FINITE-TO-ONE OPEN MAPPINGS

EDWIN DUDA AND W. HUGH HAYNSWORTH

1. Introduction. The class of finite-to-one open mappings on manifolds contains some important subclasses. Any non-constant analytic function from a bounded region in its domain of definition is finite-to-one. Church [2] showed that any light strongly open $C^{n} \operatorname{map} f: R^{n} \rightarrow R^{n}$ is discrete. A number of papers concerning discrete open mappings on manifolds have been published; see [1-6; 8-9; 11-14].

A result of Černavskiǐ [1] (see also [13]) shows that for any discrete strongly open mapping $f: M^{n} \rightarrow N^{n}$ of an n-manifold into an n-manifold, the branch set of f has dimension less than $n-1$. If f is also a closed map, then $N(f)$ is finite and the set of points x for which $N(x, f)=N(f)$ is an open dense connected subset of M^{n}. In the following, if M^{n} and N^{n} are n-manifolds without boundary, if R is a region in M^{n} such that $\partial R=\partial(\bar{R})$, and if $f: \bar{R} \rightarrow N^{n}$ is a discrete open and closed mapping such that $f(R)$ is open in N^{n}, we prove that the set of points x in \bar{R}, for which $N(x, f)=N(f)$, contains a dense open subset of ∂R.

All references to cohomology theory may be found in [10]. The shift of dimension and use of reduced cohomology should be noted [10, p. 64], i.e., for a pair of spaces $(X, A), A$ closed in X, the $(p+1)$ st cohomology group $H^{p+1}(X, A)$ corresponds to the group $H^{p}(X, A)$ in other developments.

The definition and necessary properties of the topological index of a point y with respect to a mapping f and a domain $D, \mu(y, f, D)$, and of the local degree of a point x with respect to a mapping $f, i(x, f)$, appear in [13]. For a detailed development of the topological index, see [10].
2. Notation and terminology. All topological spaces considered are assumed to be Hausdorff and all mappings on topological spaces are assumed to be continuous. For a space X and subsets A and B with $A \subset B \subset X$, we denote the boundary of A relative to B by $\partial_{B} A$ and simplify $\partial_{X} A$ to ∂A. Denote the complement of A with respect to B by $C_{B} A$ and simplify $C_{X} A$ to $C A$. A mapping $f: X \rightarrow Y$ is discrete (light) if each point inverse is discrete (totally disconnected) in the relative topology. The $\operatorname{map} f$ is open if the image of each open set of X is open in $f(X)$ and is strongly open if the image of each open set is open in Y. The branch set of f, B_{f}, is the set of points at which f fails to be a local homeomorphism. The multiplicity of f at $x, N(x, f)$, is the number of points in $f^{-1} f(x)$ if it is finite, and $+\infty$ otherwise. The multiplicity

[^0]of f on $X, N(f)$, is the supremum of $N(x, f), x \in X$. Let R^{n} represent a Euclidean n-space.
3. Preliminary results. For a finite-to-one open mapping f and a positive integer i, let $K_{i}(f)$ be the union of all points x in X for which $N(x, f) \leqq i$. For open mappings, $N(, f)$ is lower semi-continuous, so that $K_{i}(f)$ is closed for each positive integer.
3.1. Lemma. Let $f: X \rightarrow Y$ be a discrete open mapping, where X and Y are locally compact spaces and F is a locally compact subset of X. Then for any open set U in X for which $U \cap F \neq \emptyset$, there exists an open subset V of X such that $V \subset U, F \cap V \neq \emptyset$, and $f \mid F \cap V$ is a homeomorphism of $F \cap V$ onto $f(F \cap V)$. Furthermore, $F \cap V$ is an inverse set of $f \mid V$.

Proof. We can assume that \bar{U} is compact so that $f \mid \bar{U}$ is finite-to-one and hence $f \mid U$ is finite-to-one. Write

$$
U \cap F=\bigcup_{i=1}^{\infty} K_{i}(f \mid U) \cap F
$$

and apply Baire's theorem to obtain an integer n for which the interior, T^{\prime}, of $K_{n}(f \mid U) \cap F$ relative to $U \cap F$ is not empty. Choose an open subset W^{\prime} of U such that $W^{\prime} \cap F=T^{\prime}$. Choose $x_{1} \in T^{\prime}$ such that

$$
N\left(x_{1}, f \mid W^{\prime}\right)=\max _{x \in T^{\prime}} N\left(x, f \mid W^{\prime}\right) .
$$

Then $N\left(x_{1}, f \mid W^{\prime}\right) \leqq n$; thus suppose that $N\left(x_{1}, f \mid W^{\prime}\right)=k$ and that $\left(f \mid W^{\prime}\right)^{-1}\left(f \mid W^{\prime}\right)\left(x_{1}\right)=\left\{x_{1}, \ldots, x_{k}\right\}$. Choose pairwise disjoint open sets M_{j} of the x_{j} with $M_{j} \subseteq W^{\prime}, j=1, \ldots, k$. For
$V=M_{1} \cap\left(f \mid W^{\prime}\right)^{-1}\left(f\left(M_{1}\right) \cap f\left(M_{2}\right) \cap \ldots \cap f\left(M_{k}\right)\right) \quad$ and $\quad T=V \cap F$, it follows that $N(x, f \mid V)=1$ for all $x \in T$ and $f \mid T$ is a homeomorphism.
3.2. Lemma. Let $f:\left(A, A_{0}\right) \rightarrow\left(B, B_{0}\right)$ be a mapping of compact pairs such that $f\left(C A_{0}\right) \subset C B_{0}, f\left(\partial A_{0}\right) \subset \partial B_{0}$, and

$$
\left(f \mid \overline{C A_{0}}\right)^{p}: H^{p}\left(\overline{C B_{0}}, \partial B_{0}\right) \rightarrow H^{p}\left(\overline{C A_{0}}, \partial A_{0}\right)
$$

is an isomorphism. Then for $\partial A_{0} \neq \emptyset$ or $p \neq 1, f^{p}: H^{p}\left(B, B_{0}\right) \rightarrow H^{p}\left(A, A_{0}\right)$ is an isomorphism and if $\left(f \mid \overline{C A_{0}}\right)^{p}$ is onto, then so is f^{p}.

Proof. Consider the following diagram, where $i_{1}{ }^{p}$ and $i_{2}{ }^{p}$ are induced by inclusion.

$$
\begin{gathered}
H^{p}\left(B, B_{0}\right) \xrightarrow{i_{2}^{p}} \\
\begin{array}{lll}
f^{p} & H^{p}\left(\overline{C B_{0}}, \partial B_{0}\right) \\
H^{p}\left(A, A_{0}\right) & \xrightarrow{i_{1}^{p}} & H^{p}\left(\overline{C A_{0}}, \partial A_{0}\right)
\end{array} \\
\\
\end{gathered}
$$

For $p \neq 1$ or $\partial A_{0} \neq \emptyset$, by strong excision [10, p. 86], $i_{1}{ }^{p}$ and $i_{2}{ }^{p}$ are onto isomorphisms and the diagram is commutative so that f^{p} is an isomorphism and if $\left(f \mid \overline{C A_{0}}\right)^{p}$ is onto, then so is f^{p}.
3.3. Lemma. Let $f:\left(A, A_{0}\right) \rightarrow\left(B, B_{0}\right)$ be an onto mapping of compact pairs with $f\left(A_{0}\right)=B_{0}$. If for every $x \in \overline{C A_{0}}, N(x, f)=1$, then if $\partial A_{0} \neq \emptyset$ or $p \neq 1$, $f^{p}: H^{p}\left(B, B_{0}\right) \rightarrow H^{p}\left(A, A_{0}\right)$ is an onto isomorphism.
Proof. By hypothesis, $f\left(C A_{0}\right)=C B_{0}$ and $f \mid \overline{C A_{0}}$ is a homeomorphism of $\overline{C A_{0}}$ onto $\overline{C B_{0}}$ so that $f\left(\partial A_{0}\right)=\partial B_{0}$. Thus the mapping

$$
\left(f \mid \overline{C A_{0}}\right):\left(\overline{C A_{0}}, \partial A_{0}\right) \rightarrow\left(\overline{C B_{0}}, \partial B_{0}\right)
$$

induces a homomorphism $\left(f \mid \overline{C A_{0}}\right)^{p}: H^{p}\left(\overline{C B_{0}}, \partial B_{0}\right) \rightarrow H^{p}\left(\overline{C A}, \partial A_{0}\right)$ which is an onto isomorphism. Thus, by $3.2, f^{p}$ is an onto isomorphism.
3.4. Theorem. Let U and V be bounded domains in R^{n} such that $\partial U=\partial(\bar{U})$, and let $f: \bar{U} \rightarrow \bar{V}$ be a mapping with $f(\partial U)=\partial V$ and $f(U)=V$. Let A be a proper closed subset of ∂U such that $\overline{C_{\partial U} A}$ is an inverse set of f and $N(x, f)=1$ for each x in $\overline{C_{\partial U} A}$. Then

$$
f^{n+1}: H^{n+1}(\bar{V}, \partial V) \rightarrow H^{n+1}(\bar{U}, \partial U)
$$

is an onto isomorphism.
Proof. For $n>1$, the mapping $f \mid \partial U:(\partial U, A) \rightarrow(\partial V, f(A))$ satisfies the hypothesis of 3.3 and for $n=1, A$ is either empty or a single point. Hence, $(f \mid \partial U)^{n}: H^{n}(\partial V, f(A)) \rightarrow H^{n}(\partial U, A)$ is an onto isomorphism. Consider the following diagram:

where the top row is obtained from the exact sequence of the triple ($\bar{U}, \partial U, A$) and the bottom row is obtained from the exact sequence of the triple ($\bar{V}, \partial V$, $f(A)$). Since $\bar{U}-A$ is non-empty, connected, and not open in R^{n}, it follows that $H^{n+1}(\bar{U}, A)=0$, and consequently δ_{1} is onto by exactness in the top row. Thus $\delta_{1}(f \mid \partial U)^{n}$ is onto so that f^{n+1} is necessarily onto. Since both $H^{n+1}(\bar{U}, \partial U)$ and $H^{n+1}(\bar{V}, \partial V)$ are isomorphic to the additive group of integers, it follows that f^{n+1} is an onto isomorphism.
3.5. Theorem. Let U be an open subset of R^{n}, with \bar{U} compact, $\partial U=\partial(\bar{U})$, and A a closed non-empty subset of ∂U with $\overline{\text { int }_{\partial U} A}=A$. Then there is no mapping $f: \bar{U} \rightarrow R^{n}$ such that
(i) f is discrete,
(ii) $f \mid U$ is strongly open,
(iii) $N(x, f)=1$ for all $x \in A$, and
(iv) $\left(\mathrm{int}_{\partial U} A\right) \cap B_{f} \neq \emptyset$.

Proof. Suppose that there exists a mapping f with properties (i)-(iv). The mapping $f \mid\left(\bar{U}-f^{-1} f(\partial U)\right)$ is an open and closed mapping so that components of $\bar{U}-f^{-1} f(\partial U)$ map onto components of $f(U)-(f(U) \cap f(\partial U))$. Let T be a component of $R^{n}-f^{-1} f(\overline{\partial U-A})$ which contains points of $A \cap B_{f}$. Such a T exists since $[A-(\overline{\partial U-A})] \cap B_{f} \neq \emptyset$ and $N(x, f)=1$ for all x in A. The set T is open and $T \cap \partial U \neq \emptyset$ so that $T \cap U \neq \emptyset$. It follows that components of $\bar{U}-f^{-1} f(\partial U)$ which meet T are necessarily in $T \cap U$.

If the mapping $f \mid T \cap U$ is one-to-one, then $f \mid T \cap \bar{U}$ is one-to-one since $T \cap \partial U \subset A$ and, furthermore, $f \mid T \cap \bar{U}$ is also a strongly open mapping into $f(\bar{U})$. This implies that $B_{f} \cap(T \cap \bar{U})=\emptyset$ which is contrary to the choice of T. Hence $N(f \mid T \cap U)>1$.

Assuming that f is one-to-one on each component of $T \cap U$ implies that there are at least two components K_{1} and K_{2} of $T \cap U$ with $f\left(K_{1}\right) \cap f\left(K_{2}\right) \neq \emptyset$. Since K_{1} and K_{2} are also components of $\bar{U}-f^{-1} f(\partial U)$, it follows that $f\left(K_{1}\right)=f\left(K_{2}\right)$. For $i=1,2, \partial_{T} K_{i} \subset f^{-1} f(\partial U) \cap T \subset A$ and since $f\left(\bar{K}_{1}\right)=f\left(\bar{K}_{2}\right)$ and $N(x, f)=1$ for $x \in A, \partial_{T} K_{1}=\partial_{T} K_{2}$. The mapping $g=\left(f \mid K_{2} \cup \partial_{T} K_{2}\right)^{-1}\left(f \mid K_{1} \cup \partial_{T} K_{1}\right)$ is one-to-one from $K_{1} \cup \partial_{T} K_{1}$ onto $K_{2} \cup \partial_{T} K_{2}$. Being the composition of homeomorphisms, g is a homeomorphism which is the identity function on $\partial_{T} K_{1}$. By [13,5.2], $K_{1} \cup K_{2} \cup \partial_{T} K_{1}=T$; hence we have T, open in R^{n}, such that $T \subset \bar{U}$ and $T \cap \partial U \neq \emptyset$, which is contradictory.

It now follows that there must be a component K of $T \cap U$ with $N(f \mid K)>1$ and, as before, $\emptyset \neq \partial K \cap T \subset A$. The set K is a component of $\bar{U}-f^{-1} f(\partial U)$; thus $\partial K \subset f^{-1} f(\partial U)$, and hence $f(K) \cap f(\partial K)=\emptyset$. Furthermore, $f(K)$ is open and $f(K) \cup f(\partial K)=f(\bar{K})=f(K) \cup \partial f(K)$ so that $f(\partial K)=\partial f(K)$. Applying 3.4, one obtains $|\mu(y, f, K)|=1$, for every $y \in f(K)$. By [13, 5.4], $\operatorname{dim} B_{f \mid K} \leqq n-2$; therefore $K-B_{f \mid K}$ is open and connected and thus $i(x, f)$ is constant on $K-B_{f \mid K}$. However,

$$
|\mu(y, f, K)|=\left|\sum_{x \in f^{-1}(y) \cap K} i(x, f)\right| \quad \text { for every } y \in\left[f(K)-f\left(B_{f \mid K}\right)\right]
$$

We then have $N(x, f \mid K)=1$ for every $x \in\left[K-f^{-1} f\left(B_{f \mid K}\right)\right]$ and

$$
\operatorname{dim} f^{-1} f\left(B_{f \mid K}\right) \leqq n-2,
$$

and so f is one-to-one on an open dense set in K. Since $f \mid K$ is open, it follows that f is one-to-one on K. This is contrary to the choice of K so that the theorem is valid.
4. Main theorems. In this section we will use the following.

Definition. Let X and Y be n-manifolds without boundary, A a subset of X,
and let f be a map $f: A \rightarrow Y$. If D is open in X with $D \subseteq A$, then let $\gamma_{D, F}=$ $\left\{x \in D \mid f(x) \notin \operatorname{int}_{Y} f(D)\right\}$.
4.1. Theorem. Let X and Y be n-manifolds without boundary, D a domain in X such that $\partial D=\partial(\bar{D})$, and let $f: \bar{D} \rightarrow Y$ be a discrete open mapping. Then $C B_{f} \cap \partial D$ is a dense open subset of the closure of $\partial D-\left(\bar{\gamma}_{D, F} \cap \partial D\right)$.

Proof. Clearly, from Brouwer's Theorem on Invariance of Domain [7, pp. 95-97], $\gamma_{D, f} \subseteq B_{f}$, and hence $\bar{\gamma}_{D, f} \subseteq B_{f}$, since B_{f} is closed; thus $C B_{f} \cap \partial D \subseteq \partial D-\left(\bar{\gamma}_{D, f} \cap \partial D\right)$. If the theorem is false, then there is an open set $U \subseteq X$ such that $\emptyset \neq U \cap \partial D \subseteq \partial D-\left(\bar{\gamma}_{D, f} \cap \partial D\right)$ and $U \cap \partial D \subseteq B_{f}$. Further, we can assume that $U \cap \bar{\gamma}_{D, f}=\emptyset$. Applying 3.1, we can pick an open connected conditionally compact set $V \subseteq U$ such that $V \cap \partial D \neq \emptyset$ and for each $x \in \overline{V \cap \partial D}, N(x, f \mid \overline{V \cap D})=1$. Further, V may be chosen arbitrarily small, so that \bar{V} and $f(\overline{V \cap D})$ lie in domains in X and Y, respectively, which are homeomorphic to R^{n}. Then $f \mid \bar{V} \cap D$ may be considered to be a mapping from $\overline{V \cap D}$ into R^{n}, with $\overline{V \cap D} \subseteq R^{n}$.

Let $A=\overline{V \cap \partial D}$. Then A is a closed subset of $\partial(\overline{V \cap D})$ and $\operatorname{int}_{\partial(\overline{V \cap D})} A=$ $V \cap \partial D$ is dense in A. Further:
(i) $f \mid \overline{V \cap D}$ is discrete,
(ii) $f \mid \operatorname{int}(\overline{V \cap D})$ is a strongly open map since $\operatorname{int}(\overline{V \cap D}) \subseteq D-\gamma_{D, f}$,
(iii) $N(x, f \mid \overline{V \cap D})=1$, for every $x \in A$, and
(iv) $B_{f \mid \bar{V} \cap D} \supseteq A$.

But by 3.5 , no such mapping can exist. Hence, the theorem follows.
As an immediate consequence of 4.1, we have the following.
4.2. Corollary. Given $f: \bar{D} \rightarrow Y$ as above, if $f(D)$ is open in Y, then $C B_{f} \cap \partial D$ is a dense open set in ∂D.

Given the hypothesis of 4.1 , if \bar{D} and $f(\bar{D})$ are n-manifolds with boundary, then it follows that $\partial D-\left(\bar{\gamma}_{D, f} \cap \partial D\right)$ is dense in ∂D. Hence, $C B_{f} \cap \partial D$ is dense in ∂D and $\operatorname{dim} B_{f} \cap \partial D \leqq n-2$.
4.3. Theorem. Let X and Y be n-manifolds without boundary, D a domain in X such that $\partial D=\partial(\bar{D})$, and $f: \bar{D} \rightarrow Y$ an open, closed, discrete mapping such that $f(D)$ is open in Y. Then $\partial D-\left(f^{-1} f\left(B_{f}\right) \cap \partial D\right)$ is a dense open set in ∂D.

Proof. By 4.2, $C B_{f} \cap \partial D$ is dense in ∂D. Hence, $f(\partial D) \subseteq \partial f(D)$, and so $f^{-1} f\left(B_{f}\right) \cap \partial D=f^{-1} f\left(\partial D \cap B_{f}\right)$. Also, D is an inverse set of f; hence by $[\mathbf{1 3}, 5.5], N(f \mid D)<\infty$ and since f is open, $N(f)=N(f \mid D)$.

Assume that there is an open set W in \bar{D} such that $\emptyset \neq(W \cap \partial D) \subseteq f^{-1} f\left(B_{f}\right)$. Then there is a point $x_{1} \in W \cap \partial D$ such that

$$
N\left(x_{1}, f\right)=\max _{x \in W \cap \partial D} N(x, f)=k<\infty \quad \text { and } \quad f^{-1} f\left(x_{1}\right)=\left\{x_{1}, \ldots, x_{k}\right\}
$$

Now there are pairwise disjoint open neighbourhoods, W_{i}, of the $x_{i}, i=$ $1, \ldots, k$, with $f\left(W_{1}\right)=\ldots=f\left(W_{k}\right)$ and $\bar{W}_{1} \subseteq W$. For some $j, 1 \leqq j \leqq k$, $x_{j} \in B_{f} \cap\left(\partial D \cap W_{j}\right)$. But we can choose \bar{W}_{j} small enough that \bar{W}_{j} and
$f\left(\bar{W}_{j}\right)$ are contained in domains of X and Y, respectively, which are homeomorphic to R^{n} and $f \mid \bar{W}_{j}$ induces a map with the properties in 3.5 , which is a contradiction.
4.4 Maximum multiplicity theorem. Let X and Y be n-manifolds without boundary, D a domain in X such that $\partial D=\partial(\bar{D})$, and $f: \bar{D} \rightarrow Y$ an open, closed, discrete mapping such that $f(D)$ is open in Y. Then $N(f)=N(f \mid \partial D)$ and $N(x, f \mid \partial D)=N(f \mid \partial D)$ for every $x \in \partial D \cap\left(\bar{D}-f^{-1} f\left(B_{f}\right)\right)$, which is a dense open set of ∂D.

Proof. As in the proof of 4.3, $f(\partial D) \cap f(D)=\emptyset$, and so $f \mid D$ is closed. By $[13,5.5], N(x, f \mid D)=N(f \mid D)<\infty$ for all $x \in D-\left(f^{-1} f\left(B_{f}\right) \cap D\right)$ and $\operatorname{dim}\left(f^{-1} f\left(B_{f}\right) \cap D\right) \leqq n-2$. Hence, $D-\left(f^{-1} f\left(B_{f}\right) \cap D\right)$ is connected; hence $\bar{D}-f^{-1} f\left(B_{f}\right)$ is connected. Since f is closed, $N(, f)$ is upper semicontinuous on $\bar{D}-f^{-1} f\left(B_{f}\right)$. But $N(, f)$ is lower semi-continuous on \bar{D}, since f is open, and hence $N(, f)$ is constant on $\bar{D}-f^{-1} f\left(B_{f}\right)$ and $N(f)=$ $N(x, f)$, for every $x \in \bar{D}-f^{-1} f\left(B_{f}\right)$. By 4.3, $\partial D \cap\left(\bar{D}-f^{-1} f\left(B_{f}\right)\right)$ is dense in ∂D and since $f(D) \cap f(\partial D)=\emptyset, N(f \mid \partial D) \geqq N(x, f \mid \partial D)=N(x, f)=$ $N(f) \geqq N(f \mid \partial D)$ for every $x \in \partial D \cap\left(\bar{D}-f^{-1} f\left(B_{f}\right)\right)$. Hence, the theorem follows.

As an immediate consequence of 4.4, we have the following corollary.
4.5. Corollary. Given $f: \bar{D} \rightarrow Y$ as in (4.4), if there exists a non-empty open subset, T, of ∂D such that $N(x, f)=1$ for each $x \in T$, then f is a homeomorphism.

As a final remark, it should be noted that Černavskiǐ's results and a simple construction can be used to obtain some of the results of this paper in the special case when X and Y are n-manifolds with non-empty boundary and $f:(X, \partial X) \rightarrow(Y, \partial Y)$ is a discrete open and closed mapping such that $f($ int $X) \subset$ int Y. To this end, let X^{\prime} be the n-manifold without boundary obtained by identifying two copies of X along ∂X, let Y^{\prime} be the corresponding n-manifold without boundary obtained by identifying two copies of Y along ∂Y, and let g be the natural extension of f to a discrete open and closed map of X^{\prime} into Y^{\prime}. By Černavskii's result, $\operatorname{dim}\left(B_{g} \cap \partial X\right) \leqq n-2$, so that $\operatorname{dim}\left(B_{f} \cap \partial X\right) \leqq n-2$.

References

1. A. V. Černavskiĭ, Finite-to-one open mappings on manifolds, Mat. Sb. (N.S.) 65 (107) (1964), 357-369. (Russian)
2. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87-100.
3. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J. 27 (1960), 527-536.
4. _Light open mappings on n-manifolds. II, Duke Math. J. 28 (1961), 607-623.
5. -_Light open mappings on n-manifolds. III, Duke Math. J. 30 (1963), 379-389.
6. J. Cronin and L. F. McAuley, Whyburn's conjecture for some differentiable mappings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 405-412.
7. W. Hurewicz and H. Wallman, Dimension theory, Princeton Mathematical Series, Vol. 4 (Princeton Univ. Press, Princeton, N. J., 1941).
8. L. F. McAuley, Conditions under which light open mappings are homeomorphisms, Duke Math. J. 33 (1966), 445-452.
9. -_Concerning a conjecture of Whyburn on light open mappings, Bull. Amer. Math. Soc. 71 (1965), 671-674.
10. T. Radó and P. V. Reichelderfer, Continuous transformations in analysis; With an introduction to algebraic topology; Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 75 (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955).
11. S. Stoillow, Sur les transformations continues et la topologie des fonctions analytiques, Ann. Sci. École Norm. Sup. III 45 (1928), 347-382.
12. C. J. Titus and G. S. Young, A Jacobian condition for interiority, Michigan Math. J. 1 (1952), 89-94.
13. J. Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I No. 392 (1966), 10 pp .
14. G. T. Whyburn, Topological analysis (Princeton Univ. Press, Princeton, N. J., 1958).

University of Miami,
Coral Gables, Florida;
The College of Charleston
Charleston, South Carolina

[^0]: Received February 19, 1970 and in revised form, October 13, 1970. This research was partially supported by National Science Foundation Grant No. GP-11537.

