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ON THE STABILITY OF BARRELLED TOPOLOGIES, III

W.J. ROBERTSON, I. TWEDDLE AND F.E. YEOMANS

Let E be a barrelled space with dual F # E* . It is shown

that F has uncountable codimension in E* . If M is a

vector subspace of E* of countable dimension with

M n F = {o} , the topology x(E, F+M) is called a countable

enlargement of f{E, F) . The results of the two previous papers

are extended: it is proved that a non-barrelled countable

enlargement always exists, and sufficient conditions for the

existence of a barrelled countable enlargement are established,

to include cases where the bounded sets may all be finite

dimensional. An example of this case is given, derived from

Amemiya and Komura; some specific and general classes of spaces

containing a dense barrelled vector subspace of codimension

greater than or equal to a are discussed.

1. Completeness, codimension in E* and non-barrelled
countable enlargements

We use the notation and terminology of [7], [/2] and the abstract

above. All the spaces are supposed locally convex and Hausdorff.

THEOREM 1. Let E be a barrelled space with dual F t E* and let

U be a vector subspace of E* , with M n F = {o} , of finite or countable

dimension. Then E with the topology T(E, F+M) is not complete.

Proof. Let H be a hyperplane in F + M , containing F . Then H
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is dense, and if E with T{E, F+M) is complete, there is an absolutely-
convex a(F+M, £)-compact set B such that H n B is not compact. By the
lemma in [7 2], B c A + C , where A is a(F, El-compact and C finite
dimensional and compact. Since B is closed in A + C , H n B is closed
in H n {A+C) . But H n (A+C) = A + H n C since A c F c H , and this is
a sum of compact sets, and so is compact. Thus H n B is compact, a
contradiction.

In [7] (Section 3) i t was pointed out that the property of being
barrelled may or may not be stable under the removal of one dimension from
the dual. We may look at Theorem 1 from this point of view.

COROLLARY. Let E be a complete space and let F be a dense vector
subspace of the dual of E , of finite or countable codimension. Then
T(E, F) is not barrelled.

Proof. If E is complete under a topology with dual F + M , then E
i s complete under i(E, F+M) .

Although we make no use of i t here, we observe a simple counterpart to
this corollary: if E is S-complete (or B -complete) and F is a

proper dense vector subspace of i ts dual, then T(E, F) is not barrelled.
For if F is not, closed in the dual G of E , there is an absolutely
convex o(C, fi^-compact set B such that F n B is not a{G, 2?)-compact.
Then F n B i s o(F, £)-bounded but not T{E, F)-equicontinuous. (This
result is also a consequence of the closed graph theorem.)

Theorem 1 may also be proved by applying Proposition 2.2 of [2] , using
the lemma of [?2] and the remarks in [7], Section 6.

The most striking case of Theorem 1 is also our most useful.

THEOREM 2. The dual of a barrelled space E is either E* or has
uncountable aodimension in E* .

(For E with T(E, E*) is complete.)

We turn to the problem of stability of a barrelled topology; we can

now remove the restriction in Theorem 2 of [7] that E should have an

infinite dimensional bounded set, and answer the question of existence of a

non-barrelled countable enlargement completely.

THEOREM 3. Let E be a barrelled space with dual F + E* . Then
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there exists a vector subspace M of E* 3 of countable dimension, with

M n F = {o} j such that T(E, F+M) is not barrelled.

Proof. Let H be a hyperplane in E* containing F . Then l{E, H)

is not ba r re l l ed , by Theorem 2, and so there i s a a(H, £)-bounded set B

not i(E, ff)-equicontinuous. Since T(E, F) i s ba r re l l ed , so i s

x(E, F+N) for any f i n i t e dimensional NcH ( [ 7 ] , Theorem l ) and so

B £ F + N . Hence there i s a l inear ly independent countable subset A of

B such that F n span A = {o} . Let M = span A . Then A i s

a{F+M, £)-bounded but does not l i e in any F + N , and so ( [72] , Theorem 2)

T ( £ , F+M) i s not bar re l led .

2. An example of Amemiya and Komura

In ([?], Theorem l) a general result was given on the existence of

barrelled countable enlargements for spaces with suitable infinite

dimensional bounded sets. We now consider a specific example of a

barrelled topology which has a barrelled countable enlargement although the

bounded sets are finite dimensional. Further examples will be given in

Section h.

Amemiya and Komura construct in ([/], Section k) a dual pair (E, F)

and a countable dimensional subspace H of E* such that

(i) the bounded sets for the topologies a{E, F), o(F, E) and

o(F+H, E) are finite dimensional,

(ii) F + H is separable under o(F+H, E) .

There is in fact an error in the proof of their lemma which has been

corrected in [5]. Referring to their proof, the error is that their space

G = GQ
 x W ( A O has codimension 1 and not e in co . The first part of

the construction in Section 8 of [7], applied to w(/O , or alternatively

Corollary 2 of Lemma 3 here, yield a simpler correction of this error,

since w(#J thereby has a dense barrelled vector subspace L of

codimension c containing the e [n € NA . The or iginal proof works if

we redefine G to be G. x L .

By ( i ) , the space E i s barre l led under o(E, F) and o(E, F+H) .

I t remains to show that F has in f in i t e codimension in F + H , for then
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any supplement M of F in F + H will be a countable dimensional

subspace of E* such that F n M = {o} and i{E, F+M) = a(E, F+M) is

barrelled. We establish f i r s t :

LEMMA 1. F i s not a(F, E)-separable.

Proof. We refer to [/] for notation and definitions. Let (/ j be

any sequence in F . Since each / i s a finite linear combination of

elements of U{F : a < ti\ , we can find a < Q such that / vanishes1 a ' n J n

on E [> a ) (n € N) . Then if a = sup a we have a < U and each /

vanishes on E (> a) . This allows us to find a non-zero element of

E = E (< a) x E (a) x E (> a) which annihilates each / , and so

{/ : n € IN} cannot be a(F, £)-dense in F .

Our assertion now follows from ( i i ) and the following general result ,

which is probably well-known. (See Note Added in Proof, p. 110.)

LEMMA 2. Let E be a separable Hausdorff locally convex space and

let L be a vector subspace of E of finite codimension. Then L is

separable in the induced topology.

Proof. Suppose that L has codimension 1 in E and le t f be an

element of E* such that L = / " (0) . Denoting the dual of E by F as

usual, l e t G be the linear span of {/} u F . By the lemma in [.141, E

i s o(E, G)-separable. Since L is a(E, (J)-closed and of f inite

codimension, E under o(E, G) is the topological direct sum of L and

any one of i ts supplements. Thus I is o(E, G)-separable and therefore

o(E, F)-separable since the two topologies coincide on L . Since the same

convex subsets are separable for all topologies of a given dual pair, we

deduce that L is separable for the original topology of E .

The general case follows by induction.

Let E, F, H be as in the above example and le t E be any Hausdorff

barrelled space over the same field with dual F . Put E- = E x £ ,

FQ = F © F and HQ = {{h, o) : h i H] c_ E* © E* . We see eas i ly tha t

(a) F. is a countable codimensional vector subspace of F_ + H ,
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(lj) T(£Q, FQ) and T(EQ, FQ+HQ) are barrelled topologies,

(c) the a(^n> ^n)-bounded sets have the same dimensions as the

o(E F)-bounded sets.

Thus examples exist of barrelled spaces with barrelled countable

enlargements and with bounded sets of any dimensions possible.

In conclusion i t is perhaps of interest to note that if a Hausdorff

locally convex space E has an infinite dimensional o(E, F)-bounded set,

then i t has an infinite dimensional o(E, F+Af)-bounded set for any

countable dimensional vector subspace M of E* . For if every

a(E, F+M)-bounded set is finite dimensional, then a(F+M, E) is barrelled.

Hence o(F, E) is barrelled (since F has at most countable codimension

in F + M ) and so the a(E, F)-bounded sets are finite dimensional. (This

may also be proved by direct elementary means.) In particular, if F has

countable codimension in E* , every o(E, F)-bounded set is finite

dimensional.

3. Existence of barrelled countable enlargements

In this section we establish some general sufficient conditions for

the existence of barrelled countable enlargements, and discuss spaces

having dense barrelled vector subspaces of uncountable codimension.

Let (E, F) be a dual pair. We shall say that F has plenty of

bounded sequences if and only if every sequence in F contains an infinite

subsequence spanned by a o(F, ff)-bounded set. Equivalently, for every

sequence (/ ) in F , there exist scalars (X ) , with X # 0 for somen n nk

sequence («,) , such that X f' •*• o in o(F, E) .

For example, if F is metrisable under some topology finer than

o{F, E) , then F has plenty of bounded sequences. But if F is the

strict inductive limit of a sequence of Frechet spaces and has dual E ,

then F does not have plenty of bounded sequences. Also if F = R , then

F has plenty of bounded sequences if and only if A is countable or

finite.

THEOREM 4. Let E be a barrelled space with dual F f E* and
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dim E 5 a . Suppose that G is a vector subspace of E of dimension c

such that the dual of G has plenty of bounded sequences. Then there

exists a barrelled countable enlargement.

Proof. Since dim G = o , G 3? FT (or C ) algebraically. Let H

be the dual of G under the product topology, so that E ^ R (or

C ) , and let K be the dual of G under the topology induced by

T{E, F) . Then E n K cannot be infinite dimensional. For if {h ) is a

linearly independent sequence in E n K , then, since K has plenty of

bounded sequences, some subsequence lies in the span of a o{K, G)-bounded

set. Since o{E, C)-bounded sets are finite dimensional, this subsequence,

and hence [h J , cannot be linearly independent.

Let N be an algebraic supplement of E n K in E and let M be

the set of extensions to E of elements of N , defined to be zero on some

algebraic supplement of G in E . Then M is a vector subspace of E*

of countable dimension and M n F = {o} since N n K = {o} .

Let B be absolutely convex o(F+M, £)-bounded and C the set of

restrictions to G of the elements of B ; then C is o(K+N, G)-

bounded. If the natural projection of C on N is not finite

dimensional, there is a sequence [g J c C such that g = f + h ,

f (. K , h £ N and [h J linearly independent. Since K has plenty

of bounded sequences, there are scalars A such that \ f -*• o in
n nJ n

o(K, G) and X t 0 for an inf in i ty of n . We may suppose |A | < 1 .

Then (X g ) c C and so i s bounded on G , [X f } i s bounded on G , andv n^n' — l n nJ

therefore [X h ) is o(E, C)-bounded. Hence some infinite subsequence of

(h J is finite dimensional, contradicting the linear independence of

(h ) . Thus the projection of C on N is finite dimensional, so also is

the projection of B on ft/ , and by Theorem 2 of [72], T(£", F+M) is

barrelled.

This theorem is a natural generalisation of Theorem 1 of [72]. The

hypothesis there that E contains a bounded set of e-dimensional span G

ensures that the dual of G (under the topology induced by T(E, F) }
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i s a subspace of a normed space with dual containing G , and so has plenty

of bounded sequences.

In [ 7 ] , Theorem 5 shows that if M° i s dense and bar re l led , and of

countable codimension, then x(S, F+M) i s not ba r re l l ed , and the

associated barre l led topology is ident i f ied . By contrast we have the next

resu l t (cf. [ 7 ] , Theorem 3, [12], Theorem 1 and also [ 2 ] , Proposition 3-2

and Example 3.5) .

THEOREM 5. Suppose that E is barrelled with dual F t E* , and

that E has a dense barrelled vector subspace of codimension greater than

or equal to c . Then there exists a barrelled countable enlargement.

Proof. Let L be a vector subspace of E , of codimension c ,

containing the given subspace and so i t s e l f both dense and bar re l led . Let

G be an algebraic supplement of L in E ; then G = K (or C )

a lgebra ica l ly . Let H be the dual of G under the product topology, and

l e t M be the set of extensions to E of elements of H , defined to be

zero on L . Then M has countable dimension, M n F = {o} since L i s

dense, and M° = L .

Let B be a(F+M, E)-bounded. Then the projection X of B on F

is a(F, M°)-bounded, and so T{E, F)-equicontinuous (by [ 7 ] , lemma in

Section 6) since M° i s dense and ba r re l l ed . Hence the projection Y of

B on M i s bounded, and, since o(H, G)-bounded sets are f i n i t e

dimensional, so i s Y . Thus B c X + Y i s T(2?, F+M) equicontinuous.

We are therefore led to search for dense barre l led vector subspaces of

codimension greater than or equal to c . The next resu l t i s perhaps of

independent i n t e r e s t .

THEOREM 6. Suppose that E is barrelled and that in the dual F of

E 3 every sequence has an infinite subsequence lying in a a{E*, E)-

complete vector subspace of F . Then every dense vector subspace of E

is barrelled.

Proof. Let L be a dense vector subspace of E ; then a{F, L) is

Hausdorff. Let B be o(F, L)-bounded; i f B i s not a(F, ^-bounded,

there i s some x in E and a sequence ( / ) in B with | / [x) \ -*• °° .

Some subsequence of ( / ) l i e s in a a(E*, E)-complete vector subspace N
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of F , by hypothesis; i t is o(F, L)-bounded but not a(F, £)-bounded.

Now N is of minimal type under the topology induced by o(F, E) ( [ ' 0 ] ,

page 191) and cr(F, L) is a coarser Hausdorff topology. Hence these

topologies must coincide on N , which gives a contradiction. Thus B is

o(F, 2f)-bounded, equicontinuous on E since E is barrelled, and so

certainly on L .

(See also Section h and [4] , 1.9.)

Next, we note two general examples of a barrelled space with a dense

barrelled vector subspace of codimension greater than or equal to e . To

avoid repetit ion, we shall call such a subspace satisfactory, for the rest

of th is section.

NOTE 3.1 . Let G be a barrelled space and H a dense hyperplane in

G . If k is an index set with |A| i c , put G, = G and #, = H for

each A € A j and take E to be the direct sum £ {(7. : A € A} . Then

L = Y, {̂ x : ^ e A} i-s satisfactory.

NOTE 3.2. Let E be a barrelled space and E any barrelled vector

subspace of E . Then if E. has a satisfactory subspace, so has E .

Proof. Let G be an algebraic supplement of E. in E , L a

satisfactory subspace of E , and put L = L + G . Then L is dense.

Let B be a barrel in L . Then B n L is a barrel, and so a

neighbourhood of o , in L. ; since L is dense in E ,

E^ c span B n L c span B (closures in E ) . Thus B is a barrel , and so

a neighbourhood of o , in E , and B = B n L is a neighbourhood of o

in L .

COROLLARY. If E is a strict inductive limit of a sequence [E ) of

barrelled spaces and some E has a satisfactory subspace, then so has

E .

Finally, we collect together some conditions of Baire type. I t is

convenient to state here the following:

LEMMA 3. Suppose that dim E > c . We may write E = UE , where
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[E ) is an increasing sequence of vector subspaces of E and

codim E 2 c for each n .

Proof. If {x, : X € A} is a basis of E , wri te A = UA , where

(A ) i s an increasing sequence and |A | = |A\A | = |A| for each n .

Then l e t E = spanja:, : X € A } . Each E has codimension > c

(This method is essentially that of Saxon and Levin [9], Example A,

used in [7], Section 8 and in [Z], Example 3.6, Remark (ii).)

COROLLARY 1. If E is barrelled, dim E > c and its completion E

is a Baire space, then E has a dense vector subspace of codimension

greater than or equal to c .

Proof. Writing E = UE as in Lemma 3, some E is dense by Theorem

k of Valdivia [13].

COROLLARY 2. If E is a Baire space and dim E > c > then E has a

satisfactory subspace.

Proof. By Corollary 1, we may write E = U{E : n > m} where E ,

and so each E , is dense. Then some E is non-meagre and so barrelled.

COROLLARY 3. The strict inductive limit of a sequence of Frechet

spaces has a satisfactory subspace.

(By Corollary 2 and the corollary to Note 3.2.)

Clearly, if dim E > c , E has a satisfactory subspace if E

possesses the following property.

(db) If E is the union of an increasing sequence [E ) of

vector subspaces, then some E is dense and barrelled.

In [£], Saxon defines Baire-like spaces, and Todd and Saxon [//] point

out that the theorem of Valdivia referred to above shows that if E is

barrelled and E is a Baire space, then E is Baire-like. They use a

stronger property to define unordered Baire-like spaces, and prove ([//],

2.2) its equivalence to the more demanding condition than (db), obtained by

omitting the word "increasing". A proof similar to part of their Theorem

2.2 shows that (db) implies that E is Baire-like. Thus we have:
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Baire =*• unordered Baire-like =* (db) =* Baire-like =» barrelled

and (trivially)

COROLLARY 4 . If E is unordered Baire-like and dim E > a , then E

has a satisfactory subspaee.

We point out inc identa l ly tha t , for the proof of the closed graph

theorem ci ted by Todd and Saxon ( [6 ] , Theorem 2) , the property (db) i s a

suf f i c ien t condition on the domain in the usual case, when the range space

i s t he inductive l imi t of an increasing sequence of subspaces.

4 . GM- and GW-spaces

The (3A/-spaces introduced by Eberhardt and Roe I eke in [4] provide a

c l a s s of bar re l l ed spaces whose bounded sets are f i n i t e dimensional and

whose duals have the sequential property required in Theorem 6 ( [ 4 ] , 1 .1 ,

2 . 1 ) . Thus we can apply Theorem 5 to a GW-space provided that i t has a

dense vector subspaee of codimension greater than or equal to c . This i s

t r u e for a specif ic subclass of GW-spaces.

THEOREM 7. Let E be an KQ-product ( [ 4 ] , 3.M with at least c

nonzero factors. Then E has a dense vector subspaee of codimension

greater than or equal to c .

Proof. We have E = J~J [E -. \A £ l] with the projective limit

topology defined by the natural projections

Pj : E * Tl {\ : y € J]

where J runs through a l l countable subsets of I and "] f {E : \i € j}

has i t s f inest l oca l l y convex topology ( [ 4 ] , 3 .5 , 3 .7) . The vector

subspaee G = { (x ) : |{u : x * o}\ < N } i s c lear ly dense in E . The

r e s u l t w i l l follow i f we show that G has codimension at l eas t o in E .

By hypothesis we may choose subsets I (r € R) of J such tha t for a l l

Ur\ = a , E^ t {o} i f p E I r and 1^ n Ig = 0 ( r * s ) .

Then l e t x^ be any element of E with J as support ( r € R) . The
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linear span of {x : r £ R} has dimension c and intersects G only in

o .

We do not know if there is a GM-space (not having i t s finest locally

convex topology) for which no barrelled countable enlargement exists.

However we can answer the corresponding question about the GM-property.

We begin with two lemmas which are of independent interest.

LEMMA 4. Let E be a barrelled space with. F t E* and let M be a

countable dimensional vector subspace of E* such that M n F = {o} .

Then M°° cj: F + M (bipolar in E* ) .

Proof. Suppose M°° c F + M and let P = F n M°° . Then P is

a(F, E)-closed and M°° = P + M . Consider E/P° . This is barrelled

under the quotient topology defined by x(E, F) , i t s dual is P and i t s

algebraic dual is P°° (bipolar in E* ) , which is a vector subspace of

M°° . Since P' therefore has at most countable codimension in P°° , i t

follows by Theorem 2 that P = P°° .

Wow M°° is barrelled under the topology induced by o{E*, E) (being

the algebraic dual of E/M° ) and P is a closed countable codimensional

subspace of M°° . Thus by ([9] , p. 92, Proposition) o{E*, E) induces

the finest locally convex topology on M , which is certainly false.

The next lemma is concerned with the condition of Theorem 6.

LEMMA 5. Suppose that E is a barrelled space and has a barrelled

countable enlargement i(E, F+M) . Then no infinite dimensional sequence

in M lies in a a(F+M, E)-complete vector subspace.

Proof. If this is false we can find an infinite dimensional vector

subspace P of M such that P°° cF + M (bipolar in E* ). Let Q be

a supplement of P in M and put G = F + Q . I t follows easily from the

results of ([72J, Section 3) that x(E, G) is barrelled. Thus by Lemma h,

P ° ° < ^ G + P = F + M

which is a contradiction.

Recalling our introductory comments on CA/-spaces we may deduce

immediately:

THEOREM 8. Let E be a Hausdorff GM-space with dual F t E* .

Then E cannot be a GM-space under any countable enlargement T(E, F+M) .
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NOTE 4 .1 . I t is easily seen that the GW-property is preserved under

f in i te dimensional enlargements of the dual space.

NOTE 4.2. Theorem 8 and ([4] , l.k) show that the GM-property is an

example of a property which is always inherited by countable codimensional

vector subspaces but is never preserved by countable dimensional

enlargements of the dual.

NOTE 4.3. I t is clear from the dual characterisation of GM-spaces

( [4 ] , l . l ) that the dual F of an infinite dimensional GM-space E must

have infini te dimensional a(F, ffj-bounded sets . Thus the space E of

Amemiya and Komura discussed in Section 2 is not a GM-space.

Eberhardt's GiV-spaces [3 ] , which are also barrelled, exhibit rather

different behaviour.

THEOREM 9. Let E be a Hausdorff GN-spaoe with dual F ? E* and

suppose that M is a vector subspaoe of E* , of countable dimension, suah

that F n M = {o} . Then E with T{E, F+M) is a GN-space if and only

if it is barrelled.

Proof. The necessity is clear. Suppose that T(E, F+M) is barrelled

and l e t B be a a(F+M, £)-bounded set . We know from ([72], Section 3)

that B c X + Y where X is a a(F, £)-bounded set and Y is a f inite

dimensional bounded subset of M . By hypothesis the o{F, 2?)-closed

linear span of X is o(F, E)-complete and therefore o{E*, E)-closed

(C3], 2.3). Since the l inear span of Y i s f ini te dimensional, i t follows

that the o(E*, E)-closed linear span of X + Y is contained in F + M .

We then have immediately that the a(F+M, E)-closed linear span of B is

a{F+M, EO-complete. Thus E with T(E, F+M) is a Gtf-space.

Since each GW-space is a GW-space we have immediately:

COROLLARY. Let E be a Hausdorff GM-space with a barrelled

countable enlargement T ( £ , F+M) . Then E with T ( £ , F+M) is a GN-

space (cf. Theorems 7, 8) .

Note Added in Proof. Lemma 2 has been derived by Lech Drewnowski and

Robert H. Lohman as Corollary 3 in their paper "On the number of separable

locally convex spaces", Proc. Amer. Math. Soc. 58 (1976), 185-188.

We should l ike to thank the Editor, Dr S.A. Morris, and Professor S.A.

Saxon, from whom he obtained th is reference.
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