) and

π = R D(πcd ) : Ĉ·(A)→
⊕

q

Ω
q
A[q].(4.9)

To verify this let us choose a bounded injective resolution A → J· in Mod A, which

is possible since A is Gorenstein of finite Krull dimension. Each A-module C
q
cd (A) is

free. Then, even though the complex C·cd (A) is unbounded,

HomA

(
C·cd (A),A

)
→ HomA

(
C·cd (A), J·

)

is a quasi-isomorphism. Thus the claim is proved.
The functor R D is a duality of the subcategory Dc (Mod A) of complexes

with finitely generated cohomologies. By Corollary 2.9 we know that C·cd (A) ∈
Dc (Mod A), and clearly

⊕
q(
∧q

TA)[−q] ∈ Dc (Mod A). We conclude that πcd is

an isomorphism in Dc (Mod A) iff π = R D(πcd ) is an isomorphism.

(i)⇔ (iii): We know that C·(A) → Ĉ·(A) is a quasi-isomorphism. Let ε : Ω
q
A →

H−q C·(A) be the isomorphism of the Hochschild-Kostant-Rosenberg Theorem [Lo,
Theorem 3.4.4]. Then by [Lo, Proposition 1.3.16], πε(α) = q!α for all α ∈ Ω

q
A.

If n! is invertible in A then so is q! for all q ≤ n. For q > n we have Ω
q
A = 0. So π

is a quasi-isomorphism.

Conversely, suppose π is a quasi-isomorphism. Let α be a basis of the free A-
module Ωn

A. Then n!α = πε(α) is also a basis, so n! must be invertible in A.

Oddly, if X is affine there is always a decomposition, regardless of characteristic.

Proposition 4.10 If K is noetherian and X is affine and smooth over K then there is a

canonical isomorphism

R HomOX2 (OX ,OX) ∼=
⊕

q

( q∧
TX

)
[−q]

in D(Mod OX2 ).

Proof Say X = Spec A. Let A → J· be an injective resolution in Mod Ae , and set
N · := HomAe (A, J·), which is a complex of A-modules. Denote by F : Mod A →
Mod Ae the restriction of scalars functor for the homomorphism Ae → A (this is the
ring version of∆∗). Then FN · = R HomAe (A,A) in D(Mod Ae). Let G : Mod Ae →
Mod OX2 be the sheafication functor. Since G J· is an injective resolution of OX we
see that

GFN · ∼= HomOX2 (OX ,G J·) ∼= R HomOX2 (OX ,OX)

in D(Mod OX2 ).
Now according to the Hochschild-Kostant-Rosenberg Theorem (see [HKR, The-

orem 5.2] and [Lo, Theorem 3.4.4]) the cohomology Hq N · = Ext
q
Ae (A,A) ∼=

∧q
TA.

Since the A-modules
∧q

TA are projective and almost all of them are zero, it is easy to

see, by truncation and splitting, that N · ∼=
⊕

q(
∧q

TA)[−q] in D(Mod A). Therefore

GFN · ∼=
⊕

q(
∧q

TX)[−q] in D(Mod OX2 ).
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Question 4.11 We have seen that if X is affine or if K contains enough denominators
then the Hochschild cochain complex C·cd (X) decomposes in the derived category. Is

there decomposition in other circumstances?

Question 4.12 How is the decomposition of Theorem 4.5 related to the Hodge de-
composition of Gerstenhaber-Schack [GS]? Perhaps the comparison to Swan’s defi-

nition of Hochschild cochains (Section 3) can help.

Remark 4.13 In [Ko], D·poly (X) := C·cd (X)[1] is called the complex of poly-differ-

ential operators. The complex T·poly (X) :=
⊕

q(
∧q

TX)[1 − q] is called the complex

of poly-vector fields. Kontsevich’s Formality Theorem [Ko] says that ( 1
q!
π

q
cd )q≥0 is the

degree 1 component of an L∞-quasi-isomorphism of the DG Lie algebra structures
of D·poly (X) and T·poly (X) when K is a field of characteristic 0.
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