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ABSTRACT

An IBNYR event is one that occurs randomly during some fixed exposure
interval and incurs a random delay before it is reported. Both the rate at which
such events occur and the parameters of the delay distribution are unknown
random quantities. Given the number of events that have been reported during
some observation interval, plus various secondary data on the dates of the
events, the problem is to estimate the true values of the unknown parameters
and to predict the number of events that are still unreported. A full-distribu-
tional Bayesian model is used, and it is shown that the amount of secondary
data is critical. A recursive procedure calculates the predictive density; however,
an explicit formula for the predictive mode can be obtained. The main compu-
tational work is the evaluation of an integral involving the prior density of the
delay parameters, but this can be simplified in the exponential case using Gam-
moid approximations.
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1. INTRODUCTION

An IBNYR (Incurred But Not Yet Reported) claim in insurance is an event
whose occurrence in some fixed exposure interval is not known until some later
date because of random reporting delays. These delays may be administrative in
nature, or may be due to the type of the covered contingency, as in the case of
occupational illness. With these claims whose existence is not yet known are
usually grouped IBNFR (Incurred But Not Fully Reported) claims, whose exis-
tence is known but whose cost development is incomplete, as in long-term ill-
nesses or rehabilitation following accidents. Together these claims make up the
IBNR portfolio for a given exposure year. The correct prediction of the total
number of such claims and their ultimate total cost are of critical importance to
insurance companies in the continuing process of setting up and modifying their
" loss reserves " for each of their policy coverage exposure years. Improper esti-
mation leads to fluctuations in financial results, missed opportunities for loss
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control, increased regulatory scrutiny, and other problems; thus, there are many
pressures for making correct IBNR forecasts and updating them as new infor-
mation becomes available.

This paper formulates a basic, continuous-time Bayesian model for predicting
the total number of IBNYR claims arising in a given exposure interval, when
only an incomplete number of such claims have been reported by some point in
time. In addition to being uncertain about the rate at which events occur, we
suppose that the parameters in the distribution that governs the random repor-
ting delays are also uncertain, a priori. For a claim that actually has " surfaced ",
we permit various cases of additional information about occurrence and repor-
ting dates that might be available. We shall see that the problem of predicting
the number of as-yet-unreported events cannot be easily separated from the
problem of estimating the unknown delay parameter(s). Similar problems arise
in other fields, such as survey sampling by mail, and estimating undetected bugs
in computer software (JEWELL [1985a] [1985b]).

The IBNR problem has been studied extensively in the actuarial literature,
primarily with models where the "developed costs" are reported periodically
after the exposure year is over. (STRAUB [1972], KRAMREITER and
STRAUB [1973], BUHLMANN, SCHNIEPER, and STRAUB [1980]. Many other refe-
rences and a convenient summary through 1980 may be found in VAN EEG-
HEN [1981]). IBNYR claims are often called "pure IBNR"; other names for
IBNFR are: IBN-Enough-R and Reported-But-Not-Settled. The simultaneous
availability of several exposure years' data (over varying development intervals)
leads to the infamous " IBNR triangle" of data, from which the total ultimate,
costs of all exposure years to be forecast simultaneously. BUHLMANN, SCHNIEPER
& STRAUB [1980] first emphasized the additional predictive power available in
reporting both quantized counts and costs for the various development years, as
have HACHEMEISTER [1980] and NORBERG [1986] in his recent comprehensive
model. KAMINSKY [1987] focuses exclusively on count prediction problems and
KARLSSON [1974] [1976] considers the growth in mean counts and costs with a
known continuous reporting delay process. A recent paper by HESSELAGER &
WITTING [1988] introduces unknown quantized delay parameters into a credibi-
lity prediction. With these exceptions, one could characterize the field as one in
which the solutions are more notable for their ingenuity than for the light they
shed on the underlying processes.

We believe the inherent difficulty of estimating even just counts and delays
simultaneously has been underrated in these "all-in-one", cost-oriented, discre-
te-time models. Therefore, in this paper, chosen to examine in great detail only
the single exposure-year, continuous-time prediction of unreported events. Later
papers will explore the additional complexities introduced by quantized time,
multiple data-sources, and simultaneous prediction. Currently, the development
of a good model for cost evolution over continuous time appears to require a
long-term research effort, one that we believe will use the basic understanding of
the event generation and reporting processes developed here, but will require
much additional empirical effort to develop an understanding of cost-generating
mechanisms and their evolution over time.
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For reasons that will become apparent, we believe that the point estimators
developed in previous papers, either by classical MLE methods or by credibility
approximations, can only reveal part of the difficulty in IBNYR estimation.
This is why we have adopted an exact, full-distributional Bayesian approach, at
least until various approximations become computationally necessary. Admitte-
dly, this approach leaves us open to the criticism that our answers depend upon
our prior and model distributional assumptions; as we have remarked before
(JEWELL [1980]), this is not a conceptual stumbling block in the actuarial field,
as data and experience from related problems often support such assumptions.
Anyone who wishes to modify these assumptions can easily implement the
necessary changes, thus separating modelling complexity and computational dif-
ficulties, which are always open to compromise and tradeoff. Finally, we believe
that setting up real IBNR reserves must also include reserves for risk, for which
we need a prediction of the spread of final results, not just a point estimator.

We freely admit that this "building-block" model is still far from reality.
Additional comments on this point may be found in section 13.

2. THE MODEL

Our basic assumption is that the events of interest are generated by a homoge-
neous Poisson process with rate parameter X (events/year) over some fixed inter-
val (0, T] (the exposure interval). Thus, there are an unknown number,
h = n (T), of events at unknown occurence epochs (accident dates) xx, x2,. •., xn,
given n = n. It follows that n has a Poisson distribution with parameter XT, and
that these epochs (with arbitrary numbering) are, a priori, mutually independent
rvs, uniformly distributed over (0, T\.

Each event j is assumed to have associated with it a positive random waiting
time (reporting delay), Wj > 0, such that its observation epoch (reporting date) is
pj = Xj+Wj (j = 1, 2 , . . . , « ) . We assume that the (wj) are iid rvs, with common
density/(w | 6) and cdf F(w\ 6), where 9 is one or more unknown delay para-
meters) ; both / and F are zero for w < 0.

Our Bayesian assumption is that X and 9 are random quantities that have a
known prior joint density, p(X, 9). In fact, in this paper we shall assume they are
a priori independent, with individual prior densities, p (X) and p (8), respectively,
which we assume can be identified from previous studies of claim frequency and
reporting delays. (See discussion in section 13). We learn about these parameters
through an experiment that observes all reported events in some observation
interval (0, t ] , where t > 0 is also continuous. As shown in figure 1 (with t > t),
this willl lead to an observed number of reported events, say r(t), consisting of
these events j = 1, 2 , . . . , n for which yj<t; the remaining unreported events,
u(t) = n(T) — r(t) in number, will be those for which yj > t. (Where there is no
confusion and / is fixed, we shall write simply u = n — r). Section 3 considers
various possibilities for reporting secondary data, Dj, that might be associated
with each observed event j .
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FIGURE 1. IBNYR process with n = 5, r = 3, and t> T.

time

Observation Interval

Given the above assumptions, the observed total data, D = \D{, D2,..., Dr\,
and the prior densities p{X) and p(B), the parameter estimation problem is to
determine the posterior density p(X,d\ D), and the event prediction problem is
to determine the predictive density p(u\D), and hence the distribution for
fi = r+u.

3. OCCURENCE, REPORTING, AND DELAY

Let us examine in more detail the relationship between occurrence and reporting
dates, the delays, and the exposure and observation intervals. It can be seen that,
given 0, every epoch r.v. pair (Xj,yj) is statistically independent of every other
such pair, with common joint density:

(3.1) p{x,y\B) = -f(y-x\d), (<d<x<T)(x<y<oo)

zero otherwise, as shown by the semi-infinite wedge-shaped region in figure 2.
Let Rj be the random outcome that event j is reported by time /, i.e., that (x,, pj)
is a pair for which x} < y} < t. Then, the mixed density p (x, y, Rj I 6) would be
(3.1) limited to the cross-hatched area in figure 2. The marginal densities of
reported epochs depend upon whether t < T or t > T, viz:
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(3.2) p(y,Rj\0) =

and

-F(y\d)
T

(0<t<T)

-[F(y 6)-F(y-T 6] (t>T)

, (0<y<t)

(3.3) p(x,R,\d) = — F(t-x\6). (0 < x < min (t, T)).

FIGURE 2. Regions of definition of p(x, y! 0) and p(x, y, Rj I 6).

\

Overall, the probability that a pair (Jc,-, yj) will be reported, without regard to the
actual dates, is just the probability of the shaded area in figure 2:

(3-4) p(Dj\0) = — F(w I 6) dw,

where u+ = max (0, u).
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Now consider again the experiment illustrated in figure 1. When an event j is
reported, it is, of course, included in the count r(t) = r. There are four possibi-
lities for observing secondary date, Dj, about this event, creating individual
secondary data likelihoods, p (Dj | 6):

Type I Data. Observe Both Occurrence and Reporting Dates (Xj, yj)

(3.1') pip, \6) = j Ayj-Xj \0) = j f(wj I 8)

(i.e., observing (xj, yj) is equivalent to observing only wj);

Type II Data. Observe Only Reporting Date (yj)

(3.2') p(Dj I 0) = 1 [F(yj I ff)-F((y~ T)+ I 6)];

Type III Data. Observe Only Occurrence Date (xj)

(3.3') piPj\6) = jF(t-xj\6);

Type IV Data. Observe Event Reported But No Dates

1 C
(3.4') p (Dj \0) = — \ F(w\6)dw = n(t\ 6), say .

T J

It seem intuitive that decreasing information about 6 is provided as we go from
Type I to Type IV data; our numerical examples will show that there are strong
differences. In practive, of course, there could be a mixture of different types of
data from different events. Remember also that t is considered fixed, so that
knowing r = r(t) means knowing one number; if we know in fact the curve r(s)
(0 < s < t), that is tantamount to having Type II data for all events. Finally, note
that information of the type " an event has occurred but we have not received
the paperwork" would have a likelihood \—ll(t\d), but be included in the
count r\

4. THE DATA LIKELIHOOD

Assume temporarily that t > T, and suppose that h(t) = n. Then the conditional
likelihood for the total data D will be:

(4.1) p(D\k,e,n) = F [I p(D}\6)\[\-n(t\0)Y-r.
1! 1!... !!(«-/•)! |_ j=\ J
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(If any of the Dj were from Type IV, then the multinomial coefficients
(1! 1!... 1!) would be modified here and in (4.2); however, only the ratio
(«!)/(« — r)\ is of importance in the sequel).

Now, given X, the distribution of n(T) is Poisson {XT), and forming the pro-
duct to give p (D, n I X, 0) results in a fortuitous cancellation of n!, leaving only
terms in n — r— u. Marginalizing over all values of u > 0, we obtain the final
data likelihood:

(4.2) p(D\l,6)=\i\ p (Dj I 0)1 ^L e-XTn« ' fl>. (t>T)

If t < T the above argument is till correct with regard to r(t) and the (Dj) (there
wil be less data with smaller t, on average), but now n represents only the events
from (0,/], which have Poisson parameter (Xt). Repeating the above analysis,
we find that T in (4.2) is simply replaced everywhere by / when t < T. For
convenience in the sequel we define:

(4.3) T = min (t, T),

and note that, if we replace Tby x everywhere in (4.2), it will then be correct for
any observation interval.

5. MAXIMUM LIKELIHOOD ESTIMATES

It is worthwhile to examine the maximum likelihood point estimators for X, 6,
and h, so that they may be later compared with our Bayesian results.

Assume first that 0 and hence the delay distribution are perfectly known. From
(4.2), we obtain the MLE for X:

(5.1) / " "
TlJ(t 6)

so that a point estimate for n(T) would be:

(5.2) h(T) = {-x)n(t 6)

If t > T so that x = T, (5.2) says simply that a point estimate of the number of
events inflates the observed counts by the known factor IJ(t\ 6); if t < T, then
one must additionally inflate by T/t to take care of the smaller observation
interval. Clearly, such estimates will be unrealiable when t is small because of
these inflation factors; on the other hand, the estimate will be good when t is
large primarily because nearly all events will be reported!

Conversely, suppose that X is known exactly, but that we wish to estimate a
scalar parameter 6 in the delay distribution. Let ^fj(d I Dj) = In p (Dj I 6) be the
appropriate log-likelihood of secondary data for each reported event. From (4.2),
the necessary condition for the MLE of A is:
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^ d^(0 I D.) dn(t I 0)
,,3, J ^ W - ^ f M .

The actual solution depends in a complicated way upon the form of the delay
distribution and the different possibilities for secondary data. If no dates are
given with each reporting (Type IV), we find the trivial estimate:

r(t)
(5.4) 17(t\ 9) = — .

AT

Other secondary data will generally provide a more interesting estimate; for

example, for Type I, — becomes d In f(Wj 0)/d0, thus introducing the
dO

samples (wj).
When both A and 0 are assumed to be unknown parameters, both (5.1) and

(5.3) are necessary conditions to determine the joint MLE (A, 9), i.e., we require
the simultaneous solution of:

( 5 5 ) , -v- , - ^ - , v - - „ SlnH(t 0)

I7(t I 6) r(t) d0 30

Now, if we assume that no dates are reported, we find this second equation is
redundant! In other words, with all Type IV data, A and 0 cannot be determined
separately, and there is no estimator w! Other secondary data will give usable
separable estimates, but these are dependable only for large r. For example, with
Type I data, if w = (£Wj/r) is sufficient for 6, one can show that the RHS of the
second equation in (5.5) is negible when r is very large, and one obtains the
usual full-sample MLE from fIf(Wj I 0), even though not all events have been
observed. We have also tried using the "maximum likelihood predictor" of
KAMINSKY [1987] without success.

In short, the MLE approach is not very useful for out model when the obser-
vation interval is short, when only a few events have been recorded, or when no
dates have been observed.

6. DAYESIAN FORMULATION

In a Bayesian formulation, we must specify our prior information about A and 0,
here assumed to be independent, a priori. One can, of course, use numerical
methods with any empirical priors, but we shall assume analytical priors in
attempt to show the general behaviour of our model under reasonable assump-
tions. A Gamma (a, b) density l for A is a convenient model for unimodal infor-

e~
x is Gamma (a, b) means p (x I a, b) = (x > 0).

r(a)
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mation, and, in view of the form of (4.2), would be a natural conjugate prior
with 6 fixed. One can select a and b, for example, from the first two moments,
W\l\ = a/band V\k\ = a/b2.
Now, given k, n(T) is Poisson (kT) and independent of 6, so that, prior to the

experiment, our opinion is that the number of events generated has a Pascal
(a, T)/(b+T)) density2. In other words, prior to data, the predictive moments
are:

'-r<

(6.1) g\n(T)\ = \ —
aT

~b

aT

~b)a

If the prior mean count is held fixed, then a is a shape parameter that can be
used to adjust the prior variance, which is naturally always larger than that of a
Poisson distribution because of the uncertainty about X.

The choice ofp(8) is more difficult, as 8 may enter/(w I 8) and the p(Dj I 8) in
a variety of different ways; in fact, 8 may stand for a vector of delay parameters
that must be estimated! For the moment, we will leave/(w I 8) and p{8) arbi-
trary, and later specialize to particular forms to show typical results.

As the posterior parameter density, p(k,d\D), is not very revealing for any
choice of priors, we pass to the central problem of concern, the prediction of the
unreported event count, u(t) = n(T) — r(t). Under the assumptions of our model,
if the parameters are given, the reporting delays simply filter the original Pois-
son process with fixed probabilities; thus, u{t) will also be Poisson with reduced
parameters, using the usual decomposition independence arguments. If t > T,
then the parameter will be kT[\-II(t\ 8)]. On the other hand, if t < T, the
unrecorded events in (0, t] have the parameter kt [ 1 — II(t I &)], to which must be
added the unobservable events in (t, T] with parameter k(T—t), giving a total
Poisson parameter for all unreported events generated in (0, T] of
k[T—tII(t I 6)]. Combining these two different forms for p(u I k, D) with appro-
priate versions of (4.2), we obtain:

(6.2) p(u\D)ozhk(u\D)he(u\D),

with

(6-3)

and

hx(u\D) = ~ \ kr+ue-kTp{k)dk,
«! J

(6.4) he(u I D) = f I n P(Dj I 0)1 | l - (- j n(t I d)Y p(6) dd,

2 x is Pascal (a, n) means p(jc| a, 7r I =
r(a)x\

(1 - n f nx (x = 0, 1, 2,...).
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where oc, " proportional to ", indicates that only terms that vary with u need be
retained. Note, that there has been a fortuitous cancellation in the term
exp(—AT/7(H 6)) from the likelihood, so that the predictive density can be
represented as the product of two factors:

— one which depends upon r = r(t) and the prior p(k);
— one which depends upon r, the secondary data types and the dates reported,

and he prior p{6).

This decomposition occurs in other models where one predicts unreported Pois-
son events (JEWELL [1985a] [1985b]).

With the choice of the Gamma (a, b) prior for X, we obtain:

, r(a+r+u) ( T
(6.5) hx(u\D)= A

that is, of the form of a Pascal (a + r, T/(b+T)) distribution. Of course, there is
further "shaping" of p(u I D) to come from he(u I D).

For later convenience, we note that, with (6.5), the predictive density can be
written in recursive form:

(6.6)
p(u+l \D) _ fa + r+u\f T \ Vhe{u+\ \ D)

p(u D) y u+\ Jyb+Tj I he(u\D)

7. PREDICTION WITH KNOWN DELAY PARAMETERS

As preparation for more complicated cases, we first examine the prediction
problem when d is assumed to be known exactly. Only the term involving
n(t I 6) is then significant in he{u I D), and we have:

(7.1)
u\ |_ b+T

which is a Pascal predictive density, with first two moments:

{a + r)T \\-{x/T)n{t\d)'
(7.2) g[u D) =

(7.3) ^ M | D } = %\u\D

+ {z/b)n{t\6)

T b+T

[_b+xn(t\d)

With no data (t = 0), the moments are identical with (6.1).
If the observation interval is small, (x/T), r{t), and Il{t\6) will also be small,

so that:

(7.4) Z[u\D\J^^U-t{^l\n(t\6^ (r-0)
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showing that out initial estimate of u is at first increased by the initial reports r,
before being diminished by the second-order effects due to increasing t and
77 (t I 0).

If the observation interval is large, t > T and 77 will be near unity, so that:

(7.5) g r l f i | Z ) U ( a + r ) r [\-I7(t\d)]. (t^oo)

l(b+T)j
The first term is T times the usual credibility updating:

(7.6) 8\X\r\ = (l-z)(a/b) + z(r/T); z = (T/b+T);

of a Poisson process parameter with a Gamma prior, given a number r of ordi-
nary undelayed samples from (0, T]. This estimate is then diminished by the
probability 1 — 77 of unreported events ouside (0, t ]. The first term stabilizes
towards the correct value of XT with increasing samples, but it is the second
term that makes the predictive mean of 6 decrease with increasing t. Note also
that the second term in (7.3) approaches unity with increasing t, so that, in the
limit, u is asymptotically (small-mean) Poisson!

8. EXPONENTIAL DELAY LIKELIHOOD FACTORS

We now consider the additional variation due to uncertainty in the delay para-
meters^), and the different " learning " effects that occur with various secondary
data. For simplicity we use the over-familiar exponential density,
f(w\ 6) = #exp( — 6w). However, we expect the phenomena described below to
be representative of results obtained with more general delay distributions; only
the computational details will differ. A somewhat different approach for
Type IV secondary data only is described in Appendix C.

From (3.1), the likelihood for a Type I datum, Dj = [xj,yj], is:

(8.1) p {Dj I 6) = Lj (6\Dj) = -6e- 8w> (wj = y} - Xj),

where the new notation Lj(d I D;) emphasizes that it is variation in 6 that shapes
he(u I D) (so that, for example, the term T~l here and below can be delected as
uninformative). It can easily be seen that this likelihood is unimodal, with mode
9 = wf\ Data from r such delays would lead to a Gamma-shaped likelihood,
peaked at 6 = (£wj/r)~l, with very small " spread" if a is large. Thus, very large
amounts of Type I data would force he into a form giving the Pascal predictive
density (7.1), with 0 replaced by 6. In this sence, Type I data has a very strong
effect on learning about 6 and in reducing the predictive uncertainty of u.
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For a Type II datum, Dj = {yj], and (3.2) has two cases:

(8.2)

(y>T)

A small y} gives a monotone likelihood, leading to a weak shift in 6 towards
higher values. However, a yj> T gives again a unimodal L, with mode at
9T = -In [1-(77V,)]. If yj>T, one can show that 0 « [>>,—(772)]-', so the
effect is similar to that of Type I data, using a guess of Xj = (772); however,
(assuming comparable 9) one can show that the peak of the likelihood is broader
(less " information ") for Type II data. Thus, for large amounts of Type II data,
and many samples greater than T, the secondary data term in hg will also be
tighty concentrated around the mode, but less so than if Type I information
were available. On the other hand, if most or all of the reporting dates are less
than T, then the likelihood will have a very broad peak or no peak at all. In this
sense, then, Type II data is not as informative about 9, and hence about u, as
Type I data.

For a Type III datum, Dj = \xj\, (3.3) gives:

(8.3)
T

Note that this likelihood is monotone, and depends upon the length of the
observation period. Because this datum is equivalent to {WJ< t—Xj\ it provides
rather weak information about 9, especially as t increases; with many such sam-
ples, we shall see that the main effect is to spread out the prior density.

Every Type IV event gives the same likelihood:

(8.4) D<"e) = l7 ) - £ '
which is also monotome increasing in 9, approaching the asymptote (T/T) more
slowly than any exponential. With many samples, this likehood is very unifor-
mative, and its main effect is to broaden the prior density.

9. COMPUTATIONAL STRATEGIES FOR DELAY INTEGRAL

We now consider various strategies for computing the delay integral (6.4),
which, for simplicity, we rewrite as:

(9.1) hg{u\D)= L(9\D)[K(0)]up(9)
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assuming that the appropriate forms (7.1)-(7.4) are used to calculate
L(6 I D) = nLj(0 I Dj), and the kernel K{6) = [1 -(T/T) Yl(t I 0)]. The first re-
mark is that (9.1) is a rather easy numerical integration for arbitrary p(6), even
when there are several 6 and many values of u are required. However, this does
not give any analytic insight into the shaping of p(u\D) from various data
types.

Continuing our exponential delay example, we now assume that our prior on
the unknown parameter 6 is Gamma (c0, d0), that is, our prior opinion is that
g\S\ = (co/do) and 7\6\ = (r{0})2/co, and that the density is unimodal, with

the mode at 0O = (c0— \)/d$. This is not only a reasonable prior for unimodal
information, but is also conjugate to L(0 I D) for Type I observations.

Our strategy is then to approximate the first two factors in (9.1) by a Gam-
moid function:

(9.2) g{6) = (A6)r e~M,

in the region of the current mode of the integrand (which will initially be 0O, but
perhaps modified as we add terms from L{d\D)). This strategy will convert
(9.1) into a Gamma integral with a convenient analytic dependence on u. The
resulting shape will, of course, be a better approximation to he (u I S), the more
precise is our prior knowledge about 0; however, the results are surprisingly
good with c0 - 3 or 4 and Type I or II data, for reasons that will become clearer
as we proceed. Full details on the Gammoid method will appear in a forthcom-
ing paper.

We now outline this method sequentially, proceeding as if all four data types
are present, with the total r being broken down into rl,r2,ri, and r4 events. It
turns out that the Gammoid coefficients F and A are exactly or approximately
linear in r, so that we shall set F = ry and A = rS for each data type, and
concentrate on the calculation of the unit coefficients, y and S. Only basic results
are given below; additional formulae and computational details may be found in
Appendices A and B.

9.1. Type I Secondary Data

Type I data is the easiest to deal with, as L(0 I D) from (8.2) is exactly Gamma.
We recommend that the prior coefficients be updated as follows:

(9.3) CQ

where w is the average of the (wj) for all Type I data; the current mode is then
redefined in terms of the new coefficients as 0O = (c0— \)/dQ. (If there is no other
secondary data, continue with section 9.5).

9.2. Type II Secondary Data

Data of Type II must be subdivided into two groups: Type Ha consists of the r2a

events with {yj\y>j<T\, and Type lib consists of the rlb events with
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Considering the lib data first, we can show that the likelihood (8.2) for this
data is unimodal and well-fitted by a Gamma with unit parameters given by
(A.4). To a first approximation, one can take:

(9.4) y 2 f t » l ; S2b

where yb is the average of the r2b Type lib data values (yj). Therefore, our
strategy with this data is to once again update the coefficients:

(9.5) co^co+r2by2b; d0^- do + r2bd2b,

using either the exact approximating coefficients, or (9.4). As before, the current
mode, 0O > should be redefined from these new coefficients. From this point on,
the Gammoid approximation coefficients usually depend upon 60, in a weak
way. Therefore, until section 9.6, we recommend keeping 60 fixed.

The likelihood factor for Type Ila data is monotone increasing, with no mode.
However, we have found that a Gammoid approximation is still locally reaso-
nable. To a good approximation:

(9.6) y2 f l»l; 82a~\ya- -*-m260,

where y" and m2 are the first and second moments of the r2a data points {yj),
both small by definition of Type Ila.

9.3. Type III Secondary Data

Type III data is very uninformative, especially for large values of t, with a like-
lihood is similar to that of Type Ila data, but with all terms in y, replaced by
t—Xj. (9.6) still gives an initial approximation:

(9.7) y3«l ; S3~-(t-x) m280,

where m2 is now the second moment of (t—xj). Both coefficients become smaller
as t increases, reflecting the uninformative nature of the data {Jc, = x}< ys < t\,
and it is then necessary to use the exact formulae.

9.4. Type IV Secondary Data

With this minimal information {yj<t\, (8.4) is monotone increasing, and
depends only on r and t. To a rough approximation:
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(9.8)

1
— t
3

![
t2-(T-t)2

(0< t<

T)

T)

We have found usually it is necessary to calculate the exact unit coefficients at
the current mode. In fact, for large t, S4 can become negative, in which case we
recommend setting <54 = 0, and approximating locally by a polynomial.

9.5. The Kernel K{6)

As discussed in Appendix B, the kernel is monotone decreasing, much like a
negative exponential. Therefore, a reasonable approximating procedure is to set
yK = 0, and find 8K from (B.9) at the current mode. For a quick approxima-
tion:

(9.9) IT1 U<T)

t - - (t>T)

SK gives the important dependence of hg upon u, since d0 will be updated by
AK = SKu, and c0 will not change with u.

9.6. Completing the Computations

With all of the above approximations completed, the final coefficients of the
Gammoid form 6c~l e~ed representing all factors in (6.4) will be:

c = d =

(9.10)

A=

If desired, one can now make a second pass through all of the approximating
formulae using the "final" data-only mode, 60 = [(c— \)/{do+A)], to see if there
is a significant change in the unit coefficients, and hence in (9.10). In our limited
experience, the coefficients will be little modified if the mode of the prior den-
sity or of the Type I or Type lib data likelihood is reasonably concentrated; in
other cases, several iterations may be required. The integral of (9.1) is now
r(c)/dc, but only d is informative for u, so we may just as well take:

(9.11) hg(u I D) = d~c =
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For a quick approximation, one could use the initial terms of all the approxi-
mations to compute A, 8k, and r. If all the data is of Type IV and t > T, a
different approach to calculating he is possible using a Beta prior; details are in
Appendix C.

10. CALCULATING THE PREDICTIVE DISTRIBUTION

From (6.6) and (9.11), we obtain finally a recursive relationship for the predic-
tive density:

(10 1 (
p(u\D) V "+1 )\b+TJldo+A+SK+SKuj

whose values are calculated by settingp(0 I D) = 1, "bootstrapping" up through
" sufficient" values of u, and then renormalizing. Moments and the tail distri-
bution are then obtained numerically. As this recursive method is very efficient,
it is easy to explore the full-distributional implications for different parameter
and data values.

If one still insists on a point estimator for the number of unreported events,
the predictive mode can be obtained analytically. Let u* be the (usually non-
integral) solution to:

(10.2)
{ b+T

this solution always exists, and can be obtained iteratively from (10.2), starting
with an arbitrary guess on the RHS; convergence is rapid. The predictive mode,
u(D), is then the integer greater than or equal to u*.

This type of point estimation is related to an old and well-known formula in
population biology, associated with LAPLACE, PETERSEN, and others
(JEWELL [1985a]). In section 12, we shall see that (10.2) also has an intersting
interpretation in terms of credibility predictors.

Of course, the great advantage of (10.1) is that it provides the complete pre-
dictive distribution for u. As we shall see in the following numerical example,
the variance of this distribution remains quite substantial with even a large
amount of data. This knowledge is crucial in making a proper risk assessment of
IBNR reserves.

11 . NUMERICAL EXAMPLE

To illustrate the above theory, we analyzed a numerical example which assumes
that our prior knowledge is correct in the means, but is not especially precise.
Based on these results, the reader can easily extrapolate to cases where initial
knowledge is different from reality, or, conversely, is very accurate.
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Specifically, we assumed that X has a Gamma (2, 0.02) prior density, which
makes <S\X\ = 100, °P\X\ = 5000; for convenience, we take T = 1 year, which
makes the mean total rate of IBNYR events 100 per year. This leads to a Pascal
(2, 1.02"'), density for n, with r{«} = 100, r\n\ = 5100, and h = 49; the 5%,
25%, 75%, and 95% fractiles are: «0 5 = 16.5, «2 5 = 4 7-0, nJ5 = 134.5, and
n 95 = 238.1, respectively, which is quite a broad range, a priori. We assume that
6 has a Gamma (4,6) prior density, so the prior mean delay is %\d~l\ = 2.0
years, and ^\8~x} = 2.0 years2.

For the purpose of simulation, we further "stacked the deck" by assuming
that the true value of the delay parameter was 8 = 0.5 per year, and, whatever
the true value of X was, that exactly « = 100 IBNYR events were generated
during the exposure year. Table 1 shows a few of the simulated values, arranged
in order of increasing (_^), and hence approximately increasing in (w,). In the 100
samples, the mean delay is 2.35 years, with sample variance 5.35 years, so the
coefficient of variation is about right, but the delays are a little long, on average.
Figure 3 shows the curves of n(t I 6) and K{6) = [1 - ( T / T ) 17(t I 6)] versus t, for
the true value 6 = 0.5. The ragged curve is the simulated count history for
reported events, r(t).

TABLE 1

EXTRACT OF 20 OF THE SIMULATED VALUES FOR NUMERICAL EXAMPLE (8 = 0.5)

043
022
095
330
112

570
390
600
902
118

269
728
282
055
882

036
933
311
349
563

.206

.234

.267

.527

.629

1.412
1.430
1.483
1.493
1.558

2.820
2.823
2.872
2.985
3.055

9.128
9.408
9.616
11.194
12.967

.163

.213

.172

.198

.517

"841
1.040
.883
.590
1.440

2.551
2.095
2.590
2.929
2.173

9.092
8.475
9.305
10.845
12.403
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PROBABILITY FACTORS & ACTUAL COUNTS
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F I G U R E 3. Observation Probability, Kernel and simulated count history versus t(T = 1, 8 = 0.5).

11.1. Type I Data Analysis

In the first analysis, we assumed that all data was of Type I, and we examined
observation intervals of / = 0(0.5)10.0 years (remember T = 1 year, and the
mean delay is 2.0 years. The results are summarized in figure 4, which shows
r(t), £{n\D\ = r(t)+ %\u(t) I D\, n(D) = u(D) + r(t), plus the four fractiles of
(n I D) mentioned previously, all versus t. (Continuous curves are shown for
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convenience). Of course, these calculations were carried out by first finding the
complete predictive densities, p(u\D), (over the range [0,1000]) using the
appropriate sifted data for the current value of /, and then finding the summary
statistics; this took about 10 seconds on a PC-AT for each value of z! All results
were translated from predicting u to predicting n for ease in making compari-
sons.

PREDICTION WITH TYPE I DATA
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FIGURE 4. Predictive mean, mode, and fractiles versus t for Type I data (T= 1).
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From the figure, it can be seen that the point estimators, the mean and the
mode, both wander around the true (and ultimate) value of 100, although, for
reasons we do not completely understand, the mode seems to be less " tricked "
by intermediate fluctuations in r(t), once the mode has risen from its initial low-
value of 49 until after, say, t > T. It is extremely satisfying to see how the
" Bayesian confidence intervals " (predictive quantiles) converge with increasing
t, although it must be remembered that much of this is due to the decrease in
1 -TI(t I 8), and not just the learning due to D\

PREDICTIVE DENSITY t = 4 T
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FIGURE 5. Predictive density for Type I data (t = 4 T).
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PREDICTIVE DENSITY t = IT
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FIGURE 6. Predictive density for Type I data (t = 8 T).

Specific details for t = 4 years (77 = 0.824) are as follows: the data gave
r = 74 reported revents, plus secondary information leading to parameters
r = 74, A = 94.509, so that c = 78, d = 100.509, and the new (and final) mode
was 0O = 0.7661, from which SK = 3.4368. The resulting p(u\D) is shown in
figure 5, with %\ u I D\ = 20.28, T\u\D} = 143.6, and u(D) = 14 (there are,
in fact, 22 events outstanding). If we increase the observation to four time con-
stants at / = 8 years (77 = 0.976), there are now r = 98 reported events, the
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parameters are F = 95, A = 184.436, so c = 97, of = 190.436, and the new mode
is 0O = 0.515, from which SK = 7.4573. /?(w|Z)) is shown in figure 6, and
^{w I D\ = 3.55, 2^M I D) = 6.6, and u{D) = 2, which is exactly the number
of unreported claims. We first found ii(D) directly and then through (10.2),
starting with initial estimates of u* = 100; in all cases, the iterative approach
converged correctly after 5-15 iterations.

PREDICTION WITH TYPE II DATA
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FIGURE 7. Predictive mean, mode, and fractiles versus t for Type II data (T = 1).
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11.2. Type II Data Analysis

In the second analysis, we assumed that all data was of Type II, but otherwise
used the same values as above. Figure 7 summarizes the results, which should
be compared with figure 4 for Type I data. Roughly speaking, the results are
similar for t < T and t> AT (twice the mean delay), but are much more variable
in the intermediate region; note particularly how small fluctuations near t = 0.5
and t = 4.5 "jolt" the predictors more in Type II than in Type I. This poorer
behaviour is, of course, due to the missing (xj) in Type II, which makes the
estimation of 6 quite unstable in this region. For t <T, there is little learning
anyway, and for t > 4 T, the approximation Wj ~ yj—0.5 T is good enough.

The main change in computation with Type II data is that it is desirable to
iterate a few times to find the correct mode, 60. For / = 4 years, four iterations
stabilized at 0O = 0.7998, giving c = 74.639, d = 92.054, and SK = 3.4340, from
which g{ii I D) = 19.69, f\u\D\ = 183.4, and it{D) = 12. For t = 8 years,
two iterations are enough to give 60 = 0.5240, c = 97.055, d = 183.298, and
SK = 7.4565, from which &{u I D) = 3.29, T\u I D\ = 6.06, and u(D) = 2.
The forms of the predictive densities are similar to those shown for Type I data.
Again, u* always converged rapidly to the true answer.

11.3. Types III and IV Data Analysis

The computations with Type III and IV data are much more difficult, and give
completely different behaviour than that described above. Considering first that
we have only Type IV data (counts only), we obtain the summary results shown
in table 2. At first, with t small, we get the modest improvements in the Pascal
marginal density that were observed above. However, as soon as t becomes
larger than T, there is a steady and dramatic increase in all the predictors as r
increases, and our point estimators grow without boundl (In fact the need for
evaluation over an increasingly wide range of u-values soon exceeds computer
capacity, which accounts for the? beside the larger numbers in the table).

Why does this happen? As before, there is at first some instability in finding
the current mode, which may require 5 or 10 "assisted" iterations. Then, begin-

T A B L E 2

R E S U L T S F O R T Y P E I V D A T A V E R S U S t(T = 1)

t/T r(t) 9Q g{u\D} u(D) y{i|D}
0 0 0.000 100.0 49 5100

0.5 3 0.938 102.2 72 2975
1.0 17 1.990 132.6 96 4144
1.1 22 2.178 259.0 209 12290?
1.2 26 2.246 450.5 400 23280 ?
1.5 35 2.177 1038 987 53760 ?
2.0 46 1.905 1766 1715 89490?
4.0 74 1.237 3370 ? 3320 ? 172300 ?
8.0 95 0.777 4561 ? 4511 ? 232900 ?
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ning about t = 2T, S4 becomes negative, and we must change to y-only model-
ling, as described in Appendix B. And, admittedly, the Gammoid approxima-
tons for u small are also not as good as in previous cases. But these are second-
order effects.

The real reason for the behaviour shown in table 2 is that there is less and less
information in Type IV sampling as t increases] As r increases with t, the like-
lihood [IJ(t\ d)Y "destabilizes" the prior p(6) by diffusing the mode in h0,
while at the same time hx is increasing. This loss of information about 6 and
increase in the estimate of X can be seen most clearly in (10.2); there is no
technical difficulty in converging to the correct mode, but it is clear from the
magnitude of the parameters that the mode must move to larger and larger
values as r increases. (But remember we are assuming only that r is known for
each t; knowing the history of r(t) would bring us back to Type II).

Besides the lack of information in the likelihood, the behaviour is greatly
influenced by our prior certainty about the value of S. To see this, let us keep
t = 4Tfixed, and increase both c0 and d0 so that the prior mode of 0 (which is
the prior mean of d~l) is kept fixed at its true value of 0.5. As shown in table 3,

TABLE 3

RESULTS FOR TYPE IV DATA AND t = 4 T, SHOWING EFFECT OF INCREASED PRECISION IN GAMMA PRIOR

co
4
8
16
32
40
50
64
128
Inf

do
6
14
30
62
78
98
126
258
Inf

'o
1.237
1.036
0.875
0.747
0.714
0.683
0.653
0.588
0.500

DENSITY

S{u\D]
3370?
3008?
2407?
1373
890
270.0
32.9
18.3
16.0

u(D)
3320?
2958?
2356?
1323
839
212
25
17
15

y(n\D}
172300 ?
154300 ?
124100 ?
73050 ?
49370 ?
19760 ?
248
38
19

as the prior precision increases, the mode of the integrand shrinks slowly
towards 8 = 0.5 (of course!), and the various predictors are pulled in towards
more reasonable numerical values. But notice also that values of say, c0 > 60 are
needed to make the values comparable to those obtained with Type I or II data;
this is an extraordinary amount of precision, corresponding to a prior standard
deviation for d~l of less than 0.25 years, when the mean is 2.0 years!

Finally, we can also see what is happening mathematically by examining the
details involved in computing the ratio h(u+ 1 I D)/h(u I D) in (6.6) (10.1). For
/ = 4 years and the original parameters, we find 00 = 1.237 after ten iterations,
giving values of F = 4.4257, A = 0 (we use polynomial-only approximation),
and 8K = 3.3994. If we compare these with values found previously, we see that
it is much easier for the ratio to approach unity more quickly than before. In
other words, because the Pascal n = (T/(b+T)) = 1.02"1 is already very close
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to one, there is little chance to shape the density downward while it is growing
due to increased r. So, while p(u I D) is increasing, the ratio is quickly becoming
unity, so that the tails of the predictive density must look much like a Pascal
(a + r(t), n) density. In fact, the means of that Pascal density are 3800 and 4850
for t = 4 T and t = ST, respectively, which are comparable to those in ta-
ble 2.

In contrast, from the analytic form of the shaping ratio, we see that if
(co—\)/do is fixed at 60, then, as the parameters increase to larger and larger
values (with moderate values of u), the ratio approaches exp (— 60dK), thus
accounting for the convergence shown at the end of table 3. Convergence is also
improved with strong prior knowledge about the parameter 6, as this makes the
first ratio, 77 = (T/(b+TJ) smaller for the same g\d\.

Turning now to Type III data, we see that similar convergence problems will
be encountered because of the shape of the likelihood. Results are analogous to
those in table 2. Although the growth is postponed somewhat, the increase in r
with t inevitably leads to large increases in the estimators, unless we have very
strong prior assumptions.

In summary, we see that not having at least the date of reporting of the
IBNYR events leads to Bayesian predictions that, while mathematically correct,
are operationally useless. This is not a result of using Bayesian analysis, but due
to a more fundamental problem, namely, that Type III and Type IV data are
uninformative (some might say, anti-informative) when the priors on X and 6 are
not sufficiently precise. In a certain sense, this behaviour is the analogue of the
non-existence of MLE's for Type IV data discussed in section 5.

12. INTERPRETATION OF THE PREDICTIVE MODE

There is an interesting interpretation of the predictive mode (10.2) in terms of
posterior parameter means that holds even for arbitrary p(6) and data types.
First note that the predictive mean of u is:

%\U\D\= W\XT I ~-n{t\6) \\D\,

and that, because of the factorization (6.2), we might expect the dependence on X
and 0 to be somehow separable. Recall also that, with a Gamma (a, b) prior on
X, a measurement of r Poisson events in (O, T] gave in (7.6) a posterior para-
meter mean, if{X I r j = {a + r)/(b + T), in credibility form.

Now, rewrite (10.2) for general p(0) as:

[K(8)]u*L(d\D)p(6)d6

(a+Y+u
(12.2) M(Z)) = H * + 1 = \Tx

\ b+T

f h _JL

f [K(d)]u"L{d\D)p(d)de
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We see that the first term in brackets is, in fact, W{ X I r+ u*}, the posterior mean
for X under the observation of r+u* samplesl Similarly, the measure
[K(9)]"' L{9 I D)p(6) is essentially p(9\D, «*), the density of 9 posterior to the
usual data Dplus the "look-ahead" observation ofu* events after the observation
interval is over] Thus, the second term on the RHS may be thought of as
%{[l-(?/T)II(t\d)]\D,u*\.

We admit that a direct argument that it{D) should be approximately like a
separated version of (12.1) using anticipatory data (D,u*) is very slippery
indeed. But this type of result for the predictive mode seems to occur over and
over in filtered Poisson predictions (JEWELL [1985a] [1985b]).

(12.2) and (6.6) also reveal why simple approximations to he are likely to work
well in calculating p(u I D). Because only the ratios of the integrals are used in
the calculations, there is an automatic improvement in the effective accuracy of
the approximation. This fact has already been made explicit in more general
approaches to Bayesian prediction, see e.g., TIERNEY and KADANE [1986].

13. SUMMARY AND DISCUSSION

The main points of this paper are:

(1) The natural formulation of the IBNYR problem is in continuous time be-
cause of the underlying Poisson generation of claims and the continuous
nature of reporting delays.

(2) In addition to observing the number of events, r, that are reported during the
observation period, it is important to record secondary data consisting of the
dates associated with each event in order to improve estimation of the un-
known delay parameter 9; the greatest benefit occurs when the exact delays
are recorded, and the next best is when reporting dates are observed.

(3) The data likelihood reveals that r is used primarily to estimate the unknown
Poisson parameter, A, and the secondary data is used primarily to estimate 9;
however there is an important coupling term between X and 77 (t I 6), the
probability that an event is reported during (0, t ]. The maximum likelihood
estimates of the parameters and of u, the number of events still unreported
by time t, are either trivial or non-existent.

(4) Therefore, a Bayesian formulation, with prior densities on X and 8, here
assumed a priori independent: (i) is a more natural formulation, since
prior information about claim rates and reporting delays is always available
in practice; and (ii) gives more useful results, since it provides a complete
predictive density, p(u\D), for any observed data. In fact, emphasizing
p(u I D), rather than p (A, 6 I D), results in a computational simplification, as
it eliminates the coupling term in the likelihood and gives p(u\ D) as the
product of two factors that depend upon p (A) and p (9), respectively.

(5) The predictive density can easily be calculated for arbitrary priors. With a
Gamma (a, b) prior on A, the essential work is the calculation of the ratio of
two integrals depending upon p{9). This ratio can be easily and accurately
approximated for all types of secondary data, as shown by an example with
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an exponential delay law and a Gamma prior on 8. The numerical compu-
tation of p (u I D) then proceeds rapidly using a simple recursion, from which
the mean, variance, tail distributon, etc., of u can be found. If a quick point
estimator is needed, the predictive mode u(D) can also be found from a
simple iterative formula that always converges rapidly.

(6) A numerical example reveals that there is substantial residual variance in
p(u\D), even with a large volume of data and consonant prior. This is
because, with r large, 8 is estimated as well as it will ever be, especially with
good secondary data; M is then approximately Pascal distributed, with mean
and variance decreasing as l—IJ(t\ 8) with increasing time. This effect is due
to the underlying assumption of Poisson events, is common to all stochastic
IBNR models, and shows the inadequacy of point estimation procedures. On
the positive side, availability of the complete density p(u I D) enables the
direct calculation of risk factors and their incorporation into IBNYR re-
serves on a sound actuarial basis.

(7) The numerical example also reveals how uninformative and useless are
Types III and IV secondary data. Satisfactory stability in estimating the
parameters and predicting the unreported events requires the observation of
at least the reporting dates, i.e., the time history of r(t).

As mentioned earlier, the model developed here is only a first step on the road
to more realistic and formulations. For example, as pointed out by a referee, the
assumption of homogeneous process over (0, T) is unnecessarily restrictive, and
one could use a rate Xv{t), where v(/) is known "volume" of business, and then
use operational time. Actually, in the sequel to this paper, we shall develop the
modifications necessary when IBNYR reporting occurs only periodically — a
quantized form of Type II data. It is in that context that it seems more natural
to introduce different volumes or even different random rates for different expo-
sure years. The availability of collateral data from other exposure years leads, in
the quantized reporting case, to the possibility of simultaneous learning about all
rates and the (common) delay parameter(s). This "IBNR triangle" model will
be analyzed in a third report, where we will also attempt to say something about
calendar time effects on the delay processes.

The assumption of prior independence of X and 8 is, we realize, a strong one.
However, it seems to the author that those who believe they are dependent must
have in mind some phenomenon which needs additional modelling — for exam-
ple, queuing bottlenecks in claims processing. Of course, insurance claims with
long delays are usually qualitatively different from rapid filings, but this leads us
into cost modelling, which is very difficult.

The author would like to thank two anonymous referees and VALENTIN

WUTHRICH for their comments and criticisms on this paper, many of which
have been incorporated. Other suggestions on making this model more realistic
and useful are always welcome.
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APPENDIX A

GAMMOID APPROXIMATIONS

As discussed in section 9, the strategy in evaluating (9.1) with p(0) and possibly
a portion of L(6 I D) in Gamma form is to approximate the remainder of the
integrand by a Gammoid function:

(A.1) g(0) = (A0)r e~Ae,

in the region of the mode 90 of the Gamma part of the integrand; the location of
the mode can be recalculated, if necessary. The final integral can then be calcu-
lated analytically.

The constant A is usually not of interest in our models. Beginning with the
obvious:

(A 2) d\ng{6) r ^ d2\ng(6) r

dd e dd2 e2

we see that a function L{6) can be approximated by (A.I) near 80 by using
coefficients:

?d
7\nL(d) F d\nL(8)

(A.3) F= -82 w

dd2
A =

dd

If only a negative exponential approximation is desired, we set F — 0 and find A
from the first derivative; similarly, for a polynomial — only approximation, we
set A = 0 in the second formula in (A.3).

The success of the method depends on several factors. First of all, it is desi-
rable to have a concentrated mode to begin with; we have found that even
c0 = 3 or 4 in the prior density is adequate. Secondly, if a portion of L (8) is
already unimodal in the range of interest, we have found it desirable to update
the coefficients c0 and dQ immediately and to redefine the shifted mode 60 for
use with the rest of L{&), which is locally monotone. Usually, these latter coef-
ficients will be slowly varying in the region of interest (we can make this more
precise for our factors) and so the mode does not need continuing redefinition. If
desired, after all the Gammoid coefficients have been determined, one can cal-
culate a " final" mode for the integrand, and make one or two more passes to
correct the coefficients found from (A.3). In our experience, such iterations lead
to minor corrections and usually need to be repeated only a few times; this is
essentially because we are only interested in the ratios of such integrals, as in
(10.2).

More details on Gammoid approximations will appear in a forthcoming
paper. Readers interested in the full details of the approximations for the nume-
rical example in section 11 may obtain a copy of the original report from the
author.
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APPENDIX B

GAMMOID APPROXIMATIONS OF TERMS INVOLVING II

Analysis of Type IV data L(6) and the kernel K(6) in (9.1) with exponential
delays is simplified if we define the function:

(B.I)
1—e

x

x x
= 1 - - +

2 6
+

24 120

and its derivatives:

( B.2 )
l

which are well-behaved for x> 0; for example,
exp ( —x/2) < y/(x) < (1 +x/2)~l in this region.

With Type IV data, L(6) = [77(t I 6)]r,
and for t< T, 77(/1 6) = (*/T) {\-yj{Ot)\. Then:

(B.3)
dln/7(<|0) -tif(6t)

dd

32 In 77(t I 9) -t2y/'(8t) [d In77(/| 6»)12rd]nIJ(t\6)~\:

L S0 J
When t>T, I7(t\6)= 1 -e-e{'-T)y/(6T), and (B.3) becomes:

^'-^-y,(eT) J '
(B.4)

92in/7(/l6»)

dB

The gammoid coefficients, y4 and <54, are then found using (A. 3) at the current
mode 60. For large I, S4 can become negative; in this case, we recommend using
just a polynomial approximation, with <54 = 0 and y4 determined from the first
derivative in (B.4).

The kernel K{6) in (9.1):

(B.5) K(B) = | 1 - | — | 77(t I

<T)

•>T)e-O(t-T)
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is monotonic decreasing in 6, with first logarithmic derivative:

(t3/T2)i/(6t)
dlnK(6)

(B.6)
dd

K(6)
(t<T)

Ty/(6T)
-!——-
y/(GT)

(t<T)

As both these forms are negative and slowly varying over a wide range of values,
in contrast to (B.3) (B.4), it makes little sense to use a full Gammoid approxi-
mation, especially since negative values for yK may result! Thus, we just
approximate by a negative exponential:

(B.10) 7K = 0; SK= -
d\nK(6)

d6

This approximation updates the Gamma coefficient d0 by SKu, but does not
change c0.

The Gammoid approximatons presented above can be further refined by the
use of additive terms to model the non-zero asymptotes in Types Ha, III, and IV
data, or to give a better fit to the long tails of all the factors. However, our
limited experience is that the refinements are of second-order effect in modi-
fying the shape of he, especially when the prior parameter density is reasonably
informative.

APPENDIX C

TYPE IV DATA ONLY WITH BETA PRIOR

If we have only Type IV information and t > T, then:

(C.I) he(u\D) -JW7C.I

which suggests a reparametrization on the r.v. n = FI(t I 6), which, with a Beta
prior, p (n), would give an analytical integral. The only inconvenience is that, if
one truly believes in a Gamma prior on 6, then the transformed density has a
rather complex form on (0, 1]. Nevertheless, for a highly peaked Gamma, one
could use the Gammoid approximation ideas to approximate p (7t) by a highly
peaked Beta density with equivalent parameters (a0, /?o); we omit the details.

We would then find hn(u \ D) = F(J}0+u)/F(ao+fio+r+ u), changing the sha-
ping factor in (10.2) as follows:

(C2)
dQ+rS4+SKu I

do+rd4+SK+SKu]
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There is no set of parameters which will make these two shapes entirely equi-
valent, but one might attempt to fit the shapes for u = 0 and u very large, say,
for fixed t and r. In any case, the shaping for intermediate values of u will be
different for hg and hn.

Although somewhat simpler, it is not clear that this approach is " better "; the
parametric approach through an assumed from for f(w | 6) seems more " real"
to us, as it is difficult to imagine how one could develop a consistent prior p (n)
for many different values of t. And finally, we must remind the reader of the
very poor results obtained in section 11 with Type IV data; we do not expect
that this approach will give any improvement for equivalent values of prior
precision.
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