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ON DIRICHLET SERIES WHOSE COEFFICIENTS ARE
CLASS NUMBERS OF BINARY QUADRATIC FORMS *

BORIS A. DATSKOVSKY
0. Introduction

0.1. For an integer d > 0 (resp. d < 0) let &, denote the number of SI,(Z)-
equivalence classes of primitive (resp. primitive positive-definite) integral binary

1
quadratic forms of discriminant d. For d > 0 let ¢, = o (t + w/d) where t and u

are the smallest positive integral solutions of the equation F—dii=4ifdis a
non-square and ¢, = 1 if d is a square. For d < 0 let w, denote the number of
roots of unity in the quadratic field Q(/d). Define the Dirichlet series

£.(9) = L@29) X ﬂlof—s"
=1
e =20 5 et
i -1 (= d)°
£5(s) = ((29) {i‘, Mﬁfﬂ g Mygﬂ}
=1 (4d) =t (4d + 1)

£¥(s) = 2L(2s) { i Mﬂ—s 4975 i _hﬁl_wﬂ:}
-d=1 (— 4d) “a=1 (— 4d — 1)

Shintani ([12], Theorem 2) discovered that the series &,(s) and S:(s) satisfy
a curious functional equation

& (% N S) 2s—1 Logg 1 sinzts ® £X(s)
(0.1) E_@——S) =2 F<5_§)”3)< 0 cos7r8> <gf(s)>
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sin s T(s) )

+ 2“#'231"(3 - %—)F(S)C(Zs -1 ( _

where

1 = (50— (s - 2)) + 2(% @s) — % 25— D)

—-2(£(3~23) —£(2—25)> +—M.

¢ ¢ 1—27%

In an excellent recent paper [8] H. Saito extended Shintani’s result to a family of
L-functions associated with the space of binary quadratic forms with coefficients
in Q. The purpose of this paper is to establish Shintani's functional equation for a
family of zeta functions associated with the space of binary quadratic forms with
coefficients in an algebraic number field.

0.2. Let K be an algebraic number field. Denote by M(K) the complete set of
places of K. For v € M(K), let K, denote the completion of K at v. If v is
non-archimedean, let ¢, denote the size of the residue field of K,.

Let L be a quadratic extension of K. We call L & K, the v-splitting type of L.
We say that two fields L and L have the same v-splitting type if LQ K, = L' ®
K, as a K, -algebra. Clearly, the number of v-splitting types is finite. For example,
if K, =R, then L & K, is either R @ R or C (2 splitting types), and if K, = C,
then L® K, = C © C (1 splitting type).

If v is non-archimedean and g, is not a power of 2, then L @ K, is either
K,@K,, (split case), a quadratic unramified extension of K, or one of the two
quadratic ramified extensions of K, ; thus the number of v-splitting types is 4. If
g, is a power of 2, then the number of quadratic ramified extensions of K, is, un-
fortunately, larger than 2. In this case, we will only distinguish between two
quadratic ramified extensions of K, if their discriminants have different absolute
norms.

Let X, denote the set of all y-splitting types of quadratic extensions of K. For
a finite set S of places of K, set Xg = II, .5 X, Let X5 = (%,),es € X5. We will say
that L has an S-splitting signature Xg if L has splitting type x, at every v € S. In
this case we will write L ~ Xq.

Denote by D, the absolute norm of the discriminant of L and by D, , the
norm of the relative discriminant of L over K. Let {;(s) denote the Dedekind zeta
function of L and let o, = D, > Res,_, {,(s).

Let S be a finite set of places of K containing all the infinite places. In [3] we
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encountered the Dirichlet series

0.2) 5.0 = = 2y ()

L=xs Dy /g

where

(s) = Crs@s — 1) Clis (29)
NLs .29

Here {ys(s) denotes the truncated Dedekind zeta function {gs(s) = ILes(1 —¢,° -

and {;5(8) = Myepw, wnes(l — ¢5°) . If K=Q and S consists of the infinite
place of Q, the series of (0.2) differ from the series £,(s) of Shintani only by a
constant factor (see [3], Theorem 0.2).

The series &xs(s) satisfy functional equations

(0.3 (3 —5) =2 B, 08 + T,

(see Theorem 1.2).
We will not define S;ks(s) explicitly in the introduction. It suffices to say that

g =3 Lk
Levs Dypjk

where nzs(s) is given by an Euler product that differs from the Euler product of
n.s(s) only at those v & S that lie over 2. In particular, if S contains all places of
K that lie over 2, then S:;(s) = §,,(s).

The object of this paper is to compute the functional equation coefficients
Iy, (s) and the remainder T, (s).

0.3. This paper is based on an earlier study [3] of zeta functions associated
with the space of binary quadratic forms. The fact that the series Exs satisfy the
functional equation (0.3) easily follows from the theory of zeta functions associ-
ated with prehomogeneous vector spaces. Moreover, the coefficient matrix
(D (8)) = I eIy, (), and the local coefficient matrix (I, (s)) is precisely
the functional equation matrix for the local zeta functions associated with the pre-

Yy

homogeneous vector space of binary quadratic forms. The local functional equation
for zeta functions associated with prehomogeneous vector spaces has lately been a
subject of considerable mathematical interest. In {2] I computed the local functional
equation matrix for the space of binary cubic forms with coefficients in a function
field. That work, however, remains unpublished. Igusa [5] showed that for a pre-
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homogeneous vector space that has locally only one nonsingular orbit the local
functional equation coefficient is essentially the I'-function of Tate's thesis [13].
Recently Muller [6], following the work of Rallis and Schiffmann [7], showed how
to compute the local functional equation coefficients for zeta functions associated
with prehomogeneous vector spaces of commutative parabolic type. Finally, in [9]
F. Sato computed the local functional equation coefficients for several pre-
homogeneous vector spaces. Our local functional equation is a particular case of
one of the functional equations of Sato ([9], Theorem 3.6 with Q(x) = z,x, — z,
Y'=1and 0¥ = Wy).

Sato expresses his coefficients as linear combinations of products of Gauss
sums of quadratic characters on K, and Tate I-functions. This elegant formula-
tion certainly sheds much better light on the nature of the functional equation
coefficients. Moreover, it is more general than mine, and it applies to ramified as
well as unramified quasicharacters. Thus my results in Section 2 of this paper can
not strictly speaking be considered new. Nevertheless, I chose to include then in
this paper because my methods are different from Sato’s and because my calcula-
tion is more explicit than his. The calculation of the remainder term sz(s) is com-
pletely new and can be considered the original feature of this paper.

0.4. Let H(n) denote the class number of positive definite integral binary
quadratic forms of discriminant — # where the forms equivalent to a(u2 + ))2)

1 1
and a(u®+ wv + v*) are counted with multiplicities o and 3 respectively.
. 1
Following Cohen [1], let H(0) = — 1 and let
#,(2) =X Hme™™, Im(z > 0.
n=0

Zagier [17] discovered a remarkable fact: let

— 1 < 2 —2m1f?z _ .
(0.4) Y(2) = #,(2) +——16ﬂ\/§ ,Ema(f ye , z2=x+ 1y,

® w3
where a(f) = f ¢ ™ u 2 du. Then 9(2) transforms under I,(4) as a modular
1

form of weight 3/2. As a corollary,

az+b>

1+ = 60)dt
cz+d f

05 H(ZED (9 (S et b - L

a

o (t+ z)%
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for any (i 2) € r,4).

The functional equations of Shintani (0.1) for £_(s) and Zagier (0.5) are, in
fact, two reflections of the same phenomenon though the connection between the
two remains somewhat unclear. In the last section of this paper we explore the
connection between zeta functions associated with the space of binary quadratic
forms and modular forms of weight 3/2. More precisely, we give a method for con-
structing Dirichlet series £(s) = X, a(n)A,, where A, are rational numbers with
bounded denominators, that satisfy

(- - )= () roeo

and write down explicitly one of these series. Not surprisingly it turns out to be
the Mellin transform of a linear combination of ¥(mz + [/a) for some integers m,
[ and a. .

Unfortunately, we can not yet deduce the functional equation of Zagier from
the theory of zeta functions associated with the space of binary quadratic forms.
However, the tools for doing so already exist. In [8] Saito showed how to twist
zeta functions associated with the space of binary quadratic forms by multiplica-
tive characters modulo p. This combined with the Weil criterion for forms of half
integral weight (see [11], p. 481) ought to lead to the functional equation of Zagier
or a result very close to it.

0.5. This paper is organized as follows: Section 1 contains a summary of re-
levant facts from [3] without proofs. This is done in order to make the paper
self-contained. In Section 2 we compute the local functional equation coefficients
Iy, (s). Section 3 is devoted to computing the remainder term 7 (s). Finally, in
Section 4 we draw parallels between zeta functions associated with the space of
binary quadratic forms and modular forms of weight 3/2.

0.6. Acknowledgements. This work was prepared while the author was a
guest at Sonderforschungsbereich-170, Mathematisches Institut, Gottingen and at
the Technion, Israel Institute of Technology. The author wishes to thank SFB-170
and the Technion for their hospitality and SFB-170 for its generous support.

1. Zeta functions, associated with the space of binary quadratic forms

1.1. The space of binary quadratic forms
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Let V be the 3-dimensional affine space. We identify V with the space of
quadratic forms via the correspondence:

= (2, 2, &) €E Ve F(u, v) = xu’ + zuv + 0’

The group Gl, acts on V by the linear change of variables. This action,
however, does not allow for scalar multiplication (though it does allow scalar
multiplication by squares). Therefore set G = GI, X Gl, Explicitly, the action of
G on Vis given by:

F,..(u, v) = tF (au + cv, bu + dv)

for g = (t, (Z Z

For x € Vlet P(x) denote the discriminant of x :

) eGadzev

P(x) = x} — 4x,z,.

Forg=<t,(j Z

We call a form x non-singular if P(x) # 0 and singular otherwise. It is easy

)) € G. set x() = (tad — be))®. Then P(g-z) = x (@) P ().

to see that two non-singular forms in Vj are Gg-equivalent if and only if their
splitting fields over K are the same. Thus non-singular Gg-orbits in Vi are in
one-to-one correspondense with extensions of K of degree less or equal to 2. In
particular, if K is algebraically closed, G, has a Zariski-open orbit Vy = {x €
Vg: P(x) # 0} in V. Thus the triple (G, p, V) is a prehomogeneous vector space
in the sense of [10].

Let K, denote the splitting field of the form x € Vi over K. Define Vi =
{r e Vi:[K,: K] = 2}. The stabilizer G, of x € Vi has a rather interesting
property. Let Gy be the connected component of G,. Then | G,/G,| =2 and
Gg = RKx,K(Gm) where G,, is the multiplicative group and RKI/K denotes the base
restriction from K, to K. For details we refer the reader to [3], Section 1.

Now let K be an algebraic number field. For v € M(K) let K, denote the
completion of K at v. If K, is non-archimedean, let O, denote the ring of integers
in K,.

Let A = I oy K, denote the ring of adeles of K and A™ its group of ideles.
Endowed with the restricted product topologies, A and A become a locally com-
pact topological ring and group respectively. The group A” is endowed with the
adelic absolute value | |A. The field K, identified with a subset of A via the di-
agonal embedding, forms a lattice in A.

Let V, denote the space of binary quadratic forms with coefficients in A.
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Then Vi forms a Gg-invariant lattice in V,. We note that both the sets Vg and VY
are Gg-invariant subsets of V.

The action of G on V defines a representation p: G— GI(V) defined over K.
The kernel of o is a one-dimensional torus 7, in the center of G, T, =

{(t_z, (é (t)>>] The image of p, H, is a closed reductive subgroup of GI(V) of
semisimple rank 1 and dimension 4. Define H, following [14]. Then H, is a sub-
group of GI(V,), and Hy is a discrete subgroup of H,.

Since in much of the paper we will be engaged in calculations that involve in-
tegration with respect to local and global invariant measures on H, we are going
to normalize our measures here once and for all.

The global measure dk on H, is given as follows. Let du and d¢ denote

x X dlt
invariant measures on A and A". d t= T]T[Iidlt where d't is a multiplicative
A

invariant measure on A' = {t€ A" : | tlA = 1}). We normalize du and d"t by

setting L/K du =1 and j;l/Kx d't=1. As in [3], let n(w) = (1, (i 2)), d@, t)

t, 0 1

= (t, ( ! )) and a(r) = (1,( O)) The group G, has an Iwasawa
0t 0t

decomposition G, = X B, where X is the standard maximal compact subgroup of

G, and B a Borel subgroup of G. More specifically, # = IL,cp H, where K, =
Gy, is v is non-archimedean, #, = (£ 1, 0,(R)) if K, =R and K, = (1, U,(C))

it K,=C, and B = {(t, <2 ?))]
2

Define the measure dg on G, by dg = dkdb. Every element of B, can be
written uniquely as b = d(t, t)n(u)a(r) where u € A and ¢, t,, T € A”, and one
easily checks that db = d”td"t,dud”r is a right-invariant measure on B,. Finally,

normalize dk by setting f de = 1. We now have a normalized Haar measure
H

dg on G,.

H= G/T, where T, = {d(t;%, t) € G}. Define dh by setting dg = d*t,dh.
More explicitly, write & = p(kd(t, 1)n(u)a(z)). Then dh = dkd tdud™ .

Denote by dx, the additive Haar measure on K, normalized as follows: dz, is

the usual measure if K, = R, dx, = | dr, A dZ,| if K, =C, and | dzx,=1if K,
9y

dr,
is non-archimedean. Set the multiplicative Haar neasure dxxv on K,,x to be Tfr
v iy
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if K,=R or C, and the measure, normalized by f dxx,,= 1, if K is a
oy

-1 x
non-archimedean local field. We note that dr = D 21l y4dx, and d x =
cOI_{l HueM(K)dxxxr

, Set dh, = dk,d"t,d"t,du, where h, = o(k,d(t,, Dn(u,)a(r,)). Clearly, dh =
D2 px" Wyepyrdh,,

1.2. The global zeta function
Let S(V,) denote the set of Schwartz-Bruhat functions on V,. For @ €
S(V,) define

(1.1) Z6, 0= [ xS 0+ Ddh

Hp/Hg zeVy

where dh is a left invariant Haar measure on H,. This is the global zeta function
associated with the space of binary quadratic forms.

Let { >:A— C” be a non-trivial additive character on A that is trivial on
K. Define a bilinear form [, ] on V,:

1
[z, y]l = 2y, — Exzyz + Z3y,-
Set dx = dr,dx,dx, For ® € S(V,), define the Fourier transform @ of @ by
0*@) = [ 0@z, Ydz.
Va

The properties of the global zeta function Z(s, @) are summarized in the follow-
ing theorem due to A. Yukie. For a proof we refer the reader to [16] or [3].

TueoreM 1.1. i) For any @ € S(V,), the integral defining Z(s, @) converges
3
absolutely and locally wniformly in the half-plane Re(s) > >

ii) Z(s, @) can be analytically continued to a mevomorphic function in the entive com-
plex plane.
iii) Z(s, @) satisfies a functional equation

(1.2) Z(% — s, @) =Z(s, ) + (T@2s, 0 — T(3 — 25, D).

The distribution T(s, @) is rather curious. Let
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13) aw= T Q+|uPh? 0 Q+|ul) O supd,|al).

veMg (K) veMc (K) veMy(K)

Define

x

TG, w, ®) = [ 11590, wa6 dud’t.

a* Ja
T(s, w, ¥) is holomorphic in the region Re(s) > 1, Re(s — w) > 2 and can be
continued meromorphically to the entire space .

For @ € S(V,) set MO(x) = f @(k - x)dk. Define the truncating distribu-
#
tion T,® by setting T,@(¢, u) = @(0, ¢, ). Then

da

(s, w, T,(M®)) |,,_,.

3
Remark. 1. The poles of Z(s, ®) occur at s = % (at most simple), at s =1

1 n
(at most double), s = 2 (at most double), s = 0 (at most simple), and at § = 5

n=1,2,...[16] and [3] contain explicit formulae for residues at these poles. This
information, however, is irrelevant for the purposes of this paper.

Remark. 2. The adelic zeta function, associated with a prehomogeneous

vector space (H, p, V), is usually defined as Z(s, @) = f | x ) [} e
Hy/Hy

O(h+ x)dh where Vg ={x € Vy:P(x) # 0}. Normally, such a zeta function
satisfies a functional equation without a remainder (see [10]). For reasons of con-
vergence we had to restrict our sum under the integral sign to x € V). The points
in V¢ — V{ that we have omitted lead to the remainder term (7(2s, ®*) —
T(3 — 2s, ®)) in the functional equation of Z(s, ®).

1.3. The local zeta functions

Let K, be a completion of the field K. Since Hy -orbits in Vy are in
one-to-one correspondence with extensions of K, of degree less or equal to 2,
their number is finite. For each Hy -orbit V; € Vg define

dy,
——.
| P(y,) |2

Zy (s, @) is called a local zeta function associated with the space of binary

(1.6) 2,65, 0) = [ 1Pa) [0@w)
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quadratic forms.

Let <, be an additive character on K, given as follows: <x), = ™ if
K,=R, (), =" if K, = C, and { ), of order 0 (i.e. <x>, = 1 if and only
if x € 0,) if K, is non-archimedean. Define the local Fourier transform

0w = [ 0,@)lz, y,dx,
Vi,

The local zeta function ZV‘(S, ®,) has the following invariance property: for
h, € Hy let (h,+ @) (x) = &,(h," + z,). Then

(1.7) Zy (s, h,» @) =1x) [Z,(s, D).

From uniqueness of the Haar measure it follows at once that any distribution with
support in V; that has the invariance property (1.7) is a constant multiple of
Zy(s, @,). Therefore for any @, with support in Vy

(1.8) Zy (s, o)) = 2 T;(S)ZV‘(% —s, @,,).

In fact, by the same argument as in [4], Section 3, (1.8) holds for all @, € JZ(VKH).

Let r, € V'(K,). Denote by V, the Hy -orbit of x, in Vi . Let va denote the
connected component of the stabilizer of x, in H. The map HK»/(H;)V)K»_) Vs
h,— h, z,, gives a double covering of V. Set the measure d; h, on Hy / (H;V)Ku

d
Y 3 where b, is a constant whose value depends only on
| P, [}
the orbit V; and not on z, itself. It is easy to see that d h, is an Hg -left in-

. 0
variant measure on HKV/(HI»)K,,'

locally equal to b,

The values of bx,, are given in Propositions 4.2-4.4 of [3]; the reason for in-
troducing bxy in the measure will become apparent in the next section.

Define

(1.9) 2,6, 0) = [ | x ) L0, (h, - 2)d; b,
x/ HE )k,

Then

(1.10) Z,(s,®) =b, | P(z) IJSZV,V(s, D).

For each orbit V, choose a standard orbital representative x, as follows. If
the splitting field K, = K, set Fy (u,v) =wuv. If [K, :K)] =2 and K, is
non-archimedean, set F, (u, v) = (« + 6v) (u + 6’v) where O, = O,[6]. Here
OIy stands for the ring of integers in K,u and 6" denotes the Galois conjugate of 8
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1
over K, Finally, if K, = R and K, = C, set Fy (u, v) = o (u” + v°). Note that

|Px) |, = D,;: sk, where Dy ¢ is the norm of the discriminant of K, over K,
In all computations that follow we will replace ZV% (s, @) by va(s, D).
Therefore we will rewrite (1.8) as

3
* - _—
(1.11) Z, (s, @) = yZvI‘mv(s)va(Z s, @,,).

1.4. An adelic synthesis
The zeta function Z(s, @) has no Euler product; however, it is fairly easy to
decompose it into the sum of integrals that do. Since the integral (1.1) defining

3
Z(s, @) converges absolutely for Re(s) > 95 we can interchange the order of

summation and integration. Then

(1.12) 26, 0=75 5 [ |xWL06G- Ddh
ZeH\Vy YHy/ (HY ¢
Note that Hy-orbits in Vy are in one-to-one correspondence with quadratic
extensions of K. Thus the sum in (1.12) is actually a sum over the quadratic ex-
tensions of K.
Each of the integrals in (1.12) can be written as

(1.13) b [ 10 [0 - D

Hy/(HY 4

where

v = [ amn’.
HP 2/ HY g

Here dih’ and dZl" are the measures on H,/(HJ), and (Hy),/(HJ) . respective-
ly, and b, is given by dh = b, d W d;h".

Since Gy = Ry x(G,,) it is hardly surprizing that for an appropriate choice
of d’W'u(x) is essentially Vol(Ay K, ) = Pk, In fact, if we choose d;h” =
20k,

Ok
Set dih’ = IL,cpy doh, where dih;, are the local measures, described in the

II,d"h} as in [3], u(x) =

previous section. The constants b, in (3] were chosen so that dh, = d; h,d; h;.
Therefore dh = D, z o AL dIn.
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Let @ = Il D, be a Schwartz-Bruhat function on V,. Then the integral
in (1.13) has an Euler product II .44 Z,(s, @,). For each v € M(K) let x, de-
note the standard orbital representative of x in VK,,' In view of (1.10), (1.13)
equals

N

P(x,)
P(x)

(1.14) II

veM(K)

0 Z.G,0)=Dx O Z.(s,0).
vyeM®) T vemxy Y

The orbit of x over K, depends only on the splitting type of the field K, over
K,. Consequently we can think of x, as the v-splitting signature of the quadratic
field K,. Similarly, we can think of X3 = (x,),s as the S-splitting signature of K.
As in the Introduction, we will write K, ~ Xg to indicate that a quadratic field K,
has the S-splitting signature Xg.

For any @ = Il i @, € S(V,) there exists a finite set S of places of K
such that Vv &S @, = @,, where @, is the characteristic function of V,, . Con-
sequently set

(1.15) Nas(8) = Il Z, (s, @),
VES
and let
Ok,
(1.16) st(s) = X 5 N2s(8).
Ke~Xs Dy /x

Finally, let

(1.17) Z, (s, ®) = 11 Z, (s, D,).
veS
Then
(1.18) Z(s, ®) = D7 o5’ £ Z, (s, D&, (5).

The additive character > on A/K decomposes as a product of local additive
characters. The order of its local character at v, however, is not 0; it is #, = ord,
D, where 9, is the different of K at v. Therefore <x) = Il ¢,y <7."x,>,. Hence
the Fourier transform ®*(y) = DI;% Lo O (2y,).

Set

(1.19) nEs(s) = I Z,Gs, o;,)

and
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(1.20) Erlo) = X pf’ Nas(s).
Kz=xs Dy /g
Then
(1.21) Z(s, @) = D% o5 Dy £ Z, (s, 9M)E1(s).

Combining expansions (1.18) and (1.21) with the functional equations (1.2)
and (1.11) we obtain the following theorem:

THEOREM 1.2.  The Dirichlet series & (s), st (s) satisfy the functional equation

t(3 -5 =it o, 0Ee + 1,0

sYs

For Xs = (Xu)ves and Vs = (Yv)ues Fxsys(s) = Hves I,

XpYy

(s) where Iy, (s) are the
Sfunctional equation coefficients in equation (1.11)

The values of Z, (s, @,,) can be found in Proposition 4.1 of [3]. We restate
this proposition here without a proof.

ProposiTION 1.3, Let @, be the characteristic function of V. Then

( 1
1—g ™ i Ky, = K3
1+¢"
Z, (s, 9,,) =1 a 25, ((iy = if (K, : K] = 2, unramified;
-4 — 4
1

Z — LK, : K] = 2, ramified,
(A=, —¢7) ”

and

 Ces(2s — 1) s(29)°
Mas(s) = =22 Cx,,s(ZsI;s

where Gy s(s) = Mus(1 — q,°) ™" is a truncated Dedekind zeta function.

The last assertion of the proposition follows easily from (1.15) and the values
of Z, (s, @,).

If vt 2, @, = 0, If v|2, @:,, is the characteristic function of O, X 20,
X 0,. The values of Z, (s, @,,) are rather easy to obtain from Proposition 1.3.
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Note that O, X 20, X O, = {x, € V, :| P(z) |, < |4|,}. Writing 2, = h, - X, we
2 |4 . . .
see that | x (b)) |, < ]TX”—E Therefore in the integral defining Z, (s, @,,) we

v
|21,
1

| P(x,) |2

only need to integrate over only those &, with | x (k) |, < . By partial
fractions, we obtain

(1.22)  Z (s, @y,) =

2 2s—1
| |v — if va = KV’
1—gq,
1 22! 2
3 ((q,, +1) 2] 5 2 2] _Zs) if [K,, :K,]] =2, unramified.
b 1—g, 1-g

If K, is ramified over K,,

(1.23)  Z, (s, Bp) =

s— 1_ _
1 (q 1257 P&) 12 121 | P&x,) lf>

=S if | P(x) |, >[4],;

1-2s
1—

4 1—gq
1
(1 . q;ZS) (1 . 43—28)
We note that for a standard orbital representative X, of a form x € Vy,
| P(x,) |7 is just the norm of the local discriminant of K, over K at v.

if|Px) |, <141,

We are now ready to state
ProposiTION 1.4. Let M,(K) denote the set of all places of K that lie over 2.
Then

Wzs(S) = II va(S, Q(;ku) nx,suMz(Is’)(S)

veM,(K)-S

wheve X, is the standard orbital representative of X at v and the values of ny(s, (D:: )
are gwen n (1.22) and (1.23).

Propositions 1.3 and 1.4 complete our discussion of the Dirichlet series Exs(s)
and E:;(s) and of their origins.

2. The functional equation coefficients

2.1. The split case
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By (1.11),
Z, (s, @)
(2.1) quyu = _Yé_s.___
zfz=s0)

where @, is any test function with support in V, .

The notation vayv is rather cumbersome, and we are going to change it in this
section. We will index the non-singular orbits in Vi as follows: V; will stand for
the orbit of forms in Vg that split over K,. V, will denote the orbit of those forms
whose splitting field is a quadratic unramified extension of K, If v 4 2, we will
denote by V,, and V,, the orbits of forms whose splitting fields are the two
quadratic ramified extensions of K,. If v| 2, the number of quadratic ramified ex-
tensions of K, is greater than two; we will introduce the notations for orbits of
forms corresponding to these extensions in the appropriate section.

We will write X, for the standard orbital representative of the orbit V;, Z,(s,
®,) for Z, (s, @,) and I};(s) for I, (s). In this section we are going to determine
the coefficients I, (s).

For any K,, the standard orbital representative for the orbit V| is x; =
0,1,0). Hy = {o(d(z,", Da(z) : 7, € K}, the measure dy hy=d,7, and dy
h, = dk,d”t,du,. Note that d(¢, 1)n(u) + (0,1,0) = (0, ¢, tu) and that integration
with respect to dk, simply replaces @, by M,®, where M, D, (x) =

f o, (k, - x,)dk,. Therefore
Hy

Z(s, ®) = f x f L4, (M,0,) 0, t,, tu,)dud"t,

(2.2) T <y
= [ [ 10,0, 4, w)dud’,.

kK,

Let ,o,(t) = [ @,00, t,, u)du, Then I,®, is a Schwartz-Bruhat function
on K, and for any A -invariant function @,

(2.3) Z,(s, ®) = (25 — 1, ,D)

where (s, ¥,) is the local zeta function of Tate's thesis [13].
The following lemma is an easy exercise in Fourier inversion:

Lemva 2.1, (L®)™(t) = (&) (— 20).

Note that if @, is K -invariant, so is its Fourier transform. Also, for any £, €
K, u, € K,, (0, t, u,) € V,. Hence for any @, with support in V,, j # 1, 1,9,
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=0. By Lemma 2.1 I,®] =0. Hence Z,(s, ®]) =0. Thus for any j# 1,
Ii(s) = 0.
By (2.1), (2.3) and Lemma 2.1

|27 25 — 1, (1,0)™)
@2 —2s, L,D) )

(2.4) I(s) =
The last quotient is well known (see [13] or [15]). We now have:

PROPOSITION 2.2.

r,2s—1)

v _ 25—1
I;,(s) = 6;, |2 Iy I,2—2s)

where 0, is the Kronecker delta and

n—%l’<%) if K, = R;
@m~°r¢s) ifK, =C;

Q= ¢ if K, is non-archimedean.

I(s) =

2.2. The archimedean completions
For K, = R, the local functional equation coefficients were found by Shintani
[12]. We state his result as a propositin below:

ProrosiTioN 2.3. For K, = R,
(1"11(8) I,(s) > — 223—171'%—2511 (s . _;_)F (s) (sin s 1 > '
1*2”1 (s) I‘z’;(s) 0 CcoS TS

We note that Shintani’s I'y;(s) agrees with I5,(s) we found in Proposition 2.2.
For K, = C, the value of I';;(s) can be found in Proposition 2.2.

2.3. p-adic completions, p ¥ 2

Let K, v 4 2, be a non-archimedean completion of K. Let @,, denote the
characteristic function of X, * x;. By (3], Section 4.2, Z,(s, @,,) = 1. Therefore
by (2.1)
(2.5) s =z, o).

Let F, denote the residue field of K,. Then for i = 1,24, z; can be de-
scribed as follows:
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26) A, -x,={x=tu+ av)u+ bv) or
r=to(u+a) modrm,:tEF,, a,bEF,, a+ b},

and
27 H, x,={x=tlu+a)w+av)modrn,:tEF,,a €F;—F,}

where & denotes the Galois conjugate of & over Fq».

Clearly, (Df,,(x), ¢ = 1,2, has support in n;lVoy, depends only on x modulo
O, and is K -invariant. This implies that @:y(x) takes on four distinct values on
the following sets: V,, (K, - x),1=1,2 and 7, (K, (0,0,1)).

Let z2,, = (u + av) (u + bv) and z,,., = v(u + av). Then
(2.8) oL@ =q° X X Lz, yD,.

a#bER,, U {oo} teF;v

The inner sum in (2.8) is either g, — 1 or — 1 depending on whether [x,,, y] is
in O, or not. Hence

(1-¢° .

9 ifre Vo,,;
-2 . -1

— f = Koo ;

2.9) 0F () = q, if x n,,l( bt Xy)
0 ifrx€mn, (K, x,);
-1 -1

1-— -

q”—(z—gil itz € 1) (A, - 0,0,1).

Another way to write @,, is the following:

-1 -1 -1
v 1- v - 1-— v )
4_(_2#) (e @) + L_Z_q_ o,
(210) @), = 4 g -
_ qu 2 qu (n_;l . @lyy) _ ql) 2 ql) (7[;'1 . @Zyu)
where (¢ + @) (@) = 0 '2).
A similar argument shows that
[ (1= o)
(———Z‘L'—L ifx e Vovi
(2.11) 0* () =1 © itz € (A, x);
. 2,v _ -
4’ ifren (K, x,);
-1 -1
1-— _
- @—(z—q”) itz ez K, - 0,0,1).
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Therefore
-1 -1 -1
1-— _ 1-—
— q, ( 5 q, ) (71'],1 . @O,V) + ( 2qv ) @O’U
a1 e ;' - g 1+ g
+ qu 2 qu (7[,,—1 . d)l’,,) + qv 2 qu (7[,,_1 . @2,’))

Next we compute @Zi)’u(s), 1=1,2. We may assume that the first quadratic
ramified extensions of K, is the splitting field of the form u’ + 7[,,112 and the second
the splitting field of #° + a,m,v° where a, € O] is a non—square. Let ¥y, (x) be
the characteristic function of the set of Eisenstein polynomials {r = L‘(u2 +
amp?) mod (m, X m, X 1) : t € F,,a €F,}. Then @,,,, = (g, + DM, ¥,

Uy,, is easy to compute. Its support lies in m,°0, X 7, 0, X 7,0,
Moreover, for any y € 7, 0, X «, 0, X 7,0,

T, =q (g, — D #{x,: [y, ] €0) — #{x,: [y, x,] €0))

where x, denotes the form uwl+ azn,,vz, a < Fqu. An easy computation now shows
that for y € 7,0, X 7,0, X 7,0,

( —4 (qv—— 1)2
“ g

@+ € r,°0) X ,'0, x 7,0,
213) Ty, ={q* 25— it | Y

ifyen,'0,xm,'0,%x 0,;
2 2 2 2 2;
Ty=t(u —brw) modrm, X m, X 7,

(g, — D
\—gq, 4—(1"2—— otherwise.

Let Fy, and F,, be the characteristic functions of O, X O, X m,0, and O, X
7,0, X 7,0, respectively. Then

w4 @—-1

214) To,=—a' 57, Pt a'n” s Uy,

v

- -1 .
.FZ,V+Q)J3(q92 )ﬂvl

where j = 1if ¢, =1 mod4 (ie. — 1 is a square in F, ) and 7 = 2 otherwise.

LEMMA 2.4.

_1

Msz,v = q,, + 1

(Qo,u + q,,(TC,, : (Do,v) - ¢1,u - @2,11) ’

1
MvFl,u = m (q)o,u + qv(nu * ¢0,1)) + q)l,u - @z,v)'
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Proof. F,,=m,+ @,, + F;, where F;, is the characteristic function of the
set S,, = {zx=(¢0,0) modm,:tE€F,} The stabilizer of this set has index
g, + 1in A, any two distinct «, + S;,, £, € K, are disjoint, and the image of S;,
under the action of %, consists of those forms in O — (,0,)° that are singular
modulo 7,. Therefore

1

MFs, = 7 (

@O,D - (71'” * @0,11) - q)l,u - @2,14)»

and M,F,, = M,F,, + m, - @,, is as in the statement of the lemma.
F,, = F,, + F,, where F,, is the characteristic function of the set

S, =1{r=(,1,0) modm,:t € O,)}.
Alternatively,

a b

. d>> €H,,c=0modr,ord=0 modr,).

Sy = &, - (0,1,0) 1k, = (t, (

2
Hence M,F, , = P @, . Adding this to the value of M F, ,, we obtain M, F, .

From (2.14) and Lemma 2.4

(g —1)
(215) Q::l),v = qv4 2

—4 (qv - 1)
v 2

4 (-1, - - 3
qv4 (q 2 (7[»2 : (Dz,v — 4T, te qu,u) + qv 37[»2 : ¢2(]'),)1'

(= ﬂ'u_z * D, + qfoo,u)
+q (7[;2 -0, + quﬂ:l)_l * @1,u)
+

By (1.7) Z (s, t,+ @) = | x(t) . Z,(s, ®,). Therefore it is now a simple mat-
ter to compute F,»l;(S) from (2.10), (2.12) and (2.15):

PROPOSITION 2.5. If v A 2, the local functional equation coefficients I;(s),
1,7=1,2,2Q), 2(2), are given in the following table:

1-¢** 1-¢° 1-¢)1+¢ 1-¢HA+g™
1-¢™ 1-¢%0-¢7 21-¢"1-¢ 20-¢0-¢)
0 g, 1-¢" -4 (1-g) —g (1-g,)
1-¢" 20-¢%) 20— ¢")
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e () B el (e

1-¢* 20-¢") 20-¢,%)
_ :_1_) ) 4s~4< 1) 1—23) ( :‘1) w54y _ (“_1) 128
" B (1 _q;z)qfs_z (1 ( g, 4,/9, 1+( q, 4y 1+( q, 49, (1 4, 4 )
S S s
1-g¢ 20-¢") 20-4¢,")
— 1y . ,
where < 7 ) 1s the Jacobt symbol.

2.4. 2-adic completions
Let K, v | 2, be a 2-adic completion of K. Let m, denote the integer such that
|2 |,, = g,™. The quadratic ramified extensions of K, have discriminants of norm
20 - 2my,+1
q,,t=1,...,m, and g,
splitting field is the k™ field in the list of quadratic ramified extensions of K, with

. We will denote by Vi, the orbit of forms whose

the discriminant of norm q,i. A standard orbital representative of Vi, will be de-
noted by Xy, When there is no need to distinguish between distinct ramified ex-
tensions of K, of discriminant q,f, we will simply write V, and x, for Vi, and
Xoigh)- _ _

Denote by @, the characteristic function of {r € VOD:|P(x) [, < ¢’} The
possible values of | P(2) |, are ¢,”, 7= 0,1,..., m,, and ¢, ", k = 2m, + 1. Con-
sequently, we need only distinguish between (Dﬁf,,, j=0,...,m, and @:,w k = 2m,
-+ 1. The functions @ﬁ,jy, 7=0,...,m, afford a rather simple description: they
are the characteristic functions of the sets O, X 7.0, X O,. In particular, O s
the characteristic function of O, X 20, X O,

Z, 0 = [

Hgl/(HY g,

Lx ) 2 < ¢,7’}. The value of Zy(s, @,,) is given in Proposition 1.3. It is a sim-
ple exercise now to obtain:

| x () 5@y, (b x,0d;, h where Hy' = {h€ Hy:

‘ 5 ‘;— if J even
LEMMA 2.6. For an integerj < 0 let j = i+ ‘ . Then
5 ifJ odd
Fa-25)
Z(s, @é’,,) = ﬁ,

1 ((qu+1>q5“‘“’ 2™
wT TV g g

Z,(s, ®),) =

b
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and if § > 1,
G=)(1=25) ~2(=i)s

i 1 4,4,
7 , (DJ — < vy _ 1 ) )
2‘(3 0,u) q, — 1 1-— q:—zs 1-— qv-2s

Ifj <4,
1
A-g™A~-g™
Let @,,,1=1,2, be as in the previous section. Then as before I};(s) =
%
Z(s, D;).

@, , is the characteristic function of the set X, *X; whose explicit description
is given by (2.5). Clearly @f,,(y) has support in 7, (0, X 20, X 0,), depends
only on y modulo O, X 20, X O, and is K ,-invariant. Therefore we only need to
compute (va(y) for four distinct values of y:y = (0,0,0), y = z,°(1,0,1), y =
7,'(1,0,0) and y = 7,'(0,2,0). The computation is carried out as in (2.8): one
need only find the number of x,, such that [y, x,,] € O,. The result is the fol-

Zy(s, @),) =

lowing:

(1-¢° .

5 ifye 0,x20,X% 0,;

2” iny/cy-nV_l(l,O,l) mod O, X 20, X O, k, € X,;

@Mw=+ﬂu .

Lot iy=k, 71,00 mod0, X 20, X 0, &, € X,;

-1 -1
—gta+ _
LL(Z—‘I”—) ifyer, - 7,20,2,0) modO, X 20, X 0, k, €A,

The last three sets in (2.16) look rather complicated. In fact, they have better
descriptions. The first consists of x € m, (0, X 20, X 0,)— O such that
| P(x) |, = g™, the second consists of x € 7, (0, X 20, X 0,)— O such that
| P(x) |, < g7 and the third is the set of x € O] such that | P(x) |, = ¢2~*™.

Let F,,, t = 1,2,3, be the characteristic functions of these three sets. Then

1 -1
9,
2

q,
2

-2
v - m 1 m
of = =gt o O+

FZ,v - Fs,v'

_ -1 . 2my+l 2my—1 — 2my=2 __ 2my—1
Now F,,=m, + @, ®,,”  and F;, = @, ®,,” . Hence

-2
(2.17) o), =— qé

-1 -1
49, om+1 _ Gy P?

-1
2 TCV : qu,u 2 0,y

_ 1 o
T O+ 5 O

Similarly,
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r —1\2
1—gq,)
(218) | ify€0,x20,%0,;
q-z
. 5 ify=r, -7, (1,0,1) modO, X 20, X O, k, €E K, ;
@Z,V(y) =1 -1 —1
- Qv (1 - qu ) . — -1
— 5 ify=k-7 (1,0,0) mod O, X 20, X O,, k, € K,;
-1 -1
—q, 1—¢) -
% ify €k, (0,20 modO, X 20,% 0, £, € X,
or alternatively
-2 -1 -1 -1
_ n 1— 2g, m 8 5
q);ju = qé T[ul * q)(ivv + 2 q q):,vy - q2 Fz,v - qTFZi,V
(2.19) i~ 1 o -
=gm O g O~ o = T 0

The coefficients I};(s), ¢ = 1,2, can now be computed with the help of Lemma 2.

PROPOSITION 2.7.

, g t1l/2"a-¢"
Iy(s) = g, — 1 <

+ qjs—-z | 2 lzs(l _ qi—23)>
1—g¢7" 1— g™ ’

g 1250 —¢™)
1 _ qy—z.s‘ ‘

Iy,Gs) =

Fori=1,...,m,— 1,

4 q;(ZS—l) I 2 ﬁs-—l(l _ qfs—z) 4, + 1 qi(i+1)s—2 I 2 L?;s(l . qi—zs)

T I e
and
) q3<t+1)s—z | 2 lis(l _ q:‘zs)
Fzzz:(s) = —2s :
) 9 — 2s-2 =25
Flzzmu = & & !

20— ¢ A — ¢

21— ¢

L o A i S )
20— ¢ Q- g™’

v
Fzzzm,, =

F122mu+1 -

https://doi.org/10.1017/50027763000005651 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005651

ON DIRICHLET SERIES WITH CLASS NUMBERS 117

and

y (g, — g™
Fzzzm,,ﬂ = — T e -
201 —¢,")

v

It remains to compute the local functional equation coefficients for the orbits
corresponding to the ramified extensions of K,. Because of difficulty of dealing
with individual ramified extensions we are going to combine all quadratic ramified
extensions of K, with discriminant of the same norm together. Consequently, let
@, be the characteristic function of U, #, * X,,. Then I'y(s) = Z,(s, 0},).

Let ¥, denote the characteristic function of the set O, X 7.0, X 7,0,
Then, for j=1,..., m, @, = (g, + VM (¥, — ¥,,,,) and Ppm,n,, = (g, + 1) M,"
@, 1, The Fourier transform of ¥, is rather easy to find. The calculation is
analogous to the calculation of @y, in Section 2.3. Supp(lﬁ},y)* c %0, x
770, x 7,0, and for y € 7,20, X 7”0, X 7, 0, one obtains:

0,0 -¢"" ityen'0,x 770, % 0,;
* - - X —j - X
7. =g, o+ ify €0 xo"’0, % ©,'0 ;-

—¢;""?0 — ¢;"* otherwise.

Let #,, be the characteristic function of O, X 7,0, X 1,0, Then

1—¢' _ 1—¢" _ 1

* 2 1 2

(220) w},v = j+2y 7, ~g’mv—j+2,u + j+1p T, .gm,,—j+l,v + j+2 T, wmu—iz,u'
v v v

LEMMA 2.8. Forl1 < k< m

Vs

1
q,+1
1

o+ L 0

my 9 my
Mﬂm,ﬁl,v = q, +1 q)g,u * + q, +1 Ty, * q)(iu ’

Mvgk,u =

and

. 1 2 Qu 2
MZ,, = g +1 9, + g +1 T, Dy, T ¢ t1 Q,,.

Proof. For1<k=<m,

(2.21) O, X 70, X 7,0, = 0, X 7.0, X 1,0, U 7,0, X 70, X 7,0,

The second of the two sets in (2.21) is K ,-stable; its characteristic function is
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T, * Q)Zk > The X ,-image of the first set in (2.21) is the set of all forms in O, X
70, X 0, that are not congruent to 0 mod 7,, ie. it is (0, X 70, X m,0,) —
(r,-0, X 70, X 7,0,). Its stabilizer has index ¢, + 1 in #,. Therefore its char-

. . . . . 1 -
acteristic function, normalized with respect to X, is L1 (@ﬁf, -, @ﬁﬁ %,

The expression for M,%#, , k=1,..., m, is just the sum of the above two ex-
pressions.

The argument for K = m, + 1 is similar. As for k = 0, #,, is the character-
istic function of

0, X 0, % 1,0,= 0, X 1,0, X m,0,U 0, X 0] X r,0,.

2

Therefore as in the proof of Lemma 2.4 M,%,, = M, %,, + —— oF1

D,

1
An easy argument shows that M, ¥, = 1 2> 2 Dok, Therefore by
v

(2.20) and Lemma 2.8

1 — ) - my— m,— 1 -
(222) (qV + l)Myw‘;’t = _—Tqv (_ 7[;, 2' ¢(:2y v Y + QZ( v 1)) + ? Tcu 2' ¢22mp+1,y1
1- , - my,— m,—
(2.23) (g, + MY = ___J:IZL (— 7% @I g gE ey
1 -2
j+2 2 oomo Dy,
g,  k=20m,=j+2)
for 2 S] < m,, and
1—g¢° - B .
(224) (q” + l)Myw’:ﬁlvV = m,ﬁ; (_ 7, % ¢§,u + q7, g @g,u - 4,7, t d)o,v + q3®(),p)
2(1 - qu ) -1

By a straightforward calculation

2(1 _ qu ) —2(my—j)s .
(2.25)  Z,(s, (g, + VM) = T yi=1,...,m+ 1.

Fori<m,—j+1

2(1 _ q—z) —2(my—j—i)s
v
;+1(1 )

(2.26) Zu(s, (g, + DM = —
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) . . 1
and for 1 > m, —j + 1, including ¢ = m, + 5

« Q1-¢Hg'A+g™ | ¢
(2.27)  Zuls, (g, + DM = — R + L

4, 4,

Note that a separate calculation is required to determine Zui(s, (g, + 1)M, -
Wjj’;) when j =m,+ 1 or 1 =m, — j + 1. The results, however, turn out to be
the same as for all other j or ¢ < (m, — ) respectively.

Since @pi, = (g, + DM, (¥, — ¥, ), 7=1,..., m, and Qpmn, = (g, +
DM, ., one can now easily compute Tp(s)

PROPOSITION 2.9.

2(1 _ q’)—Z)qu—Z(m,,—]'—l)S(l _ qj—ZS)

Lhui(s) = ,
22% ql;)+2(1 _ qp—zs)

'j:]_’..., m,,

and

[mpi(s) = — im(llﬂ_
¢, 1 —q7)
Fori<m, —j,
=g, A — ¢
(Ii”(l )
1-gNga—g¢™ g
q£+3(1 _ qV—Zs) qi”.

. . . 1
Fori=m,— j+ 2, including i = m, + 5

I, ;;22:‘ (s) =

b

F;z(m,,—iﬂ)zzi(s) =

1-¢¢'Q—g¢™

qi+3(1 _ qV—ZS)

F;:zzi(s) =

and for all ©

0,1 —¢™
"0 — ¢

Our list of local functional equation coefficients for zeta functions associated

le;izzm,,ﬂ (S) =

with the space of binary quadratic forms is now complete.
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3. The remainder

Our next task is to compute the remainder term sz(s) in the functional equa-
tion in Theorem 1.2.
Let X = (X,),cs. Then by (1.2) and (1.18)

* — —
(3.1) T, (s) = D}{%p; T@2s, @) 3T(3 2s, O)
HIJES ZIV(E - S, Ql«)

where @ =1Il,5 @, X Il,¢5 @, and for each v € S Supp(Q) < V,. For a

H 4-invariant function @, T(s, @) = % T(s, w, T,®) |-, where (T,®) (¢, w) =

@(0, t, w) and T(s, w, ¥) is given by the integral (1.4).
T(s, w, ¥) has an Euler product: let

A+1u,B)? ifve Mg ;
(3.2) ) =11 +]ul) ifve M B ;
sup(1, | »,|) if v € M(K),

and
— $ w X
(3.3) T,(s, w, T) = j;; j;vltv Lw.(t, tu)a,(u) du,dt,
Then for U =11,y &,
(3.4) T(s, w, ¥) = D,;%p,;l o 7,,w ¥).
veM(K)

The following two lemmas are essential for out calculations;

LEmma 3.1.

1—g "
(1 _ q;S) (1 _ q:+w—s) :

For the proof of this lemma we refer the reader to [16], Proposition (2.8).

TG, w, T,9,,) =

LemMA 3.2.  For K ~invariant function ®,

T,2s, 0, T,0,) = Z,(s, D).
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Proof.

T,2s, 0, T,0,) = It 1%9,00, t,, tu,)dud"t,

<

fi

o

< %

It, 10, (n(u)a(t) - (0, 1, 0))du,d"t,

<

N

f It 120, (kn(u)a(t) %) dr,du,d™t,.
%,

By
T x

v

The last expression is clearly Z,(s, @,).

By Lemma 3.1

1 Crs()lgs(s —w—1)
(3.5) T(s, w, T,® = D% o5 Ty(s, w, T,®) =£2 Cﬁs —
where
(3.6) Ts(s, w, T, = 1T T,(s, w, T,9,).

veS
For a A ,-invariant function @, let
d
(3.7) T,(s, @) = T T,(s, w, T,D) |,
Then
_L _ s’ 7
T(s, ®) = D;? o' [Ts(s, 0, T,0) g s(s — 1) (gK’S (s) — Shs (s — 1))

(38) K,S K,S

+ s D I T, 0, oYL, 0)).

VES HES, u#y

Thanks to Lemma 3.2 we can rewrite (3.8) as follows:

T(2s, ®) = Dy o5’ [ Z,(5, @) Cgs(2s — 1 (Q—S— 25) — 55 (25— D)
veS K,S

K,S

+ls@s—DE I Z(s, §)T,(s. 0)).

VES ueSs, u#y

_3 -
As in Section 1.4 @* = JONED | Y @) where n, is the order of the
different of K at v. It is easy to see that T,(s, w, w,” + &) = ¢,°T,(s, w, T,).
Also if v £ 2, @y, = @,,. Therefore if S contains all places of K that lie over 2,
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Chs (y — Ghs

K,S CK S

7(2s, 0 = D707 [ 1L 2,65, 0 Gy s(2s — D) (
yes
(3.10)

(25— 1)

+ s =D E I Z(s, 8N T, &)

VES ©ES, u#v

We know that Z,(s, @)) = FIVI(S)ZI<% -, @V>. Let 9,, = 1 if x, = x, and

0 otherwise and let 0, = IL .40, . Then

(3.11) T, = oi|0,02 I 13,9 (25 = 1 (g—;‘—j— @25) — C;"j (25— 1)
b sz — 29 ( gzlc,s (3 — 99 — Sks (5 _ 29)) + £ 8, ., Cs, 0)]
K,S K,S VES

where & = Il,cs, yov Oy, and

Xs-(v)

(312) C(s, @) =
DE 50y 5(25 — 1) ey TAOS) T, 25, OF) = Lo (2 — 29 T,3 — 25, 6)

3
z,(3-s o)
The numerator in (3.12) can be considerably simplified. Observe that by (2.4)

2s — 1 v -3 v
%K'SEZ - 25; = Il 45 I}, (s) and that D;s 2 Myepan 11 (8) = 1. Therefore
K,S

Les(@ — 29) (T () 7' T 25, 9)) — T,(3 — 25, D,))

Z(z =5 0)

(3.13) C(s, @) =

Equation (3.11) implies that
v -1 * 3
(3.14) (O 'T,@s, 8 — T, — 25, 0) = £C, 92, (5 — 5. 8,),

i.e. it is a distribution that has the invariance property (1.7) under the action of
3
GK,, with 77 in place of s. This fact can also be verified by a direct local

calculation.
With the notation of (3.14) we have: if S contains all places of K that lie over

https://doi.org/10.1017/5S0027763000005651 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005651

ON DIRICHLET SERIES WITH CLASS NUMBERS 123

(3.15)
T, () = 0252 — 29) [0, (Eﬁj @2s) — C}’:j (25— 1)
s (Sks g gy — ks 5
0, (f2 29— P2 2 29) + T4, C,0)].

What we have to do now is to compute va(s).
As in Section 2, we will write C,,(s) for C, (s) if x, is the standard orbital
representative of the local orbit V;. Clearly

(3.16) C,,(s) = I (sN7'T,@2s, @) — T,83 — 25, 0,).
If v 4 2, the right hand side of (3.16) is rather easy to compute All we need

is the following lemma:

Lemma 3.3.

g, (1 — g, )logg,
Q1-g'A—g"
and for any i in the index set of local Gy ~orbits T, (s, @;,) = 0.

Tu(s! q)O,v) =

Proof. The first statement follows from Lemma 3.1 by differentiation. As for

0 ifi#1

the second, one only need to observe that T,,(s, w, @,AY,,) = {1 ?f =1
1 —_—

The Fourier transforms Q),t,, 1=1,2,2(j), are given in (2.10), (2.12) and
(2.15). A quick calculation now shows:

ProposiTION 3.4.
A -g)A+¢™)
20— A —-¢g™a-¢»’
g (- g
20— ¢ - ¢’

C,,(s) = —logg,

CZ,V(S) = 10g qv

and

1—-¢)"0+¢™
2(1 _ qj—ZS) (1 _ qy—ZS) :

Cono(s) =logyq,
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To compute C,,(s) for v| 2 we need
LEmMMA 3.5.  For a non-negative integer J
—js -2 —w 1(w+1 -$)
) 1— 1—
Tu(s’ w, T2¢(]),V) = & —-s & ( —fbw) + w+1 s( —)1 —wy ’
1—q° 1—g, 1- ) — )
and
I oy =%~ loga, a""logg,0~q™)  ja,""logg,
Y =gt el g -na-¢ 147
_ 2 if 7 1S even
where j = iv1 .
if 7 is odd
Proof.

TG, w, T,8,) = [ |t 15 sup(1, | u, |,)"du,d"t,
t en’o tyu,€0,

= It 1 (1 + Z ¢'q,1 —gq, ))d t

t,eni,0,
q—l _ q—l—w 1— q—l
R (P Y T y— )t
tyem,0, 1— q, (1 - )(1 )
q;]’s —1(1 _ qu—w) qi(w+1—-s)(1 _ q,,_ )
+ —l 1,0)

_l_q;-s 1_qv—1w (1_ w+1s)(1

as claimed. The formula for T,(s, (Dé,,,) can now be obtained by straightforward
differentiation.

Using (2.17), (2.19) and (2.22)—(2.24) we can now find C,,(s). We spare the

reader a tedious calculation and just list the final result here.

ProposiTION 3.6. For v |2
Z—-ZS)

Cl,v(s) = 10g qu[_ ( _(11)_(1q” 1- Zs) + m
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_a+g™ o 121,a+gha—g™ ]
20—¢  20-¢HA—-g™Ha—g™"

1 |2| (1 _ ql-ZS)Z
C,, () =logg,|— 5 + o ]
2 [ 2 2(1_%25)(1_45 2s)}

Jory=1,..., m,

~ e 2 ,,(1 _ ;2) ;"(23—1)(1 _ i—ZS)Z
Coun(9) = log g, |~ 201 — ¢ )g/ ™™ + = a : _zf) a Hsf |,
—¢NU—g¢

and
s o, A=¢Ha—¢™
szmu'l'l,y(s) = | 2 LZ; ? lOg qv[_ 2qu ' + 1— q2—2$

-1 -1 1-2s\ 2
1+ 1-—
+q,,( 51;8)( Z)iz.s‘)}
Q1-¢,A—¢q )

It remains to compute C,,(s) for archimedean places. Before we do this
though, we need to make a slight correction to equations (3.10)—(3.15). As writ-
ten, these equations are only valid if S contains all places of K that lie over 2. To
make (3.10)—(3.12) valid for all S one needs to replace (xs(2s— 1) by

I1,.,7,(2s, 0, Tz@::,) and EK’S (2s) — EK’S (2s — 1) by the logarithmic derivative
K,S K,S

of IsT,(s, w, T,@;,) at w= 0. By Lemma 3.2 T,(s, 0, T,@,,) = Z,(s, 0;.),
Z(s, ;)

3
Thus (3.13) and (3.14) are valid for any S.

so when one pulls out {g¢ in (3.12) one has II 4 = I,esl 11 (5).

Z1<E — s, @0,),)
*

Dy, = (Dgff", and we can compute the logarithmic derivative of T,(s, w,
Tz@;';) at w = 0 using Lemma 3.5. Comparing with the logarithmic derivative of
T,(s, w, T,9,,) at w = 0 we obtain

d d
T 108 T,(s, w, T,@5) luy = w108 T,(s, w, T,9,,) lueo

g 1—g¢™0—g™
1-¢50-¢™
Therefore the version of (3.15) that is valid for any S is

(3.17)

+ mylog g, — log q,

(3.18)

-1 1-2s
_ N B N g, 1—-121)0A-¢ ™)
T,(®) = 0iles(2 — 29 [0,{2(~ 08121, ~ loga 1 -gha-g™ )
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+ (g2 29— g5 @s— 1) — (2 6 - 20 — ¢ 2~ 29)]

K,S K,S

..

Xs- (v}

+ 20
ves

We now specialize to K = Q and S = {00}, In this case (3.18) reads:

- T, (s) = (2 — 25) [;(11(1_;8_;___2_)_ + (% @s) — % (25 — 1)
- (f 3 —25) — —% 2—29)+ Cu(9)]

and

(3.20) T, () = (2 = 29) C,0 ().

By [3], Theorem 0.2, when K = Q and S = {0} § (s) = &,(s) and &, (s) =
n&_(s) where £,(s) are the Dirichlet series of Shintani [12]. Thanks to [12],
Theorem 2, we know what the remainder is in this case (see (0.1)). Comparing
(3.19) and (3.20) with (0.1) we obtain:

PROPOSITION 3.7. Let v be a real place of K. Then

oo -3 (5w - E (- D)

and

/A

Con(s) = 2sin s’

It would be interesting to obtain C;,(s), i = 1,2, for a real place v of K
directly without referring to the work of Shintani. I leave this project, however, to
those readers who are more profficient in real analysis than [ am.

-1 2|z, c+lxylct+2lzsle)

Finally, let v be a complex place of K. Let @(x) = e where
|.2:|C here denotes the complex modulus of x. The function @(x) is %C—invariant.

Moreover, @* = 20, By (2.2)

Z(s, ®) = fx f l t‘ch—le—n(!t!c+2lulc)dxtdu
(3.21) e
=@ [ [ e Adu = 2250 @s — D).
0 0
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_ s —n(ltlc lulc w X
T.2s, w, T,0) —fcxfcmge Hle2010) () 4| gy | ) dued™t
_ 2 ® * 2s —m(14+2w) w X
(3.22) (2n) j; f; e A+ w dud 2
A7* 5 (2s) fo A+ 207 + ) "dpe.

The last integral can be evaluated in terms of hypergeometric functions. In fact, it
1
F<23 2s—w—1; 23—w,2>

2s —w—1

equals 2% . We, however, are only interested in

its derivative with respect to w at w = 0. Differentiating, we obtain

T,(2s, @ = 4x*I@s) [ (1 + 20 logl + wdu
0
(3.23)

2-2s

= *—Zﬂf (14207271 + w lde.

Set 7= (1 + 2¢)~". Then
1 25—2
T
A+o 4
1

25—z

_ = 1 I
eoreen (5 (- ) F o).

Substituting (3.24) and (3.21) in (3.14) we obtain:

T,2s, @) = 27" *I(2s — 1)

g S

z ZsF(z -1 Z

i

ProrosiTION 3.8. If v is a complex place of K,
I’ 1 I’ 1 /1
=5 (F (-3 -Fe-v)-5(Fa-9-%(G-5)
We summarize our results in the theorem below:
THEOREM 3.9.  The Dirichlet series & (s), E:s (s) satisfy a functional equation
3 ZS——
g3 —s) = FELL 080 + 1,0

The functional equation coefficients Iy, (s) = Ilesly , (s), and the values of
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Iy, (5) are given in Propositions 2.2, 2.3, 2.5, 2.7 and 2.9. The remainder T, = 0
if Xg 1s non-split n at least two places v € S. If Xg is non-split at just one place v € S,

T, (s) = 028 (2 — 25) Cy (),

where the values of va(s) are given in Propositions 3.4, 3.6, 3.7 and 3.8. If Xg is
split at all v € S,

_1(1_l2l)(1_q1—25)
T,.(s) = 0252 — 29) | 2 (= log| 2], — log g, 2 ; r
o(8) = plys(@ = 2s Les< og|2], ~logg S ) )

+ (C’,"z (25) — S5 (25— 1)) - (C’/"s (3 —2s) — Cﬁj @ - 2s))

K, K,S CK,S

+ £ C,0].

veS

4. Dirichlet series with a modular functional equation

In this section we are going to construct a family of Dirichlet series &(s) =
2,a(mA,°, where A, are rational numbers with bounded denominators, that satisfy

wy B rE - JelE- ) = (@) Toc.

We specialize to K = Q. Take @ = Il,c}q P, where two of the @, satisfy
Z,(s, ®) = 0. Then by Proposition 2.2 Z,(s, ®) =0, and by Lemma 3.2 and
(3.8) T(2s, ®*) = T(3 — 2s, ®) = 0. The functional equation (1.2) now takes a
particularly simple form:

3
(4.2) (5 s, 0) = 26, 0%,
Let H, = Hyg and H() = H, X II,H, . Then H, = H()H. Moreover,
the measure dh on H, equals dh,, X II, dh,.
Write @ = @, X @, where @, = II, ,. By normalizing if necessary we may
assume that all @, are H, -invariant. Then

43)  Z(s, ) fH 1xBIF S 0.h, - ) 0,@dh,

zevy

= 3 oW fH ) P 0uth - Db

TEH\VQ

The last integral was evaluated in [3], Equation 7.6. It equals
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(4.4) et (@) | P(2) |7°Z, (s, @)
where

1 if (H), = (H),;

=11 .
- otherwise
2
and
47
— if x is definite;
U =) Yz

2loge, if xis indefinite.

Here w, is the number of automorphs of x if x is definite, and ¢, is the fun-
damental unit that generates the group of automorphs of x if x is indefinite.

Let (Vl)Q denote the set of indefinite binary quadratic forms with coefficients
in Q that do not split over Q, and (VZ)Q the set of definite binary quadratic forms
with coefficients in Q. Then we have

(4.5) Z(s, ®) = Z,(s, D), (s, D) + Z,(s, D.)E,(s, D)

where

Es, D) = 2 @ P ()| Pl |,

TeH\(V)q

The series &,(s, @,) can be described in more classical terms. Let V; denote

the set of positive definite binary quadratic forms. Since H, = {£ 1, PGL,(Z)),
1

any form in (V,)q is Hy-equivalent to a form in (V;)Q Moreover, ¢, = 5 if

H z-orbit of x coincides with SL,(Z)-orbit of x and ¢, = 1 if H,-orbit of x de-
composes into two SL,(Z)-orbits. Hence

(4.7) E,(s, ®) =21 X %T(QIP(::)I".

2eSL(Z)\(V3)q z

Now let Supp(®,) € (V,)g. Then Z,(s, ®L) = Zl(% — s, q)w) =0, and by

(1.11) and Proposition 2.3
(4.8) Z,(S, 0¥ = ZZS—IE%_ZSI’(S - %)I’(s)cos(ns)Zz(% —s, Q)w).

This combined with (4.2) yields
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ProrosiTioN 4.1.  Let @, = II, @, be a product of locally constant functions with
compact support on VQp such that for almost all p @, is the characteristic function of
Vz, and for one of the primes p Z(s, ®,) =0. Let

LG, 0) = (3) TG, )

where &,(s, @) is given by (4.7). Then
3
L(5 —s, @) = —v2LGs, 8.

The Fourier transform @, = I, d);k. The local measures dx, are self-dual for
1
all p # 2, and for p = 2(P;)* = o @, Therefore we can pick @, so that o) =

C
—= @, where C = x 1. We now have

V2

CoroLLARY 4.2. Suppose D, satisfies the hypotheses of Proposition 4.1 and

C
furthermore ®f = —= @, where C = *+ 1. Then

V2

L5 s, 0) = - CLGs, 0.

We conclude this paper by giving an example of a series satisfying equation
(4.1). Let g be an odd prime. Set

1) @, =, — \/Zq):z;

2) &, =0,,+ 0;,;

3) @, = ®@,, if p is an odd prime other than gq.

Then @, = II, @, satisfies the hypotheses of Corollary 4.2 with C= — 1, and
hence &,(s, @,) satisfies equation (4.1).

The function @:q is given in (2.12). Note that @, , + @, , is the characteristic
function of the set of forms with Z, -integral coefficients whose discriminants are
Z,-units and @, , the characteristic function of the set of forms with Z, -integral
coefficients whose discriminants are non-squares in Z,.

Let H(n) be the number of SLZ(Z) -classes of positive definite integral binary
quadratic forms of discriminant — #, counted with multiplicities as in (0.4). Then
(2.12) and (4.7) imply that
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2 o ety 2 Hmn) - H4n)
p §,(s, D)) A=¢)0=¢g) n=1< n* V2 (4n)°® )
(4.9) +¢* M1 —gh) 2 (H(”) —V2 H(4n)>
’ n=1, n,9)=1 ns (4n)s
7 non—sq. (mod @) n (4n)

The functional equation for the series (4.9) suggests that the inverse Mellin
transform of (27q") *I'(s)&,(s, ®@,) plus an appropriate constant term (necessary
since (27g") °I'(s)&,(s, @) has a simple pole at s = 3/2) is a modular form of
weight 3/2 on 1"0(16(]4). It is indeed so as can be easily seen from Theorem 3.3
and Corollary 3.4 of [1].

The results of this section point to a curious connection between modular
forms of weight 3/2 and zeta functions associated with the space of binary
quadratic forms. It would be extremely interesting to investigate this connection
further.
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