GLIWICE RADIOCARBON DATES VI

MIECZYSŁAW F PAZDUR, ANNA PAZDUR, and ANDRZEJ ZASTAWNY

Institute of Physics, Silesian Technical University, PL-44-100 Gliwice, ul Krzywoustego 2, Poland

Results presented in this date list have been obtained from Jan 1977 to Dec 1977, but some earlier measurements are also included. All calculations are based on a contemporary value equal to 0.95 of the activity of NBS oxalic acid standard and on the Libby value for the half-life of radiocarbon. Ages are reported as conventional radiocarbon dates in years before AD 1950. No corrections for $^{13}\text{C}/^{12}\text{C}$ ratio were made for measurements reported in this list. Errors quoted ($\pm 1\sigma$) included estimated overall standard deviations of count rates of the unknown sample, contemporary standard and background (Pazdur & Walanus, 1979). Counting equipment and experimental procedures have been described earlier (Mościcki & Zastawny, 1976, 1977; Pazdur *et al*, 1978; Pazdur & Pazdur, 1979a). Sample descriptions are based on information provided by the submitters.

SAMPLE DESCRIPTIONS

I. GEOLOGIC SAMPLES

A. Lake sediments

Samples of calcareous gyttja from several profiles of lake sediments from N Poland were dated for paleomagnetic studies made jointly by Dept of Geophysics, Edinburgh Univ, UK, and Inst of Geophys, Pol Acad of Sci, Warsaw. All samples coll in 1976 with Mackereth corer (Mackereth, 1969) by J E Mojski, Piotr Tuchołka and Eric Hogg, subm 1977 by Zdzisław Małkowski, Inst of Geophys, Pol Acad of Sci, Warsaw.

Raduńskie Lake series

Core 2 from Raduńskie Górne Lake (54° 14′ N, 17° 59′ E).

Gd-442A. RADG 2/I-1-5 ORG Depth from 135 to 165cm, organic fraction.	6620 ± 180
Gd-442B. RADG 2/I-1-5 ORG Duplicate run on 2nd counter.	6600 ± 250
Gd-454. RADG 2/I-1 CARB Depth from 145 to 155cm, carbonate fraction.	7430 ± 190
Gd-446. RADG 2/II-1-5 ORG Depth from 325 to 355cm, organic fraction.	9360 ± 300
Gd-439. RADG 2/II-1 CARB Depth from 335 to 355cm, carbonate fraction.	9470 ± 270

62 Mieczysław F Pazdur, Anna Pazdur, and An	odrzei Zastarony
Gd-438. RADG 2/II-2-3 CARB Depth from 330 to 350cm, carbonate fraction.	9740 ± 300
Gd-449. RADG 2/III-1-3 ORG Depth from 440 to 460cm, organic fraction.	9940 ± 210
Gd-445. RADG 2/III-1 CARB Depth from 445 to 455cm, carbonate fraction.	9610 ± 210
Charzykowskie Lake series Calcareous gyttja sediments, Core 6, from Ch 47' N, 17° 28' E).	arzykowskie Lake (53°
Gd-451. CHAR 6/I-1-3 ORG Depth from 140 to 160cm, organic fraction.	2850 ± 170
Gd-475. CHAR 6/I-1-3 CARB Depth from 140 to 160cm, carbonate fraction.	3270 ± 160
Gd-452. CHAR 6/II-1-3 ORG Depth from 340 to 360cm, organic fraction.	4870 ± 150
Gd-476. CHAR 6/II-1 CARB Depth from 345 to 355cm, carbonate fraction.	6220 ± 120
Gd-460. CHAR 6/III-1 CARB Depth from 495 to 505cm, carbonate fraction.	7770 ± 220
Gd-458. CHAR 6/IV-1 CARB Depth from 555 to 565cm, carbonate fraction.	8670 ± 220
Mikołajskie Lake series Calcareous gyttja, Core 2, from Mikołajskie 35' E).	Lake (53° 46′ N, 21°
Gd-461. MIK 2/I-1-3 ORG Depth from 215 to 235cm, organic fraction.	1640 ± 140
Gd-471. MIK 2/I-1-3 CARB Depth from 215 to 235cm, carbonate fraction.	1850 ± 120
Gd-472. MIK 2/II-1-5 ORG Depth from 435 to 465cm, organic fraction.	3150 ± 130
Gd-464. MIK 2/II-1-3 CARB Depth from 440 to 460cm, carbonate fraction.	2740 ± 150
Gd-470. MIK 2/II-4-5 CARB	2700 ± 130

Depth from 435 to 440cm and from 460 to 465cm, carbonate fraction.

Gd-459. MIEDWIE 3/I-1-3 CARB

 2370 ± 150

Calcareous gyttja from Miedwie Lake (53° 17′ N, 14° 13′ E), Core 3, depth from 160 to 180cm, carbonate fraction.

General Comment: in all cores significant apparent age has been found. Values of apparent ages and sedimentation rates for profiles RADG2, CHAR6 and MIK2 were determined by 2-stage correction procedure described by Pazdur & Pazdur (1979c). In 1st stage, results were smoothed by least squares line, and the approx values of apparent ages and sedimentation rates were calculated. Dates obtained by subtraction of apparent age were then corrected for long-term variations of radiocarbon, according to calibration tables of Damon et al (1973) and smoothed again by least squares line. Resulting final values of sedimentation rate, apparent age and percent initial activity of radiocarbon are listed in table 1.

Table 1
Estimated values of apparent age, initial ¹⁴C activity and sedimentation rate for three dated cores

	Raduńskie Górne Lakeª	Charzykowskie Lake ^b	Mikołajskie Lake
Apparent age (y)	5140 ± 170	1315 ± 120	430 ± 100
Initial ¹⁴ C concentration	0.577	0.849	0.983
Sedimentation rate (cm/100y)	7.89 ± 1.28	6.82 ± 0.36	17.5 ± 3.5

a values based on all dates listed.

B. Other geologic samples

Gd-420. Bór na Czerwonem 1976

 6930 ± 240

Peat from base of peat bog site Bór na Czerwonem (49° 29′ N, 20° 02′ E) near Nowy Targ, depth 4.85m. Coll June 1976 by Marian Wójcikiewicz, subm by Marian Horawski, Inst Amelioration, Acad Agric, Cracow.

Varanger series

Samples coll July 1974 and subm 1976 by Alfred Jahn, Inst Geog, Wrocław Univ, Wrocław, dated for investigations of periglacial processes in Varanger peninsula (72° 40′ N, 30° 00′ E), N Norway.

Gd-490. Varanger V-1-74

 1790 ± 80

Black peat from hill of thufur type, depth ca 50cm.

Gd-492. Varanger V-5-74

 830 ± 110

Peaty fossil soil at depth from 45 to 70cm, overlain by gravels and turf.

Gd-473. Labrador L-1-75

 3230 ± 120

Peat from palsa in permafrost region near Scheffersville, Labrador, Canada (55° 00′ N, 66° 00′ W). Coll Sept 1975 and subm 1976 by Alfred Jahn.

b only dates for carbonate fraction were used in calculations.

Gd-474. Isfiordflya S-6a-74

 2150 ± 100

Peat from frozen black and brown peat layer at depth ca 70cm in hill of palsa type, of height ca 1m and 4m diam, on terrace of Isfiord, Isfiordflya, Spitsbergen (78° 10′ N, 13° 30′ E). Coll June 1974 and subm 1976 by Alfred Jahn.

II. ARCHAEOLOGIC SAMPLES

Milanówek-Falecin series

Site 1 of iron foundry settlement at Milanówek-Falecin (52° 09′ N, 20° 40′ E), on floodplain terrace of Rokitnica R. Excavations were conducted in 1974 and 1975 over ca 350m² area. 210 smelting furnaces, 2 limekilns and 1 pit dwelling were discovered. Settlement is dated to 1st century BC/3rd century AD (Woyda, 1977). Coll 1975 and subm 1976 by Stefan Woyda, Mus Ancient Metallurgy Masovien Dist, Pruszków.

Gd-447. Milanówek-Falecin Furn 41

 2400 ± 170

Charcoal from base of smelting cupola furnace No. 41, Trench I/75, below large heaps of ferrugineous slag, ca 80cm below present surface.

Gd-448. Milanówek-Falecin Pit 1

 2450 ± 180

Charcoal from layer consisting of clay and lime at base of limekiln pit No. 1, Trench I/75, ca 180cm below present surface.

Biskupice series

Site 1 of iron foundry settlement, dated to 1st century BC/4th century AD, at Biskupice near Brwinów (52° 10′ N, 20° 43′ E), on floodplain terrace of Zimna Woda R. Excavations started in 1976 in 7000m² area and resulted in discovery of 580 smelting furnaces, 3 limekilns and 10 pit dwellings (Woyda, 1977). Coll and subm 1976 by Stefan Woyda.

Gd-436. Biskupice Furn 23

 2020 ± 155

Charcoal from smelting furnace No. 23.

Gd-437. Biskupice Furn 56

 1940 ± 150

Charcoal from smelting furnace No. 56.

Dobrzeń Mały series

Charcoal from Site B of iron foundry settlement dated to period of Roman influence at Dobrzeń Mały, near Opole (50° 45′ 00″ N, 17° 52′ 45″ E), NE of prevalley of Odra R. Samples from base of furnace pits at depth ca 80cm. Coll 1975 by Antoni Pawłowski, subm 1976 by Jerzy Rozpędowski, Inst Hist Architectural Arts & Tech, Wrocław Tech Univ, Wrocław.

Gd-489. Dobrzeń Mały ob 722

 1760 ± 70

From object No. 722, ar 191/192.

Gd-488. Dobrzeń Mały ob 685

 1720 ± 70

From object No. 685.

General Comment: compare other dates from this site: Object 19, Gd-263, 1770 ± 140 ; Object 25, Gd-298, 1660 ± 120 (R, v 20, p 407).

Lazy series

Charcoal from set of primitive iron smelting furnaces, Site 6 of ordered type (Bielenin, 1977) at Łazy near Nowa Słupia (50° 85′ N, 21° 08′ E), excavated on SE slope of Łysa Góra Mt. Lowest parts of furnace basins occur in undisturbed loess at depth 45 to 60cm below present surface of arable soil. Coll and subm Aug 1976 by Kazimierz Bielenin, Archaeol Mus, Cracow. Botanical id of samples by Irena Gluza.

Gd-431. Lazy 6, Furn 76

 1790 ± 150

Mixed charcoal pieces (Fagus silvatica and Abies alba Mill) from furnace No. 76, left draught.

Gd-427. Łazy 6, Furn 83

 1970 ± 150

Charcoal pieces of conifers (mostly *Abies alba* Mill) from furnace No. 83, right draught.

Gd-428. Łazy 6, Furn 27

 1730 ± 140

Charcoal pieces of conifers (mostly *Abies alba* Mill) with bark fragments, from furnace No. 27, right draught.

Gd-432. Lazy 6, Furn 58

 1895 ± 160

Charcoal pieces (*Abies alba* Mill) from furnace No. 58, right draught. *General Comment* (KB): 2 fragments of hand-molded ceramics were found in this site, which may be dated to period of Roman influence.

III. GEOCHEMICAL SAMPLES

A. Water samples

Water samples coll by lab staff in 1976 and 1977 were measured to trace origins of water outflow from inrushes in deep coal mines of Katowice coal region. Earlier measurements from Rybnik coal region were reported in our previous lists (Mościcki & Zastawny, 1976, Mościcki, 1977, Mościcki $et\ al$, 1978). PM (Percent Modern) is here defined as % of 0.95 A_{ox} NBS.

Lab no.	Sample	Depth (m)	Colln date	PM
Gd-411	CG/S18/S18A-1	ca 600m	Sept 1976	24.9 ± 1.1
Gd-426	CG/S18/S18A-2	,,	Dec 1976	20.6 ± 1.1
Gd-412	CG/H2-1	ca 380m	Sept 1976	25.3 ± 0.9
Gd-434	CG/H2-2	,,	Dec 1976	21.5 ± 1.2
Gd-417	CG/S-1	surface	Sept 1976	66.3 ± 1.4
Gd-433	CG/S-2	,,	Dec 1976	59.8 ± 1.7
Gd-456	GG/PP-46-1	ca 600m	Feb 1977	43.2 ± 1.1
Gd-462	GG/PP-46-2	**	May 1977	41.7 ± 1.0
Gd-457	GG/GIII-1	ca 400m	Feb 1977	59.5 ± 1.7
Gd-467	GG/GIII-2	,,	May 1977	61.9 ± 1.3
Gd-466	GG/PP-VI-2	ca 600m	May 1977	52.3 ± 1.2

66

B. Contemporary stalagmite samples

Some recently formed stalagmites and stalactites were coll in deep coal mine in region of great water outflow at depth 400m, near sampling point RJ-1. Measurements of $^{14}\mathrm{C}$ concentration in water bicarbonates were made from 1972 to 1975, indicating low and stable level of $^{14}\mathrm{C}$ concentration, 2.0 \pm 0.3% of modern (Mościcki, 1977). Geol characteristics of site was given by Jureczko et al (1974). Measurements of $\delta^{13}\mathrm{C}$ and $\delta^{18}\mathrm{O}$ were made by Stanisław Hałas, Inst Physics, Univ Maria Curie Skłodowska, Lublin. X-ray analysis of powdered Stg 1 sample indicates crystallographic structure of purest calcite. Results of measurements are given in table 2. Stk 1 denotes stalactite sample measured as a whole. Results for stalagmites Stg 1 and Stg 2 are listed from outer layer to central part of stalagmite.

Table 2 Results of ^{14}C concentration measurements in stalagmite samples. Values of $\delta^{13}C$ and $\delta^{18}O$ are given vs PDB standard

Lab no.	Sample	$\delta^{\scriptscriptstyle 13}{ m C}$	$\delta^{18}O$	PM
Gd-292	Stk 1			62.0 ± 1.3
Gd-288	Stg 2, outer layer	_		100.3 ± 1.7
Gd-289	Stg 2, 1st interm layer		-	85.3 ± 1.6
Gd-290	Stg 2, 2nd interm layer			74.8 ± 1.6
Gd-291	Stg. 2, inner layer			59.1 ± 1.1
Gd-483	Stg 1, outer layer	-37.02	-24.9	$69.5 \pm 1.5*$
Gd-484	Stg 1, interm layer	-36.32	-22.4	$55.8 \pm 1.2*$
Gd-481	Stg 1, inner layer	-35.04	-22.0	$48.8 \pm 1.1*$

^{*} values uncorrected for δ^{13} C.

General Comment (MFP): evident trend in 14 C concentration as well as in δ^{13} C and δ^{18} O values indicates that 14 C activity of calcite samples, ca 20 to 50 times greater than 14 C activity of water bicarbonates, is caused by adsorption of 14 C-enriched atmospheric CO₂ on outer surface. Subsequent diffusion of 14 C-labelled carbon atoms towards center of stalagmite and isotopic exchange with initially inactive carbon atoms occurs in CaCO₃ crystals (Pazdur & Pazdur, 1979b).

C. Other geochemical samples

Gd-480. Gs/090474

 $134.9 \pm 1.6\% \, PM$

Atmospheric CO₂ sample coll 9 April 1974 in Gliwice by Elzbieta Kostkiewicz, Inst Physics, Silesian Tech Univ, Gliwice. Comment (MFP): sample coll in urban area, industrial effect is clearly visible.

Gd-493. Jawornik Polski JP40/50

 $103.0 \pm 0.8\% \, \text{PM}$

Wool, probably grown from AD 1940 to 1950, rural region of SE Poland. Coll and subm 1977 by Anna Pazdur.

Gd-494. Jawornik Polski JP76/77

 $149.7 \pm 1.4\% \, PM$

Beeswax coll 1976/1977 in rural region of SE Poland, at Jawornik Polski village. Coll and subm by Anna Pazdur.

REFERENCES

Bielenin, Kazimierz, 1977, Frühgeschichtliches Bergbau- und Eisenhüttenwesen in Swictokrzyskie-Gebirge, in Piekarek, Udo and Saherwala, Geraldine, eds, Eisenverhüttung vor 2000 Jahren: Archäol Forschungen in der VR Polen, Staatliche Mus Preussischer Kulturbesitz, Berlin, p 11-26.

Damon, P. E., Long, Austin, and Wallick, E. I., 1973, Dendrochronological calibration of the carbon-14 time scale: Internatl radiocarbon dating conf, 8th, Wellington, New

Zealand, Proc, v I, p 45-59.

Jureczko, Jerzy, Mościcki, Włodzimierz, and Zastawny, Andrzej, 1974, Studies on "C activity of water from deep coal mines of Rybnik coal area in Poland: Application of natural radioactive isotopes in hydrogeology: Internatl conf, proc, Katowice, May 1974, p 270.

Mackereth, F J H, 1969, A short core sampler for sub-aquaeous deposits: Limnology

Oceanography, v 14, p 142-145.

- Mościcki, Włodzimierz, 1977, ¹⁴C tracing in water from deep coal mines of Rybnik Coal Region and Legnica-Głogów Copper Fields, *in* Povinec, P, and Usacev, S, eds, Low radioactivity measurements and applications: Internatl conf, The High Tatras, Proc, p 375-378.
- Mościcki, Włodzimierz, Pazdur, Anna, Pazdur, M F, and Zastawny, Andrzej, 1978, Gliwice radiocarbon dates IV: Radiocarbon, v 20, p 405-415.
- Mościcki, Włodzimierz and Zastawny, Andrzej, 1976, Gliwice Gdańsk radiocarbon dates III: Radiocarbon, v 18, p 50-59.
- 1977, New proportional counter assembly in Gliwice ¹⁴C laboratory, in Povinec, P and Usacev, S, eds, Low radioactivity measurements and applications: Internatl conf, The High Tatras, Proc, p 91-92.
- Pazdur, Anna and Pazdur, M F, 1979, Skład izotopowy węgla we współcześnie utworzonych stalaktytach i stalagmitach (with English summary): Kwart Geol, v 23.
- Pazdur, M F, and Pazdur, Anna, 1979a, Methods of sample pretreatment in Gliwice Radiocarbon Laboratory: Muzeum Archeol i Etnogr w Łodzi, Prace i Materiały, v 26.
- Pazdur, M F and Pazdur, Anna, 1979b, Radiocarbon dating of calcareous gyttja sediments from North Polish lakes: Pol Archiv Hydrobiol, v 27.
- Pazdur, M F, and Walanus, Adam, 1979, Statistical analysis of data and age calculations in Gliwice Radiocarbon Laboratory: Muzeum Archeol i Etnogr w Łodzi, Prace i Materiały, v 26.
- Pazdur, M F, Walanus, Adam and Mościcki, Włodzimierz, 1978, A method of continuous examination of counting efficiency during measurements of natural radiocarbon with CO₂ filled proportional counter: Nuclear Instruments Methods, v 151, p 541-547
- Woyda, Stefan, 1977, Ein Eisenverhüttungszentrum der vorrömischen Eisenzeit und der römischen Kaiserzeit, in Piekarek, Udo and Saherwala, Geraldine, eds, der Umgebung von Warschau: Eisenverhüttung vor 2000 Jahren: Archäol Forschungen in der VR Polen, Staatliche Mus Preussischer Kulturbesitz, Berlin, p 27-35.

Wójcikiewicz, Marian, ms. 1977, Stratygrafia torfowiska Bór na Czerwonem z uwzględnieniem zespołów subfosylnych oraz rozmieszczenia i zróznicowania współczesnych

zbiorowisk roślinnych: Ph D thesis, Acad Agriculture, Cracow.