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Thermally driven vertical convection (VC) – the flow in a box heated on one side and
cooled on the other side, is investigated using direct numerical simulations with Rayleigh
numbers over the wide range of 107 ≤ Ra ≤ 1014 and a fixed Prandtl number Pr = 10 in
a two-dimensional convection cell with unit aspect ratio. It is found that the dependence
of the mean vertical centre temperature gradient S on Ra shows three different regimes: in
regime I (Ra � 5 × 1010), S is almost independent of Ra; in the newly identified regime
II (5 × 1010 � Ra � 1013), S first increases with increasing Ra (regime IIa), reaches its
maximum and then decreases again (regime IIb); and in regime III (Ra � 1013), S again
becomes only weakly dependent on Ra, being slightly smaller than in regime I. The
transition from regime I to regime II is related to the onset of unsteady flows arising from
the ejection of plumes from the sidewall boundary layers. The maximum of S occurs when
these plumes are ejected over approximately half of the area (downstream) of the sidewalls.
The onset of regime III is characterized by the appearance of layered structures near the
top and bottom horizontal walls. The flow in regime III is characterized by a well-mixed
bulk region owing to continuous ejection of plumes over large fractions of the sidewalls,
and, as a result of the efficient mixing, the mean temperature gradient in the centre S
is smaller than that of regime I. In the three different regimes, significantly different
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flow organizations are identified: in regime I and regime IIa, the location of the maximal
horizontal velocity is close to the top and bottom walls; however, in regime IIb and regime
III, banded zonal flow structures develop and the maximal horizontal velocity now is in the
bulk region. The different flow organizations in the three regimes are also reflected in the
scaling exponents in the effective power law scalings Nu ∼ Raβ and Re ∼ Raγ . Here, Nu
is the Nusselt number and Re is the Reynolds number based on maximal vertical velocity
(averaged over vertical direction). In regime I, the fitted scaling exponents (β ≈ 0.26 and
γ ≈ 0.51) are in excellent agreement with the theoretical predictions of β = 1/4 and
γ = 1/2 for laminar VC (Shishkina, Phys. Rev. E., vol. 93, 2016, 051102). However, in
regimes II and III, β increases to a value close to 1/3 and γ decreases to a value close to
4/9. The stronger Ra dependence of Nu is related to the ejection of plumes and the larger
local heat flux at the walls. The mean kinetic dissipation rate also shows different scaling
relations with Ra in the different regimes.

Key words: convection in cavities

1. Introduction

Thermally driven convective fluid motions are ubiquitous in various geophysical and
astrophysical flows, and are important in many industrial applications. Rayleigh–Bénard
convection (RBC) (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà &
Schumacher 2012; Xia 2013), where a fluid layer in a box is heated from below and
cooled from above, and vertical convection (VC) (Ng et al. 2015; Shishkina 2016; Ng et al.
2017, 2018), where the fluid is confined between two differently heated isothermal vertical
walls, have served as two classical model problems to study thermal convection. Vertical
convection was also called convection in a differentially heated vertical box in many early
papers (Paolucci & Chenoweth 1989; Le Quéré & Behnia 1998). Both RBC and VC can
be viewed as extreme cases of the more general so-called tilted convection (Guo et al.
2015; Shishkina & Horn 2016; Wang et al. 2018a,b; Zwirner & Shishkina 2018; Zwirner
et al. 2020; Zhang, Ding & Xia 2021), with a tilt angle of 0◦ for RBC and 90◦ for VC.
We focus on VC in this study. Vertical convection finds many applications in engineering,
such as thermal insulation using double-pane windows or double walls, horizontal heat
transport in water pools with heated/cooled sidewalls, crystal growth procedures, nuclear
reactors, ventilation of rooms, and cooling of electronic devices, to name only a few.
Vertical convection has also served as a model to study thermally driven atmospheric
circulation (Hadley 1735; Lappa 2009) or thermally driven circulation in the ocean, e.g.
next to an ice-block (Thorpe, Hutt & Soulsby 1969; Tanny & Tsinober 1988).

The main control parameters in VC are the Rayleigh number Ra ≡ gαL3Δ/(νκ) and
the Prandtl number Pr ≡ ν/κ . Here, α, ν and κ are the thermal expansion coefficient,
the kinematic viscosity and the thermal diffusivity of the convecting fluid, respectively,
g is the gravitational acceleration, Δ ≡ Th − Tc is the temperature difference between
the two side walls, and L is the width of the convection cell. The aspect ratio Γ ≡ H/L
is defined as the ratio of height H over width L of the domain. The responses of the
system are characterized by the Nusselt number Nu ≡ QL/(kΔ) and the Reynolds number
Re ≡ UL/ν, which indicate the non-dimensional heat transport and flow strength in the
system, respectively. Here Q is the heat flux crossing the system and U is the characteristic
velocity of the flow.

Since the pioneering work of Batchelor (Batchelor 1954), who first addressed the case
of steady-state heat transfer across double-glazed windows, VC has drawn significant
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attention especially in the 1980s and 1990s, and most of these studies used experiments or
a two-dimensional (2-D) direct numerical simulation (DNS) in a square domain with unit
aspect ratio. For relatively low Ra (e.g. Ra < 103), the flow is weak and heat is transferred
mainly by thermal conduction. With increasing Ra, typical stratified flow structures appear
in the bulk region (de Vahl Davis & Jones 1983), while the flow remains steady. With
a further increase in Ra, the flow becomes unsteady with periodical/quasi-periodical or
chaotic motions (Paolucci & Chenoweth 1989; Le Quéré & Behnia 1998), and eventually
becomes turbulent when Ra is sufficiently high (Paolucci 1990).

The onset of unsteadiness has been well explored in the past (Chenoweth & Paolucci
1986; Paolucci & Chenoweth 1989; Janssen & Henkes 1995; Le Quéré & Behnia 1998).
Paolucci & Chenoweth (1989) investigated the influence of the aspect ratio Γ on the onset
of unsteadiness for 2-D VC with Pr = 0.71. They found that for Γ � 3, the first transition
from the steady state arises from an instability of the sidewall boundary layers, while for
smaller aspect ratios 0.5 ≤ Γ � 3, it arises from internal waves near the departing corners.
Such oscillatory instability arising from internal waves was first reported by Chenoweth
& Paolucci (1986). Paolucci & Chenoweth (1989) also found that for Γ = 1, the critical
Rayleigh number Rac for the onset of unsteadiness lies between 1.8 × 108 and 2 × 108.
Later work, with Pr = 0.71 and Γ = 1 by Le Quéré & Behnia (1998), also showed that
the internal gravity waves play an important role in the time-dependent dynamics of the
solutions, and 1.81 × 108 ≤ Rac ≤ 1.83 × 108 was determined to be the range of the
critical Rayleigh number. Janssen & Henkes (1995) studied the influence of Pr on the
instability mechanisms for Γ = 1, and observed that for 0.25 ≤ Pr ≤ 2, the transition
occurs through periodic and quasi-periodic flow regimes. One bifurcation is related to an
instability occurring in a jet-like fluid layer exiting from the corners of the cavity where the
vertical boundary layers are turned horizontal. Such jet-like flow structures are responsible
for the generation of internal gravity waves (Chenoweth & Paolucci 1986; Paolucci &
Chenoweth 1989). The other bifurcation occurs in the boundary layers along the vertical
walls. Both of these instabilities are mainly shear-driven. For 2.5 ≤ Pr ≤ 7, Janssen &
Henkes (1995) found an ‘immediate’ (i.e. sharp) transition from the steady to the chaotic
flow regime, without intermediate regimes. This transition is also caused by boundary
layer instabilities. They also showed that Rac significantly increases with increasing Pr,
e.g. for Pr = 4, the flow can still be steady with Ra = 2.5 × 1010. However, owing to
the computation limit, unsteady motions for the large-Pr cases have largely remained
unexplored in the past.

Additionally, the flow structures for VC have been examined in detail. A typical flow
feature for VC is the stably-stratified bulk region (de Vahl Davis & Jones 1983; Ravi,
Henkes & Hoogendoorn 1994; Trias et al. 2007; Sebilleau et al. 2018; Chong et al. 2020).
Such stratification can be quantified by the time-averaged non-dimensional temperature
gradient at the centre, namely

S ≡ 〈(L/Δ)(∂T/∂z)c〉t . (1.1)

Here 〈〉t denotes a time average. Gill (1966) derived asymptotic solutions for high Pr,
and predicted S = 0.42 as Ra → ∞, while an accurate solution of the same system
by Blythe, Daniels & Simpkins (1983) predicted a value of 0.52. Later DNS results
for Ra = 108 and Pr = 70 yielded S = 0.52 (Ravi et al. 1994), which is in excellent
agreement with the theoretical prediction by Blythe et al. (1983). However, for small Pr,
the structure of the core and the vertical boundary layer are no longer similar to those
predicted by the asymptotic solutions which are valid for large Pr (Blythe et al. 1983).
Unfortunately, there exists no such asymptotic theory for finite Pr. Only Graebel (1981)
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has presented some approximate solutions, in which some terms have been neglected in the
equations. For Pr = 0.71, his prediction yielded S = 0.49, which is considerably smaller
than the value S ≈ 1 from DNS (Ravi et al. 1994; Trias et al. 2007). It was concluded
that S is independent of Ra for Ra ≤ 1010 (Paolucci 1990); however, it is evident that
the dependence of S on Ra and Pr, especially for those with high Ra > 1010 and low
Pr < 0.71, is still poorly understood.

A key question in the study of thermal convection is: How do Nu and Re depend on Ra
and Pr? This question has been extensively addressed in RBC over the past years (Ahlers
et al. 2009). For RBC, the mean kinetic dissipation rate (εu) and thermal dissipation
rate (εθ ) obey exact global balances, which feature Ra, Nu and Pr (Shraiman & Siggia
1990). For this problem, in a series of papers, Grossmann & Lohse (2000, 2001, 2002,
2004) developed a unifying theory to account for Nu(Ra, Pr) and Re(Ra, Pr) over wide
parameter ranges. The central idea of the theory is a decomposition of εu and εθ into
their boundary layer and bulk contributions. The theory has been well confirmed through
various experiments and numerical simulations (Stevens et al. 2013). This theory has also
been applied to horizontal convection (Shishkina, Grossmann & Lohse 2016; Shishkina
& Wagner 2016) and internally heated convection (Wang, Shishkina & Lohse 2020b).
However, in VC, the exact relation for εu does not hold, which impedes the applicability
of the unifying theory to the scalings in VC (Ng et al. 2015).

As compared with RBC, for VC, much less work has been devoted to the dependences
Nu(Ra, Pr) and Re(Ra, Pr). Past studies have suggested power law dependences, i.e. Nu ∼
Raβ and Re ∼ Raγ , at least in a certain Ra range. The reported scaling exponent β was
found to vary from 1/4 to 1/3 (Xin & Le Quéré 1995; Le Quéré & Behnia 1998; Trias
et al. 2007, 2010; Ng et al. 2015; Shishkina 2016; Wang et al. 2019; Ng et al. 2020),
depending on the Ra range and Pr. Ng et al. (2015) simulated three-dimensional (3-D)
VC with periodic conditions in the range 105 ≤ Ra ≤ 109 with Pr = 0.709, and obtained
β = 0.31 as the considered range. For much larger Pr � 1 and using laminar boundary
layer theories, Shishkina (2016) theoretically derived Nu ∼ Ra1/4 and Re ∼ Ra1/2. These
theoretical results are in excellent agreement with direct numerical simulations for Ra from
105 to 1010 in a cylindrical container with aspect ratio Γ = 1. The power law exponents
β = 1/4 and γ = 1/2 were also confirmed by the DNS of Ng et al. (2020) in a 3-D cell
with span-wise periodic boundary conditions for 108 ≤ Ra ≤ 1.3 × 109. For 2-D VC, past
studies with Ra ≤ 1010 have also shown that β is closer to 1/4 than 1/3 (Xin & Le Quéré
1995; Trias et al. 2007, 2010; Wang et al. 2019). Wang et al. (2019) simulated 2-D VC over
105 ≤ Ra ≤ 109 for fixed Pr = 0.71, and found β ≈ 0.27 and γ ≈ 0.50.

Most of the simulations for VC were conducted for Ra � 1010. The high-Ra simulations
become stiff owing to a decrease in the boundary-layer thicknesses with increasing Ra. As
a result, little is known about what will happen at Ra much larger than 1010. In this study,
we attempt to fill this gap in knowledge by performing DNS up to Ra = 1014. The price
we have to pay is that for such large Ra, we are restricted to 2-D.

The main questions we want to address in this study are as follows.

(i) Is the conclusion that S is independent of Ra for Ra ≤ 1010 (Paolucci 1990) still valid
for Ra much larger than 1010?

(ii) How does the global flow organization (mean temperature and velocity profiles)
change with increasing Ra up to 1014?

(iii) How robust are the laminar scaling relations Nu ∼ Ra1/4 and Re ∼ Ra1/2 (Shishkina
2016) for higher Ra? Will new scaling relations appear for Ra much larger than 1010?
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We find that S is not independent of Ra over the studied parameter range at all. Instead,
we find that apart from the small-Ra regime (now called regime I), where S only weakly
depends on Ra (Paolucci 1990), there are additional regimes for Ra � 5 × 1010 with
different scaling relations. In regime II (5 × 1010 � Ra � 1013), with increasing Ra, S first
increases (regime IIa) to its maximum and then decreases (regime IIb) again. In regime III
(Ra � 1013), S again becomes weakly dependent on Ra, with a smaller value than that
of regime I. Furthermore, we find that the laminar power law exponents β = 1/4 and
γ = 1/2 undergo sharp transitions to β ≈ 1/3 and γ ≈ 4/9 when Ra � 5 × 1010, i.e. at
the transition from regime I to regime II.

The rest of the paper is organized as follows. Section 2 describes the governing equations
and numerical methods. The different flow organizations in the different regimes are
studied in § 3. In § 4, we discuss the transition of the scaling relations for heat and
momentum transport between the different regimes. Finally, § 5 contains a summary and
an outlook.

2. Numerical procedures

A sketch of 2-D VC is shown in figure 1. The top and bottom walls are insulated. The
left wall is heated with temperature Th, while the right wall is cooled with temperature
Tc. No-slip and no-penetration velocity boundary conditions are used at all the walls.
The aspect ratio Γ ≡ H/L is fixed to 1. The dimensionless governing equations are the
incompressible Navier–Stokes equations with an Oberbeck–Boussinesq approximation:

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u + θez, (2.2)

∂θ

∂t
+ u · ∇θ = 1√

RaPr
∇2θ. (2.3)

Here ez is the unit vector pointing in the direction opposite to gravity. The dimensionless
velocity, temperature and pressure are represented by u ≡ (u, w), θ and p, respectively.
For non-dimensionalization, we use the width of the convection cell L and the free-fall
velocity U = (gαΔL)1/2. Temperature is non-dimensionalized as θ = (T − Tc)/Δ.

The governing equations were solved using the second-order staggered finite-difference
code AFiD (Verzicco & Orlandi 1996; van der Poel et al. 2015). The code has already been
extensively used to study RBC (Wang et al. 2020a,c; Liu et al. 2021) and internally heated
convection (Wang et al. 2020b). Direct numerical simulation was performed for 107 ≤
Ra ≤ 1014 with a fixed Pr = 10. Stretched grids were used to resolve the thin boundary
layers and adequate resolutions were ensured to resolve the small scales of turbulence
(Shishkina et al. 2010). Grids with up to 8192 × 8192 nodes were used for the highest
Ra = 1014. We performed careful grid independence checks for several high-Ra cases. It
was found that the difference of Nu and Re for the different grids were always smaller
than 1 % and 2 %, respectively. Details on the simulations are provided in table 2 in the
appendix.

3. Global flow organization

3.1. Global flow fields
We first focus on the change of global flow organizations with increasing Ra. Figure 2
shows instantaneous temperature, horizontal velocity (u) and vertical velocity (w) fields
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x

z

H
Th Tc

L

∂T/∂z = 0

∂T/∂z = 0

Figure 1. Sketch of two-dimensional vertical convection with unit aspect ratio. The left vertical wall is heated
(T = Th), while the right vertical wall is cooled (T = Tc), and the temperature difference is Δ = Th − Tc. The
top and bottom walls are adiabatic. All the walls have no-slip and no-penetration velocity boundary conditions.

for different Ra. For the considered Pr = 10, we find that the flow is still steady for Ra =
5 × 1010, as shown in figure 2(a–c), which is consistent with the finding that the critical
Rayleigh number Rac for the onset of unsteadiness increases with increasing Pr and that
the flow is indeed still steady for Ra = 2.5 × 1010 with Pr = 4 (Janssen & Henkes 1995).
This is in sharp contrast with RBC, where the flow is already turbulent for such high
Ra with Pr = 10 (Wang et al. 2020c). The flow is stably stratified in the bulk region, as
shown in figure 2(a). The large horizontal velocity regions mainly concentrate near the top
and bottom walls (figure 2b), while the strong vertical motion mainly occurs near the two
sidewalls (figure 2c). Such flow structures are typical for steady VC with large Pr (Ravi
et al. 1994).

However, with a minor increase of Ra from Ra = 5 × 1010 to Ra = 6 × 1010, the flow
becomes instantaneously chaotic, as shown in figure 2(d–f ). This finding is consistent
with the previous result that for Pr ≥ 2.5, there is an immediate transition from the
steady to the chaotic flow regime without intermediate regimes (Janssen & Henkes
1995). This transition is caused by boundary layer instabilities, which are reflected in
the plume ejections in the downstream of the boundary layers (figure 2d). The strong
horizontal/vertical fluid motions still concentrate near the horizontal/vertical walls, as
indicated in figures 2(e) and 2( f ). However, there are already some chaotic features
appearing in the bulk, which suggest a change of the bulk properties.

When Ra is further increased to 6 × 1011 (figure 2g–i), further evident changes of the
global flow organization appear as follows. (i) The hot plumes mainly eject over the upper
half of the hot sidewall, and enter the upper half of the bulk region. This makes the hot
upper bulk region more isothermal than in the smaller-Ra cases. Similar processes happen
for the cold plumes and the lower cold bulk region. Therefore, figure 2(g) clearly shows
a larger centre temperature gradient than those in figures 2(a) and 2(d). (ii) The strong
horizontal motions now not only occur near the horizontal walls, but also in the bulk
region (figure 2h), and alternating rightward and leftward ‘zonal flow’ structures appear.

For the highest Ra = 1014 (figure 2j–l), the thermal driving is so strong that hot plumes
are now ejected over large fractions of the left vertical wall (0.2 � z/L � 1). The plumes
are transported into the bulk region by the zonal flow structures shown in figure 2(k).
This process causes efficient mixing in the bulk, which then leads to a smaller centre
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Figure 2. Instantaneous temperature θ (a,d,g,j), horizontal velocity u (b,e,h,k) and vertical velocity (c,f,i,l)
fields for different Ra with Pr = 10 and Γ = 1. (a–c) Regime I where Ra = 5 × 1010. (d–f ) Regime II
where Ra = 6 × 1010. (g–i) Regime II where Ra = 6 × 1011. (j–l) Regime III where Ra = 1014. The arrows in
(a) indicate the velocity directions.

temperature gradient. Further prominent features are the ‘layered’ structures near the top
and bottom walls, where relatively hot/cold fluids clearly separate from the near-isothermal
bulk region.

3.2. Mean profiles for temperature and horizontal velocity
We have seen that the global flow organization evidently changes with increasing Ra.
In this subsection, we quantify these changes by looking at the mean profiles for the
temperature and for the horizontal velocity. Figure 3(a) clearly shows the change in
the temperature profiles at x/L = 0.5 with increasing Ra, which is consistent with the
temperature fields presented in figure 2. The change of the bulk temperature profile shape
can be quantified by the time-averaged non-dimensional vertical temperature gradient
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z/L

Ra = 107

Ra = 108

Ra = 109

Ra = 1010

Ra = 1011

Ra = 1012

Ra = 1013

Ra = 1014

Ra = 2 × 1011

Ra = 6 × 1011

IIa IIb

Regime I Regime II Regime III

θ u

S

Ra

(a)

(b)

(c)

Figure 3. (a) Mean temperature profiles θ(z) at x/L = 0.5 for different Ra with Pr = 10. (b) Time-averaged
centre vertical temperature gradient S = 〈(L/Δ)(∂T/∂z)c〉t as a function of Ra for Pr = 10. In regime I and
regime III, S is weakly dependent on Ra. In contrast, in regime II, S displays a non-monotonic dependence
on Ra. Regime II is further divided into IIa and IIb, in which S increases or decreases with increasing Ra,
respectively. (c) Mean horizontal velocity profiles at x/L = 0.5 for different Ra with Pr = 10. Panels (a) and
(c) share the same legend.

in the cell centre, i.e. S ≡ 〈(L/Δ)(∂T/∂z)c〉t (Paolucci 1990; Ravi et al. 1994). This
quantity is plotted in figure 3(b), where one can observe three different regimes. In the
well-explored regime I (Ra � 5 × 1010), S weakly depends on Ra, with a value S ≈ 0.5,
close to that of S = 0.52 for Ra = 108 with Pr = 70 reported in Ravi et al. (1994).
However, in regime II (5 × 1010 � Ra � 1013), S has a non-monotonic dependence on
Ra: it first increases with increasing Ra, reaches its maximum at Ra = 6 × 1011, and
then decreases again. Regime II is further divided into regime IIa, where S increases
with increasing Ra, and regime IIb, where S decreases with increasing Ra. The onset of
regime II coincides with the onset of unsteadiness, which shows that plume emissions
play an important role in altering the bulk properties. The maximum of S occurs when
approximately half of sidewall areas (downstream) feature plume emissions, as shown in
figure 2(g). Finally, in regime III, S again becomes weakly dependent on Ra, while it has
a smaller value than that of regime I. The small value of S in regime III arises from the
well-mixed bulk region, as can be seen in figure 2( j).

Figure 3(c) shows the change of the horizontal velocity profiles with increasing Ra. In
regime I, the strong horizontal fluid motions concentrate near the top and bottom walls.
In contrast, in regime III, the largest horizontal velocity appears in the bulk region, and
alternating rightward and leftward fluid motions, i.e. zonal flows, are observed even after
time averaging, which is consistent with the instantaneous horizontal velocity field shown
in figure 2(k). Another prominent flow feature of regime III is that the horizontal velocity
near the top and bottom walls is close to 0. This means that the ‘layered structure’ near the
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Figure 4. Mean (a) longitudinal temperature profile and (b) longitudinal profile of the vertical velocity at
mid-height z/L = 0.5 for different Ra with Pr = 10. Panels (a) and (b) share the same legend.

top and bottom walls, as indicated in the temperature field in figure 2( j), is actually nearly
a ‘dead zone’ with weak fluid motions. Thus the appearance of this nearly ‘dead’ layered
structure indicates the the onset of regime III. Regime II serves to connect regime I and
regime III: in regime IIa, the strongest horizontal motion still takes place near the top and
bottom walls, see, e.g. the horizontal velocity profile for Ra = 2 × 1011 in figure 3(c). In
contrast, in regime IIb, the strongest horizontal fluid motions appear in the bulk, see, e.g.
the strong zonal flow motions in the central region for Ra = 1012, as shown in figure 3(c).
We remark that the zonal flow has been found in many geo- and astrophysical flows (Yano,
Talagrand & Drossart 2003; Heimpel, Aurnou & Wicht 2005; Nadiga 2006), and it has
also been extensively studied in RBC (Goluskin et al. 2014; Wang et al. 2020a; Zhang
et al. 2020; Reiter et al. 2021). It is remarkable and interesting to also observe zonal flows
in the high-Ra VC system. This system thus provides another model to study the physics
of the zonal flow.

3.3. Mean profiles for temperature and vertical velocity
We now consider the mean vertical velocity and temperature profiles in the longitudinal (x)
direction. Figure 4(a) shows the mean temperature profiles in the longitudinal (x) direction
at mid-height z/L = 0.5 for different Ra. It is seen that for Ra values that are not too high,
the temperature does not monotonically drop from θ = 1 at the hot wall to θ = 0.5 in the
core. Instead, an undershoot phenomenon is observed. This phenomenon arises from the
stable stratification in the bulk (Ravi et al. 1994) and can also be observed in the similarity
solutions of the boundary layer equations for natural convection over a vertical hot wall in a
stably stratified environment (Henkes & Hoogendoorn 1989). However, for Ra ≥ 1012, we
find that the overshoot phenomenon disappears. This arises from the continuous emissions
of hot plumes at mid-height z/L = 0.5 and beyond, as then the hot fluid directly touches
the well-mixed bulk flow with small stratification.

Figure 4(b) shows vertical velocity profiles in the longitudinal direction, again at
mid-height z/L = 0.5. With increasing Ra, the boundary layer becomes thinner and
the peak vertical velocity becomes smaller. This finding reflects the different flow
organizations in the different regimes: the emitted plumes in regimes II and III weaken
the overall vertical fluid motions, as compared with the steady flow organization in regime
I. This is also reflected in the Re ∼ Raγ scaling, as will be discussed below.
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Figure 5. (a) Normalized Nusselt number Nu/Ra1/4, (b) normalized Reynolds number based on maximal
vertical velocity Re/Ra1/2, and (c) normalized Reynolds number based on root-mean-square velocity
Rerms/Ra1/2, as functions of Ra for Pr = 10. The solid lines connect the DNS data points, whereas the dashed
lines show the suggested scaling laws. There is a clear and sharp transition in scaling between regime I and
regime II/III.

4. Global heat and momentum transport and dissipation rates

Next, we focus on the global heat (Nu) and momentum (Re) transport. Here, we use the
wind-based Reynolds number Re with the characteristic velocity

Umax ≡ max
x

H−1
∫ H

0
w dz, (4.1)

which is the same definition as that in Shishkina (2016), and the root-mean-square
Reynolds number Rerms with the characteristic velocity

Urms ≡
√

〈u · u〉V,t, (4.2)

where 〈〉V,t indicates volume and time averaging. Figures 5(a) and 5(b) show that in
regime I, the obtained effective power law scaling relations agree remarkably well with
the theoretical prediction made for laminar VC (Shishkina 2016), namely, Nu ∼ Ra1/4

and Re ∼ Ra1/2. The fitted scaling relations are provided in table 1. It is also seen that
a slightly faster growth of Nu with Ra is obtained for Ra ≤ 109. A similar increase
of the scaling exponent for small Ra has also been found previously in both confined
(Shishkina 2016; Wang, Zhang & Guo 2017; Wang et al. 2019) and double periodic VC
(Ng et al. 2015). However, when Ra ≥ 5 × 1010, in regime II and regime III, evidently
different scaling relations are observed. The fitted power law scaling relations (see table 1
for the obtained values) are close to Nu ∼ Ra1/3 (referred to as Malkus scaling Malkus
1954) and Re ∼ Ra4/9, which, interestingly, were predicted for regime IVu by the unifying
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Regime transitions in high-Ra vertical convection

Regime Ra range Nu Re Rerms 〈εu〉 /[L−4ν3(Nu − 1)RaPr−2]

Regime I [107, 5 × 1010] ∼Ra0.256 ∼Ra0.507 ∼Ra0.366 ∼Ra−0.012

Regime II [5 × 1010, 1013] ∼Ra0.330 ∼Ra0.438 — ∼Ra−0.179

Regime III [1013, 1014] ∼Ra0.326 ∼Ra0.413 ∼Ra0.310 ∼Ra−0.248

Table 1. Fitted scaling relations of the Nusselt number Nu, the Reynolds number based on maximal vertical
velocity Re (4.1), the Reynolds number based on root-mean-square velocity Rerms (4.2) and the normalized
kinetic dissipation rate 〈εu〉 /[L−4ν3(Nu − 1)RaPr−2] with respect to Ra for the three different regimes.

theory for RBC (Grossmann & Lohse 2000). Such observation of scaling transitions
further demonstrates that there are no pure scaling laws in thermal convection. This has
already been seen in RBC (Grossmann & Lohse 2000; Ahlers et al. 2009), horizontal
convection (Shishkina et al. 2016; Shishkina & Wagner 2016; Reiter & Shishkina 2020)
and internally heated convection (Wang et al. 2020b), and apparently crossovers between
different scaling regimes also occur here. However, the sharpness of the scaling transition
from β = 1/4 to β = 1/3 observed here is quite different from the smooth transition seen
in RBC. Indeed, in RBC, the transition from Nu ∼ Ra1/4 to Nu ∼ Ra1/3 is very smooth,
spread over more than two orders of magnitude in Ra (Grossmann & Lohse 2000), and the
linear combination of the 1/4 and 1/3 power laws even mimics an effective 2/7 scaling
exponent (Castaing et al. 1989) over many orders of magnitude in Ra.

Figure 5(c) shows that also Rerms behaves differently in different regimes. The fitted
scaling relation Rerms ∼ Ra0.37 in regime I is the same as that found for 2-D VC with Pr =
0.71 (Wang et al. 2019), which suggests that in vertical convection, different Reynolds
numbers have different scaling relations with Ra. In regime II, the normalized Reynolds
number Rerms/Ra1/2 depends non-monotonically on Ra, and shows a pronounced local
minimum. The fitted scaling exponent 0.31 in regime III is again smaller than that in
regime I.

It is interesting to note that, though S shows a clear transition between regime II
and regime III, this transition is not seen in the effective power law scaling relations
Nu ∼ Raβ and Re ∼ Raγ . Our interpretation of this noteworthy finding is as follows. The
transition of the flow organization from regime I to regime II is sharp in view of the
sudden appearance of plume emissions from the sidewall thermal boundary layers, and in
view of the emergence of the local minimum of the Nusselt number distribution on the
sidewall. However, the transition of flow organization from regime II to regime III is more
continuous. The flows in these two regimes are characterized by the alternating rightward
and leftward fluid motions, i.e. zonal flows, in the bulk, and they all have plume emissions
from the sidewall boundary layers and a local minimum of the Nusselt number distribution
on the sidewall. The only prominent difference is the appearance of layered structures near
the top and bottom plates in regime III. As this layered structure only concentrates in a
small region near the top and bottom plates, the global effective scaling exponents of Nu
and Re do not seem to be sensitive to the different flow organizations in regimes II and III.

To better understand the sudden change of the global heat transport properties at the
transition to regime II, we now consider the wall heat flux, which is denoted by the local
Nusselt number at the wall Nu(z)|x=0,1 = ∂ 〈θ〉t /∂x|x=0,1. Figure 6(a) displays Nu(z)|x=0
at the left wall, while Nu(z)|x=1 at the right wall is not shown owing to the inherent
symmetry of the system. For Ra ≤ 5 × 1010, the local Nu(z)|x=0 generally decreases
monotonically with increasing heights z. The large local Nu(z)|x=0 for small heights z
is attributed to the fact that the hot fluid there is in direct contact with the cold fluid, which
leads to large temperature gradients. In contrast, for Ra > 5 × 1010, a local minimum
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Figure 6. (a) Local Nusselt number Nu(z) at the hot wall (x/L = 0) for different Ra, all with Pr = 10.
(b) Transition points zt/L as functions of Ra. Here, zt1 and zt2 are the locations where Nu(z) reaches
its local minimum and maximum values, respectively. Such local maximum and minimum occur beyond
Ra � 5 × 1010, see (a). The dashed vertical line denotes the Ra where the centre temperature gradient is
maximal.

and a local maximum in Nu(z)|x=0 are identified, the heights of which are denoted as
zt1 and zt2. It is clearly seen that Nu(z)|x=0 after the first transition point zt1 increases
compared with the steady cases at Ra ≤ 5 × 1010. This is because the emissions of the
plumes lead to more efficient shear-driven mixing, and therefore larger local Nu(z)|x=0.
Thus, the overall heat transport also increases in regime II and later regime III (figure 5a)
owing the ejections of plumes, and the change of the scaling is also related to the change
of the boundary layer properties.

We have shown that the two transition points zt1 and zt2 roughly correspond to the
locations where plumes begin to be ejected. Figure 6(b) shows, as expected, that both zt1
and zt2 decrease with increasing Ra, which suggests that the locations where hot plumes
begin to be ejected move downwards with increasing Ra. At Ra = 6 × 1011, where the
centre temperature gradient S achieves its maximum, it can be seen that the mid-height
z/L = 0.5 lies between the two transition points, further demonstrating that the maximum
of S is achieved once plumes are ejected over approximately half of the area (downstream)
of the sidewalls, as seen in the temperature field in figure 2(g).

Finally, we discuss the thermal and kinetic dissipation rates. In RBC, the following exact
relations hold (Shraiman & Siggia 1990).

〈εu〉V = ν3

L4 (Nu − 1)RaPr−2, (4.3)

〈εθ 〉V = κ
Δ2

L2 Nu. (4.4)
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Figure 7. Normalized (a) thermal dissipation rate 〈εθ 〉 /(L−2κΔ2Nu) and (b) kinetic dissipation rate
〈εu〉 /[L−4ν3(Nu − 1)RaPr−2] as functions of Ra. The black solid circles denote the total dissipation rates
while hollow triangles correspond the dissipation rates of the mean field.

The average 〈〉V is over the whole volume and over time. In VC, the relation (4.4)
still holds, however, the relation (4.3) does not hold any longer. Following Ng et al.
(2015) and Reiter & Shishkina (2020), we decompose the dissipation rates into their
mean and fluctuating parts as 〈εu〉V = 〈εu〉V + 〈

ε′
u
〉
V = ν[

〈
(∂Ui/∂xj)

2〉
V + 〈

(∂u′
i/∂xj)

2〉
V ].

Figure 7(a) shows that the relation (4.4) is fulfilled in the DNS. It is also seen that
the contribution from the mean field decreases with increasing Ra, which suggests that
with increasing Ra, turbulent fluctuations play an increasingly more important role on the
mixing process.

The kinetic dissipation rate is displayed in figure 7(b). One can see that the values
〈εu〉 /[L−4ν3(Nu − 1)RaPr−2] are always smaller than the corresponding value, as occurs
in RBC. This was already seen in 3-D VC (Shishkina 2016). For the steady VC with
Ra ≤ 5 × 1010, the normalized kinetic dissipation rate only weakly depends on Ra, as has
also been found in 3-D VC (Shishkina 2016). However, in regimes II and III, it is observed
that the normalized kinetic dissipation rate decreases much faster than that in regime I.
This can be related to the fact that Nu increases faster in regimes II and III than in regime
I. It is also seen that the contribution from turbulent fluctuations is small, similar as in
horizontal convection (Reiter & Shishkina 2020).

5. Conclusions

In conclusion, we have studied vertical convection by direct numerical simulations over
seven orders of magnitude of Rayleigh numbers, i.e. 107 ≤ Ra ≤ 1014, for a fixed Prandtl
number Pr = 10 in a two-dimensional convection cell with unit aspect ratio. The main
conclusions, which correspond to the answers of the questions posed in the introduction,
are summarized as follows.

(i) The dependence of the non-dimensional mean vertical temperature gradient at the
cell centre S on Ra shows three different regimes. In regime I (Ra � 5 × 1010), S is
almost independent of Ra, which is consistent with previous work (Paolucci 1990).
However, in the newly identified regime II (5 × 1010 � Ra � 1013), S first increases
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with increasing Ra, reaches its maximum and then decreases again. In regime III
(Ra � 1013), S again becomes weakly dependent on Ra, with a smaller value than
that of regime I. The transition from regime I to regime II coincides with the onset
of unsteady fluid motions. The maximum of S occurs when plumes are ejected over
approximately half of the area of the sidewall, namely, in the downstream region. The
flow in regime III is characterized by a well-mixed bulk region owing to continuous
ejection of plumes over large fractions of the sidewalls. Thus S is smaller than that
of regime I.

(ii) The flow organizations in the three different regimes are quite different from each
other. In regime I, the maximal horizontal velocity concentrates near the top and
bottom walls. However, the flow gives way to alternating rightward and leftward
zonal flows in regime III, where the maximal horizontal velocity appears in the
bulk region. Another characteristic feature of the flow in regime III are the ‘layered’
structures near the top and bottom walls, where the fluid motions are weak. Regime
II serves to connect regime I and regime III: in regime IIa, the maximal velocity
still occurs near the top and bottom walls. In contrast, in regime IIb, the zonal flow
structures become more pronounced, and the maximal horizontal velocity is found
in the bulk region.

(iii) Transitions in the scaling relations Nu ∼ Raβ and Re ∼ Raγ are found. In regime I,
the fitted scaling exponents (β ≈ 0.26 and γ ≈ 0.51) are in excellent agreement with
the theoretical prediction of β = 1/4 and γ = 1/2 for the laminar VC (Shishkina
2016). However, β increases to a value close to 1/3 and γ decreases to a value close
to 4/9 in regimes II and III. The increased heat transport Nu in regimes II and III is
related to the ejection of plumes and larger local heat flux at the sidewalls. The mean
kinetic dissipation rate also shows different scalings in the different regimes.

We note that the present study only focuses on Pr = 10. Further studies, both numerical
simulations and experiments, are needed to address the influence of the Prandtl number
Pr and the aspect ratio Γ on the regime transitions in the high-Ra vertical convection. The
reported scaling relations for Nu ∼ Raβ and Re ∼ Raγ and the observed transitions are
however already an important ingredient to consider to develop a unifying scaling theory
over a broad range of control parameters for vertical convection, to finally arrive at the full
dependences Nu(Ra, Pr) and Re(Ra, Pr) and their theoretical understanding.
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Appendix. Tables with simulation details

Ra Pr Nx × Nz Nu Re Rerms tavg

107 10 256 × 256 17.45 55.91 18.07 s
2 × 107 10 256 × 256 21.01 79.94 23.22 s
5 × 105 10 256 × 256 26.79 127.81 32.32 s
108 10 256 × 256 32.17 181.76 41.49 s
2 × 108 10 512 × 512 38.25 259.57 53.56 s
5 × 108 10 512 × 512 48.48 412.66 74.76 s
109 10 512 × 512 57.83 585.72 96.28 s
2 × 109 10 1024 × 1024 68.87 831.61 124.19 s
5 × 109 10 1024 × 1024 86.97 1305.75 173.85 s
1010 10 512 × 512 104.10 1864.73 224.31 s
1010 10 1024 × 1024 103.72 1867.66 224.39 s
1010 10 2048 × 2048 103.57 1869.23 224.48 s
2 × 1010 10 2048 × 2048 123.38 2647.58 290.75 s
5 × 1010 10 2048 × 2048 155.63 4191.51 406.88 s
6 × 1010 10 2048 × 2048 168.23 4411.20 434.19 4000
7 × 1010 10 2048 × 2048 177.07 4698.16 462.49 4000
8 × 1010 10 2048 × 2048 184.72 4989.32 489.22 4000
9 × 1010 10 2048 × 2048 191.77 5243.58 514.73 4000
1011 10 2048 × 2048 197.76 5519.30 546.72 700
1.5 × 1011 10 2048 × 2048 224.16 6688.48 666.80 600
2 × 1011 10 2048 × 2048 245.75 7571.25 747.44 1000
3 × 1011 10 4096 × 4096 274.91 9035.54 908.88 600
4 × 1011 10 4096 × 4096 301.02 10157.67 1030.33 600
5 × 1011 10 4096 × 4096 327.13 11371.01 1118.77 400
6 × 1011 10 4096 × 4096 350.12 12071.13 1189.22 400
7 × 1011 10 4096 × 4096 370.41 12852.20 1297.32 600
8 × 1011 10 4096 × 4096 388.00 13599.04 1404.98 500
9 × 1011 10 4096 × 4096 402.48 14329.93 1509.09 500
1012 10 4096 × 4096 416.76 14969.80 1652.75 538
1.3 × 1012 10 4096 × 4096 455.39 16886.46 2001.21 318
1.5 × 1012 10 4096 × 4096 476.91 18047.30 2194.89 304
2 × 1012 10 4096 × 4096 533.62 20368.53 3024.04 500
3 × 1012 10 4096 × 4096 608.89 24315.69 3851.81 307
4 × 1012 10 4096 × 4096 670.80 27518.31 4610.48 600
5 × 1012 10 4096 × 4096 721.14 31241.75 5532.71 400
5 × 1012 10 6144 × 6144 719.14 30901.58 5549.52 200
6 × 1012 10 4096 × 4096 766.01 33418.22 6018.00 339
7 × 1012 10 4096 × 4096 804.78 35765.90 6256.97 442
1013 10 6144 × 6144 894.12 42328.91 8008.78 170
1013 10 4096 × 4096 896.63 43023.82 7955.93 400
2 × 1013 10 6144 × 6144 1125.87 55947.28 9598.67 250
5 × 1013 10 6144 × 6144 1523.18 81719.17 12837.24 200
1014 10 8192 × 8192 1890.36 109546.69 16289.48 160
1014 10 6144 × 6144 1907.95 109022.39 16615.48 150

Table 2. The columns from left to right indicate the following: the Rayleigh number Ra, the Prandtl number
Pr, the grid resolution Nx × Nz, the Nusselt number Nu, the Reynolds number based on maximal vertical
velocity Re (averaged over horizontal direction), the Reynolds number based on root-mean-square velocity
Rerms, the time tavg used to average Nu and Re. The aspect ratio is fixed to 1 for all the cases. ‘s’ means that
the flow is steady. Cases indicated in blue and italic are used for grid independence checks. We note that the
difference of Nu for two different grids is always smaller than 1 %, and the difference of Re for the different
grids is always smaller than 2 %.
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