ADDITIVE DIVISIBILITY IN COMPACT TOPOLOGIGAL SEMIRINGS

P. H. KARVELLAS

1. Introduction. A topological semiring $(S,+, \cdot)$ is a nonempty Hausdorff space S on which are defined continuous and associative operations, termed addition (+) and multiplication (\cdot), such that the multiplication distributes over addition from left and right. The additive semigroup $(S,+)$ need not be commutative.

We prove that the set A of additively divisible elements of a compact semiring S is a two-sided multiplicative ideal, containing the set $E[+]$ of additive idempotents, with the property that $(A . S) \cup(S . A) \subset E[+]$. Several well-known corollaries are immediate consequences. Section one also extends material from Wallace [11]. The second section is devoted to the determination of the semiring multiplication when an I-semigroup addition has been specified on an interval of the real line.

Semigroup nomenclature from [3] will be used throughout. Complex products are given by

$$
X . Y=\{x y: x \in X, y \in Y\} \quad \text { and } \quad X+Y=\{x+y: x \in X, y \in Y\} .
$$

The nonempty subset M of a semiring S is a multiplicative ideal if $(S . M) \cup(M . S) \subset M$ and is an additive ideal if $(M+S) \cup(S+M) \subset M$. If the semiring is compact, then minimal ideals (kernels) exist for both the additive and multiplicative semigroups [10]. The idempotent sets are $E[+]=$ $\{x: x=x+x\}$ and $E[\cdot]=\left\{x: x=x^{2}\right\}$. The union of all additive subgroups will be denoted by $H[+]$. Both idempotents and subgroups exist for the compact case [10]. Both $H[+]$ and $E[+]$ are two-sided multiplicative ideals although in general neither set need be closed under addition. For an element x and positive integer n, interpret $n x$ as the n-fold sum of x.
2. The set of additively divisible elements. An element x of a semiring S is said to be additively divisible if for each positive integer n there exists an element y of S such that $x=n y$. The set of additively divisible elements of a semiring will be denoted by A and N shall represent the positive integers. Nets will be written as $\left\{x_{a}\right\}(a \in D), D$ being the directed set.

Theorem 1. Let S be a compact topological semiring. The set A of additively

[^0]divisible elements of S is nonempty and topologically closed. Moreover, $(A . S) \cup(S . A) \subset E[+] \subset A$ and, if S has a multiplicative identity, then $E[+]=A$.

Proof. Because $(S,+)$ is a compact topological semigroup, $E[+]$ is nonvoid [10]. If $e=e+e$, then $e=n e$ for all n in N, implying $E[+] \subset A$. Trivially A is a closed set.

Let $a \in A$ and $s \in S$. For each integer n in N there exists $b_{n} \in S$ such that $a=n b_{n}$. Thus as $=\left(n b_{n}\right) s=b_{n}(n s)$ for each $n \in N$. From the compactness of S the net $\{n s\}(n \in N)$ clusters to an additive idempotent $e[\mathbf{6}$, Theorem 1.1.10]. Denoting the convergent subnet by N^{\prime}, there is a corresponding subnet of $\left\{b_{n}\right\}\left(n \in N^{\prime}\right)$ which must cluster to some element b of S. Writing this convergent subnet as $N^{\prime \prime},\left\{b_{n}\right\} \rightarrow b\left(n \in N^{\prime \prime}\right)$ and $\{n s\} \rightarrow e\left(n \in N^{\prime \prime}\right)$ are convergent nets. From the continuity of multiplication $\left\{b_{n}(n s)\right\} \rightarrow b e\left(n \in N^{\prime \prime}\right)$ is convergent. But $a s=b_{n}(n s)$ for each $n \in N^{\prime \prime}$ and therefore $a s=b e=$ $b(e+e)=b e+b e \in E[+]$. Thus $A . S \subset E[+]$ and similarly $S . A \subset E[+]$ also. Lastly, if the element 1 is an identity for multiplication, $A=A \cdot\{1\} \subset$ $A . S \subset E[+] \subset A$, hence $A=E[+]$.

The following result was obtained by Selden [9].
Corollary 2. Let S be a compact topological semiring, with $S=(S . E[\cdot]) \cup$ $(E[\cdot] . S)$. Then each additive subgroup of S is totally disconnected.

Proof. For each $a \in A$ there exists an element $t \in E[\cdot]$ such that either $a=a t$ or $a=t a$. In either case $a \in E[+]$ and thus $A=E[+]$. Let G be an additive subgroup of S with additive identity e and let C be the identity component of e in G. Then the topological closure G^{*} of G is compact and is a topological group. The identity component C^{\prime} of e in G^{*} contains C and C^{\prime} is a continuum topological group. From a result of Mycielski [5], C^{\prime} is additively divisible and thus $C=C^{\prime}=\{e\}$. Since translation is a homeomorphism, G is totally disconnected.

The corollaries which follow can also be obtained from the results of Wallace [11]. We omit the proofs. A topological semiring $(S,+, \cdot)$ is a (topological) distributive nearring if $(S,+)$ is an algebraic group.

Corollary 3 [2]. The multiplication on a compact and connected topological distributive nearring $(R,+, \cdot)$ is given by $x y=0$, where 0 is the additive identity.

Corollary 4 [1]. Let R be a compact, connected topological ring. Then $R^{2}=\{0\}$.

Corollary 5. A compact topological ring with multiplicative identity is totally disconnected.

The next result finds particular application in the characterization problem treated in section two.

Corollary 6. Let S be a compact semiring which is additively divisible. Then $S^{2} \subset E[+]$. If also S is connected and $E[+]$ is totally disconnected, then $S^{2}=\{e\}$ for some element e in $E[+]$.

The first example will be used in our later work. The additions correspond to I-semigroups of types J_{1} and $\mathrm{J}_{2}[4]$.

Example 1. Let P be the interval $[0,1]$ of real numbers with addition $x+y=x * y$, where $*$ represents ordinary real number product, and let A be the interval $[1 / 2,1]$ with the addition $x+y=\max (1 / 2, x * y)$. Both additions are divisible. If both intervals are to be topological semirings, then $P^{2}=\{0\}$ or $\{1\}$, while $Q^{2}=\{1 / 2\}$ or $\{1\}$.
3. Additively divisible semirings on intervals. In this section the continuum S shall be the interval $[z, u]$ of real numbers, with z minimal and u maximal in the left to right order on the line. Subcontinua will be written $[x, y]$, where $x \leqq y$. That is, $x=x \wedge y$ and $y=x \vee y$.

An I-semigroup is a topological semigroup which is both isomorphic and homeomorphic (iseomorphic) to a semigroup on [0, 1], such that 0 and 1 act respectively as a zero and an identity for the semigroup operation. Pearson has given characterizations of the semiring addition when an I-semigroup multiplication has been specified on an interval $[7 ; 8]$. In this section we shall consider the problem of determining the multiplication when an I-semigroup addition has been defined on the interval $S=[z, u]$.

There exist four possible types of I-semigroup additions [4, Theorem B]. These are listed below, with real number product written as $x * y$.
J_{1} : The interval $[0,1]$ with addition $x+y=x * y$.
J_{2} : The interval $[1 / 2,1]$ with addition $x+y=\max (1 / 2, x * y)$.
J_{3} : The interval $[z, u]$ with addition $x+y=x \wedge y$.
J_{4} : The interval $[z, u]$ with the properties:
(1) z is an additive zero, u an additive identity;
(2) if T is the closure of an interval in $S \backslash E[+], T$ is iseomorphic to J_{1} or J_{2};
(3) if x and y are not in the closure of the same subinterval of $S \backslash E[+], x+y=x \wedge y$.
All I-semigroup operations are divisible. In order to refer to an arbitrary I-semigroup operation on an interval $[x, y]$, either x or y is allowed to assume the role of the identity element. Henceforth we shall consider $(S,+, \cdot)$ to be a topological semiring on the interval $[z, u]$, where $(S,+)$ is one of the J-additions and u is an additive identity.

If $(S,+)$ is either J_{1} or J_{2}, the results of Example 1 are the only multiplications compatible with the addition. That is: $S^{2}=\{z\}$ or $S^{2}=\{u\}$. We require additional examples descriptive of the type of semiring obtainable when addition is J_{3} or J_{4}.

Example 2. Let $T=[a, b]$ be an interval with min addition. If the multiplicative semigroup (T, \cdot) is an I-semigroup, with either a or b as identity, the resulting structure is a semiring. Similarly if $x+y=x \vee y$ in $[a, b]$ and multiplication is any I-semigroup, $(T,+, \cdot)$ is again a topological semiring.

The next example exhibits many of the properties derived in the lemma which follows.

Exumple 3. Let $T=[0,1 / 2]$ with ordinary multiplication and addition $x+y=x \wedge y$. If addition is given by $x+y=x \vee y,(T,+, \cdot)$ is another topological semiring on the same set.

Lemma 7. Let $T=[a, b]$ be an interval, with J_{4} addition, endowed with a multiplication such that $E[\cdot]=\{a\}$ and $(T,+, \cdot)$ is a topological semiring. Then:
(1) T^{2} is continued in the same subinterval L of $E[+]$ which contains the element a.
(2) If x, y and w are in T, with $x \leqq y$, then $x w \leqq y w$ and $w x \leqq w y$; if $x \neq a$, then $x w, w x<x$.
(3) If $x \in T, x T=[a, x b], T x=[a, b x]$ and $T^{2}=\left[a, b^{2}\right]$.

Proof. The J_{4} addition is divisible and thus $T^{2} \subset E[+]$. Since T^{2} is also connected and contains $a=a^{2}, T^{2}$ is wholly contained in L.

Addition in $E[+]$ is min. Let $x, y \in T$, with $x \leqq y$. If either x or y is in $E[+]$, then $x=x+y$. For any $w \in T, x w=x w+y w$ and $w x=w x+w y$. All elements are in $E[+]$, hence $x w \leqq y w$ and $w x \leqq w y$. The same computations are also valid if x and y are in different subintervals of $S \backslash E[+]$. If x and y are in the same subinterval L of $S \backslash E[+]$, there exists $h \in L$ such that $y+h=x$. Then $x+y=y+y+h$ and, because $y w \in E[+]$, we obtain the result $x w+y w=x w \leqq y w$.

Let $x, w \in T$, with $x \neq a$. Then $x \neq x^{2}$ and $x<x^{2}$ implies that $x=x+x^{2}$, hence $x^{2}=x^{2}+x^{3}$. Adding x to both sides, $x=x+x^{3}$ and, by induction, $x=x+x^{n}$ for all $n \geqq 2$. But T is compact and the net of powers of x must then cluster to a, implying that $x=x+a$, which is a contradiction. From $a=a+x, a=a^{2}=a+x a \leqq x a$. Similarly $x a=x a+x^{2} \leqq x^{2}<x$. Now, if $x=x w$, then $x=x w^{n}$ for every integer $n \geqq 2$ and thus $x=x a$, a contradiction. Now, if $x<x w$, then $x=x+x w$, from which $x w=x w+x w^{2}$ and, using the same procedure as above, $x=x+x a$, which is another contradiction. Consequently $x w \leqq x$ and similarly $w x \leqq x$.

For $x, y \in T, a=a+y$ and $y=b+y$, hence $x a \leqq x y \leqq x b$ and thus $x T \subset[x a, x b]$. But $x T$ is connected and contains both $x a$ and $x b$, so $x T=$ $[x a, x b]$. If $a<x a$, there exists a positive integer n such that $x^{n} \in[a, x a)$. Because $n \neq 1$, we have the result

$$
x^{n}=x^{n}+x a=x\left(x^{n-1}+a\right)=x a
$$

which is a contradiction. Analogously one shows that $T x=[a, b x]$ and $T^{2}=\left[a, b^{2}\right]$.

Example 4. Let $T=[a, b]$ with J_{4} addition and let (\cdot) be a continuous multiplication defined on T such that: (1) $E[\cdot]=\{a\}$; (2) if $x \leqq y$, and $w \in T$, then $x w \leqq y w$ and $w x \leqq w y$; (3) if $x \neq a$, then $x w, w x<x$ for all $w \in T$; (4) multiplication distributes over addition. Then $(T,+, \cdot)$ is a topological semiring with J_{4} addition.

The existence of such a multiplication is obvious, since $T^{2}=\{a\}$ satisfies the first three postulates and distributes over addition. It would seem that any solution yielding a complete characterization of the multiplication in Lemma 7 would require a knowledge of the topological semigroups which can exist on the interval [$0,1 / 2$], in which 0 is the only multiplicative idempotent.

Because J_{3} is a special case of J_{4}, it is only necessary to consider the latter. The last example is representative of a topological semiring with J_{4} addition.

Example 5. Let $S=[z, u]$ be a real number interval, with J_{4} addition, in which u is the additive identity. Choose any four points s, e, f and t in the same subinterval L of $E[+]$, where $z \leqq s \leqq e \leqq f \leqq t \leqq u$. Label the resulting intervals as $A=[z, e], K=[e, f]$ and $B=[f, u]$, where A is the union of $C=[z, s]$ and $D=[s, e]$, while B is the union of the subintervals $I=[f, t]$ and $R=[t, u]$. The multiplication on S will be defined so that the set $E[\cdot]$ of multiplicative idempotents lies entirely in $[s, t], S^{2} \subset L$ and K is the multiplicative kernel with left-trivial multiplication. Addition in $E[+]$ is min and the subintervals D, K and I will be contained in L. The multiplication is as follows.

In $K=[e, f]: x y=x$ and $k s=k$ for $k \in K, s \in S$.
In $I=[f, t]: \quad x+y=x \wedge y$ and multiplication is an I-semigroup with identity t and kernel $\{f\}$.
In $D=[s, e]: \quad x+y=x \vee y$ and multiplication is an I-semigroup with identity s and kernel $\{e\}$.
In $R=[t, u]: \quad E[\cdot] \cap R=\{t\}$ and multiplication satisfies the four properties of Example 4.
In $C=[z, s]: \quad E[\cdot] \cap C=\{s\}$ and multiplication is the analogue of Example 4 with $\{s\}$ acting as the multiplicative kernel.
In $F=[f, u]: x y=y x=x$ for $x \in I, y \in R$.
In $A=[z, e]: \quad x y=y x=y$ for $x \in C, y \in D$.
Complex Products: $B \cdot A=B \cdot K=\{f\}$ and $A \cdot B=A \cdot K=\{e\}$.
The resulting structure $(S,+, \cdot)$ is a topological semiring, with J_{4} addition and multiplicative kernel K : the subintervals C, D, I, R, A, B and K are subsemirings. Since products of elements from different subintervals are either trivial or left-trivial in K, the multiplication is easily verified to be continuous and distributive over the addition.

Theorem 8. Let $(S,+, \cdot)$ be a J_{4} addition topological semiring on the interval $[z, u]$ of real numbers. Then:
(1) There exist elements s, e, f and t, all in the same subinterval L of $E[+]$, such that $K[\cdot]=[e, f], E[\cdot] \subset[s, t]$, where $z \leqq s \leqq e \leqq f \leqq t \leqq u$. Moreover, $x y=x$ or $x y=y$ for all x and y in $K[\cdot]$.

Assuming that multiplication in $K[\cdot]$ is left-trivial $(x y=x)$, and labelling the resulting subintervals as $A=[z, e], B=[f, u], C=[z, s], D=[s, e]$, $I=[f, t]$ and $R=[t, u]$, then:
(2) $(A,+, \cdot)$ and $(B,+, \cdot)$ are subsemirings of S, with respective multiplicative kernels $\{e\}$ and $\{f\}$.
(3) $B \cdot A=B \cdot K[\cdot]=\{f\}$ and $A \cdot B=A \cdot K[\cdot]=\{e\}$.
(4) $(I,+, \cdot)$ and $(D,+, \cdot)$ are subsemirings of S, contained in L, and have min addition and I-semigroup multiplications.
(5) $(R,+, \cdot)$ and $(C,+, \cdot)$ are subsemirings, with $E[\cdot] \cap R=\{t\}$ and $E[\cdot] \cap C=\{s\} ;$ the multiplication is given by Example 4.
(6) For $x \in C, y \in D, x y=y x=y$; for $x \in I, y \in R, x y=y x=x$.
(7) $S^{2} \subset L \subset E[+]$.

Proof. Because (S, \cdot) is a compact and connected semiring, the multiplicative kernel $K[\cdot]$ must be a closed subinterval of S contained in $E[+]$. Denote the kernel by $K[\cdot]=[e, f]$. Connectivity requires that the kernel be contained in a single component L of $E[+]$. Similarly $E[\cdot]$ is closed, requiring that elements s and t exist such that $s=s \wedge x$ and $x=x \wedge t$ for all $x \in E[\cdot]$. Because $K[\cdot]$, unless trivial, has a cutpoint, multiplication in the kernel is either left- or right-trivial from [6, Corollary to Theorem 2.4.6]. We assume the former. Thus for $k \in K[\cdot], s \in S, k s=k(k s)=k$ and $K[\cdot] \subset E[\cdot]$, requiring that $z \leqq s \leqq e \leqq f \leqq t \leqq u$.

Consider the subinterval $A=[z, e]=\{x: x=x+e\}$. Because $(A,+)$ is a subsemigroup we need only demonstrate closure under multiplication. For $x, y \in A$ we obtain

$$
\begin{aligned}
x y=(x+e)(y+e) & =x y+e y+x e+e^{2} \\
& =x y+e y+x e+e
\end{aligned}
$$

implying that $x y=x y+e \in A$. Note that $e x, x e \in K[\cdot] \cap A=\{e\}$, and therefore $\{e\}$ is the multiplicative kernel. Similarly ($B,+, \cdot$) is a subsemiring with multiplicative kernel $\{f\}$.

Recall that $B f=\{f\}$ and $b k \in K[\cdot]$ for $b \in B, k \in K[\cdot]$. Since $f=b+f$, we obtain

$$
b k=b k+f=b k+f k=(b+f) k=f k=f
$$

and thus $B \cdot K[\cdot]=\{f\}$. Analogously $A \cdot K[\cdot]=\{e\}$.
For elements $a \in A$ and $b \in B, e=e b=b+e=a e$ and $a=a+e$. Consequently

$$
\begin{aligned}
a b+e & =a b+e b=(a+e) b=a b \\
& =a b+a e=a(b+e)=a e=e
\end{aligned}
$$

and hence $A \cdot B=\{e\}$. Similarly $B . A=\{f\}$ from the equations

$$
\begin{aligned}
b a+f & =b a+b f=b(a+f)=b a \\
& =b a+f a=(b+f) a=f a=f
\end{aligned}
$$

Of the nine set products possible from A, B and $K[\cdot], K[\cdot], B^{2}$ and A^{2} are yet to be determined. Consider the subsemiring $B=[f, u]$, which is the union of $I=[f, t]$ and $R=[t, u]$. Since $I=\{x: f=f+x, x=x+t\}$ and $I . f=$ $f . I=\{f\},\{f, t\} \subset(t I) \cap(I t)$ and therefore $I=t I=I t$. The element t is a two-sided multiplicative identity for I.

Noting that $([s, t])^{2}$ contains both s and t, and that $S^{2} \subset E[+],[s, t] \subset E[+]$ and, indeed, $[s, t] \subset L$. Therefore for $x, y \in I, x+y=x \wedge y$. Now

$$
x y=(x+t)(y+t)=x y+t y+x t+t=x y+y+x+t
$$

so $x y \leqq t$. But $x y \in B$ so $(I,+,$.$) is a subsemiring. Since I$ is irreducibly connected between the multiplicative zero element f and the multiplicative identity $t,(I,$.$) must be an I$-semigroup from the analysis in [4]. In a similar fashion $(D,+, \cdot)$ is a subsemiring, where (D, \cdot) is an I-semigroup with multiplicative identity element s.

Because $s, t \in E[+]$, both $R=[t, u]$ and $C=[z, s]$ are additive subsemigroups. Let $x, y \in R$. Then $t=t+x=t+y$ and

$$
t=(t+x)(t+y)=t+x t+t y+x y=t+x y
$$

which proves closure of R under multiplication. Analogously one shows that (C, \cdot) is a subsemigroup. Lemma 7 can now be applied.

For elements $x \in I, y \in R$, we have that $x=x t$ and $t=t y$ and therefore $x y=(x t) y=x(t y)=x t=x=y x$. A similar result holds for multiplication between C and D.

Lastly, $S^{2} \subset E[+]$ as remarked earlier and is a connected set. Consequently $S^{2} \subset L$.

References

1. H. Anzai, On compact topological rings, Proc. Japan Acad. 19 (1943), 613-615.
2. J. C. Beidleman and R. H. Cox, Topological near-rings, Arch. Math. 18 (1967), 485-492.
3. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Volume I (American Mathematical Society, Providence, 1961).
4. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. 65 (1957), 117-143.
5. J. Mycielski, Some properties of connected compact groups, Colloq. Math. 5 (1958), 162-166.
6. A. B. Paalman de Miranda, Topological semigroups (Mathematisch Centrum, Amsterdam, 1964).
7. K. R. Pearson, Interval semirings on R_{1} with ordinary multiplication, J. Austral. Math. Soc. 6 (1966), 273-288.
8. -Certain topological semirings on R_{1}, J. Austral. Math. Soc. 8 (1968), 171-182.
9. J. Shelden, A note on compact semirings, Proc. Amer. Math. Soc. 15 (1964), 882-886.
10. A. D. Wallace, The structure of topological stmigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112.
11. -_Dispersal in compact semimodules, J. Austral. Math. Soc. 13 (1972), 338-342.

Department of Electrical Engineering,
University of Alberta,
Edmonton, Alberta

[^0]: Received November 16, 1972 and in revised form, January 2, 1974. This research constitutes a part of the author's Ph.D. thesis written at the University of Houston under the direction of Professor M. Friedberg.

