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Abstract. Let B be a submodule of an R-module M. The intersection of all
prime (resp. weakly prime) submodules of M containing B is denoted by rad(B) (resp.
wrad(B)). A generalisation of 〈E(B)〉 denoted by UE(B) of M will be introduced.
The inclusions 〈E(B)〉 ⊆ UE(B) ⊆ wrad(B) ⊆ rad(B) are motivations for studying the
equalities UE(B) = wrad(B) and UE(B) = rad(B) in this paper. It is proved that if R is
an arithmetical ring, then UE(B) = wrad(B). In Theorem 2.5, a generalisation of the
main result of [11] is given.

MR 2000 Subject Classification. 13C99, 13C13, 13E05, 13F05, 13F15.

1. Introduction. Throughout this paper all rings are commutative with identity,
and all modules are unitary. Also we consider R to be a ring, M a unitary R-module,
B a submodule of M and � the set of positive integers.

Let N be a proper submodule of M. It is said that N is a prime submodule of M
if the conditions ra ∈ N, r ∈ R and a ∈ M imply that a ∈ N or rM ⊆ N. In this case,
if P = (N : M) = {t ∈ R| tM ⊆ N}, we say that N is a P-prime submodule of M, and
it is easy to see that P is a prime ideal of R. Prime submodules have been studied in
several papers such as [2–8, 11–13].

A proper submodule N of M is called a weakly prime submodule if for each x ∈ M
and a, b ∈ R, the condition abx ∈ N implies that ax ∈ N or bx ∈ N.

Weakly prime submodules have been studied in [2, 4, 6, 7]. If we consider R as an
R-module, then prime submodules and weakly prime submodules are exactly prime
ideals of R. For every R-module, it is easy to see that any prime submodule is a weakly
prime submodule, but the converse is not always true. For example let R be a ring with
dim R �= 0 and P ⊂ Q a chain of prime ideals of R. Then it is easy to see that for the
free R-module R ⊕ R, the submodule P ⊕ Q is a weakly prime submodule which is
not a prime submodule.

Recall that for an ideal I of a ring R, the radical of I denoted by
√

I is defined to
be

√
I = {r ∈ R| rn ∈ I, for some n ∈ �}.

For any subset B of M, the envelope of B, denoted by E(B) is defined to be

E(B) = {x| x = ra, rna ∈ B, for some r ∈ R, a ∈ M, n ∈ �}.

〈E(B)〉 is the submodule generated by E(B). Then 〈E(B)〉 is a module version of
the radical of ideals, and obviously B ⊆ 〈E(B)〉.

For an ideal I of a ring R,
√√

I = √
I . But for its generalisation to modules,

it is not true (see [5, Example 1]). So for a submodule B of M, we consider
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E0(B) = B, E1(B) = E(B), E2(B) = E(〈E(B)〉), and for any positive integer n, it is
defined En+1(B) = E(〈En(B)〉) inductively. We will call En(B) the nth envelope of B.

Recall that for an ideal I of R,
√

I =
⋂

P prime ideal
I⊆P

P. (∗)

The intersection of all prime (resp. weakly prime) submodules of M containing B
is denoted by rad(B) (resp. wrad(B)). If there does not exist any prime (resp. weakly
prime) submodule of M containing B, then we say rad(B) = M (resp. wrad(B) = M).
Obviously wrad(B) ⊆ rad(B).

As a generalisation of the equality (∗), it is said that a module M satisfies the
radical formula (s.t.r.f.) if for every submodule B of M, 〈E(B)〉 = rad(B). It is said that
a ring R s.t.r.f. if every R-module s.t.r.f. (see for example [5, 8, 11, 13]).

For every submodule B of M, we consider

UE(B) =
⋃

n∈�

〈En(B)〉;

UE(B) will be called the union of envelopes of B. One can easily see that B ⊆ 〈En(B)〉 ⊆
UE(B) ⊆ wrad(B) ⊆ rad(B), for any n ∈ �. Therefore UE(B) is a submodule of
M containing B and UE(B) = lim−→〈En(B)〉. If we consider R as an R-module, then

obviously for each ideal I of R, UE(I) still is
√

I . Hence the equality (∗) provokes us
to study the equalities UE(B) = wrad(B) and UE(B) = rad(B) in this paper.

DEFINITION . Let n ∈ � ∪ {0}. If (resp. 〈En(B)〉 = wrad(B)) 〈En(B)〉 = rad(B) for
every submodule B of M, we will say that M (resp. weakly) s.t.r.f. of degree n. It will be
said that the ring R (resp. weakly) s.t.r.f. of degree n, if every R-module (resp. weakly)
s.t.r.f. of degree n.

DEFINITION . Let M be an R-module. If (resp. UE(B) = wrad(B)) UE(B) =
rad(B), for every submodule B of M, we will say that the (resp. weakly) radical formula
holds for M. It will be said that the (resp. weakly) radical formula holds for a ring R if
the (resp. weakly) radical formula holds for every R-module.

Recall that a ring R is said to be an arithmetical ring if for all ideals I, J and K of
R we have I + (J ∩ K) = (I + J) ∩ (I + K) (see [9, 10]).

According to [9, Theorem 1] a ring R is arithmetical if and only if for each maximal
ideal P of R every two ideals of the ring RP are comparable (RP is a chained ring).

Then obviously Prüfer domains, valuation rings and Dedekind domains are
arithmetical.

NOTE. Let B be a submodule of an R-module M.

(1) Dedekind domains or more generally ZPI-rings, or zero dimensional rings
s.t.r.f. (see [8, Theorem 1, 13, Theorems 2.8, 2.10]). Hence in this case UE(B) =
wrad(B) = rad(B).

(2) If R is a Prüfer domain with dim R = n, then M s.t.r.f. of degree n (see [5,
Theorem 2.4]). Consequently UE(B) = wrad(B) = rad(B).

(3) If R is an arithmetical ring with DCC on prime ideals, or M has DCC on cyclic
submodules, then the radical formula holds for M (see [5, Corollaries 2.5 and
2.7]). So UE(B) = wrad(B) = rad(B)
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(4) If M is a multiplication module or has DCC on cyclic submodules or if M is a
divisible module over an integral domain, then every weakly prime submodule
of M is a prime submodule (see [4, Theorem 2.7]). Then obviously for these
modules, wrad(B) = rad(B).

The equality wrad(B) = rad(B) has been studied in [2, Section 4].

2. Radical formula.

THEOREM 2.1. The weakly radical formula holds for every arithmetical ring.

Proof. Let B be a submodule of an R-module M, where R is an arithmetical ring.
We will prove that UE(B) = wrad(B). We consider two cases.

Case 1. B = 0. We will show that for any maximal ideal P of R, (UE(0))P =
(wrad(0))P. Hence ( wrad(0)

UE(0) )P = 0, for any maximal ideal P of R, which implies that
UE(0) = wrad(0), by [1, Proposition 3.8].

It is easy to see that

UE(0P) = (UE(0))P ⊆ (wrad(0))P ⊆ wrad(0P).

So it suffices to show that wrad(0P) ⊆ UE(0P). Therefore by localisation we may
assume that every two ideals of the ring R are comparable. In this case we will show
that UE(0) is a weakly prime submodule of M.

Suppose that r1r2x ∈ UE(0), where r1, r2 ∈ R and x ∈ M. Every two ideals
of the ring R are comparable; then assume that r2 = r1t1, where t1 ∈ R. Now
we have r2

1(t1x) ∈ UE(0) = ⋃
n∈�〈En(0)〉. Let r2

1(t1x) ∈ 〈Em(0)〉, where m ∈ �. Then
r2x = r1(t1x) ∈ E〈Em(0)〉 = Em+1(0) ⊆ UE(0). This completes the proof.

Case 2. 0 �= B. Consider M̄ = M
B . By case 1, for the R-module M̄ we have UE( B

B ) =
wrad( B

B ). One can easily check that UE(B)
B = UE( B

B ) and wrad( B
B ) = wrad(B)

B , which
completes the proof. �

Recall that a ring R is said to be an Archimedean ring if ∩n∈�Rrn = 0, for each
non-unit r ∈ R.

In [5, Corollary 2.7] it is shown that if R is an arithmetical ring, then the radical
formula holds for every R-module with DCC on cyclic submodules. In (iii) of the
theorem given below, we will generalise this result and prove that every module with
DCC on cyclic submodules over any arbitrary ring s.t.r.f.

LEMMA 2.2. Let n be a non-negative integer.
(i) If for every maximal ideal P of R, RP s.t.r.f. of degree n, then R s.t.r.f. of

degree n.

(ii) Let R be a Noetherian ring. The radical formula holds for R if and only if the
radical formula holds for RP, for every maximal ideal P of R.

Proof. Let B be a proper submodule of an R-module M.

(i) The proof follows from the following inclusions, which can be shown easily:

〈En(BP)〉 = (〈En(B)〉)P ⊆ (rad(B))P ⊆ rad(BP).
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(ii) By [11, Corollary 2.3], (rad(B))P = rad(BP). Consequently,

UE(BP) = (UE(B))P ⊆ (rad(B))P = rad(BP). �
THEOREM 2.3. Let R be a ring.
(i) If R is a local archimedean arithmetical ring, then R s.t.r.f.

(ii) If R is a local arithmetical ring with ACC on principal ideals, then R s.t.r.f.
(iii) Every module with DCC on cyclic submodules s.t.r.f.
(iv) If R is a ring with DCC on principal ideals (R is perfect), then R s.t.r.f.

Proof. (i) Suppose that M is an R-module and m the maximal ideal of R. Similar to
the proof of Theorem 2.1, it suffices to show that 〈E(0)〉 = rad(0). Consider x ∈ rad(0).
We will prove that x ∈ E(0).

Since m is a maximal ideal of R, mM is a prime submodule of M or mM = M.

Thus x ∈ mM. Then x = ∑l
i=1 riai such that for each i, 1 ≤ i ≤ l, ri ∈ m and ai ∈ M.

Every two ideals of R are comparable; then {Rri, i = 1, 2, 3, . . . , l} is a chain of ideals
of R. Without loss of generality we may suppose that Rr1 is the maximal element of
this chain. So x = r1x1, for some x1 ∈ M. We show that 0 ∈ S = {rn

1x1| n ∈ �}.
Suppose that 0 �∈ S. Now we define the set T as follows:

T = {K| K is a submodule of M, K ∩ S = ∅}.

Since 0 ∈ T, T �= ∅. By Zorn’s Lemma, T has a maximal element. Let N be a
maximal element of T. We show that N is a prime submodule of M. Suppose ay ∈ N,

where a ∈ R and y ∈ M \ N. We have one of the following two cases:
Case 1. Ra ⊆ Rrn

1, for every n ∈ �.

Case 2. Ra �⊆ Rrd
1, for some d ∈ �.

If Case 1 holds, then a ∈ Ra ⊆ ∩n∈�Rrn
1 = 0 ⊆ (N : M); so we have the proof.

If Case 2 is satisfied, since every two ideals of R are comparable, we have, Rrd
1 ⊆

Ra. Let rd
1 = ba, where b ∈ R. Note that y �∈ N; then since N is a maximal element

of T, we have (N + Ry) ∩ S �= ∅. Consider rt
1x1 ∈ (N + Ry) ∩ S, where t ∈ �. Then

rt
1x1 = n′ + cy, where n′ ∈ N and c ∈ R. Now rd+t

1 x1 = rt
1bax1 = ban′ + cbay ∈ N, that

is N ∩ S �= ∅, which is a contradiction. Therefore N is a prime submodule of M,
and since N ∈ T, we have N ∩ S = ∅, which is a contradiction with the fact that
r1x1 = x ∈ S ∩ rad(0) ⊆ S ∩ N.

Consequently 0 ∈ S; that is for some n0 ∈ �, rn0
1 x1 = 0. Thus x = r1x1 ∈ E(0).

(ii) We will show that R is a Noetherian ring.
Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be a chain of ideals of R. For each j ≥ 2, consider xj ∈

Ij \ Ij−1. Every two ideals of R are comparable, and if Rxj+1 ⊆ Rxj, xj+1 ∈ Ij, which is
impossible, so Rxj ⊂ Rxj+1. Since the chain Rx2 ⊂ Rx3 ⊂ Rx4 ⊂ . . . stops, the chain
I1 ⊂ I2 ⊂ I3 ⊂ . . . must stop.

Now by the Krull intersection theorem, ∩n∈�Rrn = 0, for each non-unit r ∈ R.

Hence by part (i), R s.t.r.f.
(iii) Suppose that M is an R-module with DCC on cyclic submodules and B is

an arbitrary submodule of M. Then every localisation of M also has DCC on cyclic
submodules, by [5, Lemma 2.6(ii)]. So the localisation technique helps us to consider R
to be a local ring and M an R-module with DCC on cyclic submodules. We will show
that 〈E(B)〉 is a prime submodule of M or 〈E(B)〉 = M.

Let m be the maximal ideal of R, and consider r ∈ m and x ∈ M. Since the chain
. . . ⊆ Rr3x ⊆ Rr2x ⊆ Rrx stops, for some n0 ∈ �, we have Rrn0+1x = Rrn0 x. Hence
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for some t ∈ R, rn0 (1 − rt)x = 0. Note that 1 − rt is a unit element of R, so rn0 x = 0,

which implies that rx ∈ 〈E(B)〉. Therefore mM ⊆ 〈E(B)〉, that is m ⊆ (〈E(B)〉 : M). So
if 〈E(B)〉 �= M, then m = (〈E(B)〉 : M), and consequently 〈E(B)〉 is a prime submodule
of M. Thus rad(B) ⊆ 〈E(B)〉 ⊆ rad(B).

(iv) First consider R as an R-module. According to the proof of part (iii), for each
maximal ideal m of R, r ∈ m and x ∈ Rm \ mm, there exists n0 ∈ �, with rn0 x = 0. So
rn0 = 0.

Now let M be an arbitrary R-module. Use the localisation, and suppose that m
is the maximal ideal of R. Consider r ∈ m and x ∈ M. For some n0 ∈ �, rn0 = 0, so
rn0 x = 0. Now follow the proof of part (iii). �

In the main theorem of [11], the author proved that if R is a Noetherian domain
of Krull dimension one, then R s.t.r.f. if and only if R is a Dedekind domain. We will
generalise this result in Theorem 2.5 and Corollary 2.6.

LEMMA 2.4. Let R be a local domain of Krull dimension one, and let m be its
maximal ideal. Consider M = R ⊕ R as an R-module. If there exists (x, y) ∈ M such
that x ∈ m \ Ry and y ∈ m \ Rx, then

(i) rad(R(x, y)) = {(r1, r2) ∈ R ⊕ R : r1y = r2x};
(ii) UE(R(x, y)) ⊆ (m2 + Rx) ⊕ (m2 + Ry).

Proof. (i) See [11, Proposition 3.1].
(ii) It is sufficient to show that 〈En(R(x, y))〉 ⊆ (m2 + Rx) ⊕ (m2 + Ry), for each

non-negative integer n. We will prove the result by induction on n.

If n = 0, then obviously 〈E0(R(x, y))〉 = R(x, y) ⊆ (m2 + Rx) ⊕ (m2 + Ry).
Now let z ∈ En(R(x, y)), and assume the validity of the result for n − 1. There exist

r ∈ R, (c, d) ∈ M and n0 ∈ � such that z = r(c, d) and rn0 (c, d) ∈ 〈En−1(R(x, y))〉. So
by the induction hypothesis, we have rn0 (c, d) ∈ (m2 + Rx) ⊕ (m2 + Ry).

Note that m ⊆
√

((m2 + Rx) ⊕ (m2 + Ry) : M), and m is a maximal ideal of R.

Then (m2 + Rx) ⊕ (m2 + Ry) is an m-primary submodule of M. Therefore rn0 (c, d) ∈
(m2 + Rx) ⊕ (m2 + Ry) implies that (c, d) ∈ (m2 + Rx) ⊕ (m2 + Ry) or r ∈ m. If
(c, d) ∈ (m2 + Rx) ⊕ (m2 + Ry), then obviously z = r(c, d) ∈ (m2 + Rx) ⊕ (m2 + Ry).

Now consider the case r ∈ m. By part (i), z = (rc, rd) ∈ En(R(x, y)) ⊆
rad(R(x, y)) = {(r1, r2) ∈ R ⊕ R : r1y = r2x}. So rcy = rdx. If r = 0, then evidently z =
0 ∈ (m2 + Rx) ⊕ (m2 + Ry), otherwise cy = dx. Since x ∈ m \ Ry, and y ∈ m \ Rx, we
have c, d ∈ m. Thus in this case z = r(c, d) ∈ m2 ⊕ m2 ⊆ (m2 + Rx) ⊕ (m2 + Ry). �

It is easy to see that if the radical formula holds for a ring R, then for each ideal I
of R, the radical formula holds for the ring R

I .

In [11, Theorem 3.3], S. H. Man proves the following result: Let R be a Noetherian
domain of dimension one. Suppose that for any submodule B of any R-module M,

< E1(B) >= rad(B); then R is a Dedekind domain.
The following theorem is a generalisation of [11, Theorem 3.3]. One implication of

the following theorem is as follows: Let R be a Noetherian domain of dimension one.
Suppose that for any submodule B of any R-module M, there exists a non-negative
integer nB (related to B) such that < EnB (B) >= rad(B); then even in this case R is a
Dedekind domain.

THEOREM 2.5. Let R be a Noetherian domain of dimension one. Then the following
are equivalent:

(i) the radical formula holds for R;
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(ii) The radical formula holds for the R-module R ⊕ R;
(iii) R is a Dedekind domain.

Proof. (ii) =⇒ (iii) We will show that for every maximal ideal P of R, RP is a
discrete valuation ring. By Lemma 2.2(ii) the radical formula holds for the RP-module
RP ⊕ RP. Hence by localisation we may suppose that R is a Noetherian local domain
of dimension one, that m is its maximal ideal and that the radical formula holds for
the R-module R ⊕ R.

If m = m2, then by Nakayama’s lemma, m = 0. That is R is a field. So let m �= m2.

Choose x ∈ m \ m2. We will show that m = Rx. Once it is shown that m = Rx + m2,

then by Nakayama’s lemma m = Rx.

Suppose that r is an arbitrary element of m. If r ∈ Rx, then r ∈ Rx + m2. Now
assume that r �∈ Rx. Note that x �∈ m2; then 0 �= Rx. As dim R = 1, the only prime
ideal of R containing Rx is m. So

√
Rx = m. Then r ∈ √

Rx. Let n be the smallest
positive integer such that rn ∈ Rx. Note that r �∈ Rx, thus n ≥ 2. So if we put y = rn−1,

y �∈ Rx. Also x �∈ Ry; otherwise x = ty, for some t ∈ R. Since y �∈ Rx, t is not a unit
element of R; then t ∈ m. Now x = ty ∈ m2, which is a contradiction. We have rn ∈ Rx;
then there exists r′ ∈ R with ry = rn = r′x.

Put T = {(r1, r2) ∈ R ⊕ R : r1y = r2x}. Note that ry = r′x, so according to
Lemma 2.4, we have

(r, r′) ∈ T = rad(R(x, y)) = UE(R(x, y)) ⊆ (m2 + Rx) ⊕ (m2 + Ry).

Therefore, r ∈ m2 + Rx, that is m ⊆ m2 + Rx. So m = m2 + Rx.

(iii) =⇒ (i) One may follow the assertion from Theorem 2.3(ii). �
COROLLARY 2.6. Let R be a Noetherian domain of dimension one and n ∈ �. The

following are equivalent:
(i) R s.t.r.f. of degree n;

(ii) The R-module R ⊕ R s.t.r.f. of degree n;
(iii) R is a Dedekind domain.

Proof. (ii) =⇒ (iii) Let B be a submodule of the R-module R ⊕ R. Then rad(B) =<

En(B) >⊆ ⋃
m∈�〈Em(B)〉 = UE(B) ⊆ rad(B), and so UE(B) = rad(B). Thus the

radical formula holds for R ⊕ R. �
Recall that we say a module M (resp. weakly) s.t.r.f. of degree zero if (resp. B =

wrad(B)) B = rad(B), for any submodule B of M. In the rest of this section, we will
discuss the modules and rings which (resp. weakly) satisfy the radical formula of degree
zero (the case n = 0 of Corollary 2.6).

LEMMA 2.7. Let M be an R-module, W a weakly prime submodule of M and
x, y ∈ M. If rx ∈ W, where r ∈ R, then W = (W + Rx) ∩ (W + Rry).

Proof. See [6, Corollary 2.4(i)]. �
PROPOSITION 2.8. Let M be an R-module. Consider the following statements:
(i) M s.t.r.f. of degree zero;

(ii) M weakly s.t.r.f. of degree zero;
(iii) For any maximal ideal M of R, (MM)M = 0;
(iv) For every non-weakly prime submodule B of M, B = rad(B);
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(v) For any maximal ideal M of R, there exists s ∈ R \ M with sMM = 0.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii), (i) =⇒ (iv) and (v) =⇒ (iii), and if M is a
Noetherian module, all of the above statements are equivalent.

Proof. (i) =⇒ (ii) The proof is evident.
(ii) =⇒ (iii) Consider r ∈ M and x ∈ M. Note that r2x ∈ Rr2x; then rx ∈

E(Rr2x) ⊆ wrad(Rr2x) = Rr2x. Consequently, there exists t ∈ R with r(1 − tr)x = 0.

Now since in the module MM, r
1 ( 1−tr

1 ) x
1 = 0 and 1−tr

1 is a unit element of RM, rx
1 = 0.

Hence (MM)M = 0.

(iii) =⇒ (i) Let B be an arbitrary submodule of M and M a maximal ideal
of R. Since MMMM = 0, MMMM ⊆ BM, which implies that (BM : MM) = MM or
(BM : MM) = RM. Hence BM is a prime submodule of MM or BM = MM, and in both
cases BM = rad(BM). Now BM ⊆ (rad(B))M ⊆ rad(BM) = BM, i.e. BM = (rad(B))M.

Therefore B = rad(B).
(i) =⇒ (iv) The proof is evident.
(v) =⇒ (iii) The proof is obvious.
Now suppose M is a Noetherian module.
(iv) =⇒ (i) Consider the following set:

T = {B| B is a submodule of M, and B �= rad(B)}.

If T �= ∅, then let W be a maximal element of T. By our hypothesis W is a weakly
prime submodule of M. We will show that W is a prime submodule of M, and it is a
contradiction with the fact that W ∈ T.

Let ra ∈ W, where r ∈ R, and a ∈ M \ W. If r �∈ (W : M); then there exists y ∈ M
such that ry /∈ W. By Lemma 2.7, W = (W + Ra) ∩ (W + Rry). As W is a maximal
element of T, each of the submodules W + Ra and W + Rry is an intersection of
prime submodules. Hence W must be an intersection of prime submodules, which is a
contradiction.

(iii) =⇒ (v) Let MM be generated by y1, y2, y3, . . . , yk. For each i, there exists
si ∈ R \ M such that siyi = 0. Evidently, sMM = 0, where s = ∏k

i=1 si. �

Recall that a ring R is said to be an absolutely flat (or a von Neumann regular) ring
if every R-module is a flat module (see [1, p. 35, Exercise 27]). According to [1, p. 44,
Exercise 10], R is absolutely flat if and only if for each maximal ideal m of R, Rm is a
field.

COROLLARY 2.9. Let R be a ring. The following are equivalent:
(i) R s.t.r.f. of degree zero;

(ii) R weakly s.t.r.f. of degree zero;
(iii) The R-module R ⊕ R s.t.r.f. of degree zero;
(iv) The R-module R ⊕ R weakly s.t.r.f. of degree zero;
(v) R is an absolutely flat ring.

Proof. (i) ⇐⇒ (ii) and (iii) ⇐⇒ (iv) The proof is obvious, by Proposition 2.8.
(i) =⇒ (iii) The proof is evident.
(iii) =⇒ (v) Put M = R ⊕ R. Let M be a maximal ideal of R. According to

Proposition 2.8, MM(RM ⊕ RM) = (MM)M = 0; then MM = 0; that is RM is a
field. So R is an absolutely flat ring.
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(v) =⇒ (i) Let M be an R-module. Since R is an absolutely flat ring, RM is a filed
for every maximal ideal M of R. So MM = 0, and then (MM)M = 0. Now the proof
follows from Proposition 2.8. �

COROLLARY 2.10. An integral domain R weakly s.t.r.f. of degree zero if and only if
R is a field.

Proof. Note that any absolutely flat domain is a field (see [1, p. 34, Exer-
cise 27]). �
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