ADDITIVE DIVISIBILITY IN COMPACT TOPOLOGICAL SEMIRINGS

P. H. KARVELLAS

1. Introduction. A topological semiring $(S, +, \cdot)$ is a nonempty Hausdorff space S on which are defined continuous and associative operations, termed addition (+) and multiplication (\cdot) , such that the multiplication distributes over addition from left and right. The additive semigroup (S, +) need not be commutative.

We prove that the set A of additively divisible elements of a compact semiring S is a two-sided multiplicative ideal, containing the set E[+] of additive idempotents, with the property that $(A.S) \cup (S.A) \subset E[+]$. Several well-known corollaries are immediate consequences. Section one also extends material from Wallace [11]. The second section is devoted to the determination of the semiring multiplication when an *I*-semigroup addition has been specified on an interval of the real line.

Semigroup nomenclature from [3] will be used throughout. *Complex products* are given by

 $X.Y = \{xy : x \in X, y \in Y\}$ and $X + Y = \{x + y : x \in X, y \in Y\}.$

The nonempty subset M of a semiring S is a multiplicative ideal if $(S.M) \cup (M.S) \subset M$ and is an additive ideal if $(M + S) \cup (S + M) \subset M$. If the semiring is compact, then minimal ideals (kernels) exist for both the additive and multiplicative semigroups [10]. The idempotent sets are $E[+] = \{x : x = x + x\}$ and $E[\cdot] = \{x : x = x^2\}$. The union of all additive subgroups will be denoted by H[+]. Both idempotents and subgroups exist for the compact case [10]. Both H[+] and E[+] are two-sided multiplicative ideals although in general neither set need be closed under addition. For an element x and positive integer n, interpret nx as the n-fold sum of x.

2. The set of additively divisible elements. An element x of a semiring S is said to be *additively divisible* if for each positive integer n there exists an element y of S such that x = ny. The set of additively divisible elements of a semiring will be denoted by A and N shall represent the positive integers. Nets will be written as $\{x_a\}$ $(a \in D)$, D being the directed set.

THEOREM 1. Let S be a compact topological semiring. The set A of additively

Received November 16, 1972 and in revised form, January 2, 1974. This research constitutes a part of the author's Ph.D. thesis written at the University of Houston under the direction of Professor M. Friedberg.

P. H. KARVELLAS

divisible elements of S is nonempty and topologically closed. Moreover, $(A.S) \cup (S.A) \subset E[+] \subset A$ and, if S has a multiplicative identity, then E[+] = A.

Proof. Because (S, +) is a compact topological semigroup, E[+] is nonvoid [10]. If e = e + e, then e = ne for all n in N, implying $E[+] \subset A$. Trivially A is a closed set.

Let $a \in A$ and $s \in S$. For each integer n in N there exists $b_n \in S$ such that $a = nb_n$. Thus $as = (nb_n)s = b_n(ns)$ for each $n \in N$. From the compactness of S the net $\{ns\}(n \in N)$ clusters to an additive idempotent e [6, Theorem 1.1.10]. Denoting the convergent subnet by N', there is a corresponding subnet of $\{b_n\}(n \in N')$ which must cluster to some element b of S. Writing this convergent subnet as N'', $\{b_n\} \rightarrow b$ $(n \in N'')$ and $\{ns\} \rightarrow e$ $(n \in N'')$ are convergent nets. From the continuity of multiplication $\{b_n(ns)\} \rightarrow be$ $(n \in N'')$ is convergent. But $as = b_n(ns)$ for each $n \in N''$ and therefore $as = be = b(e + e) = be + be \in E[+]$. Thus $A.S \subset E[+]$ and similarly $S.A \subset E[+]$ also. Lastly, if the element 1 is an identity for multiplication, $A = A \cdot \{1\} \subset A.S \subset E[+] \subset A$, hence A = E[+].

The following result was obtained by Selden [9].

COROLLARY 2. Let S be a compact topological semiring, with $S = (S.E[\cdot]) \cup (E[\cdot].S)$. Then each additive subgroup of S is totally disconnected.

Proof. For each $a \in A$ there exists an element $t \in E[\cdot]$ such that either a = at or a = ta. In either case $a \in E[+]$ and thus A = E[+]. Let G be an additive subgroup of S with additive identity e and let C be the identity component of e in G. Then the topological closure G^* of G is compact and is a topological group. The identity component C' of e in G^* contains C and C' is a continuum topological group. From a result of Mycielski [5], C' is additively divisible and thus $C = C' = \{e\}$. Since translation is a homeomorphism, G is totally disconnected.

The corollaries which follow can also be obtained from the results of Wallace [11]. We omit the proofs. A topological semiring $(S, +, \cdot)$ is a (topological) *distributive nearring* if (S, +) is an algebraic group.

COROLLARY 3 [2]. The multiplication on a compact and connected topological distributive nearring $(R, +, \cdot)$ is given by xy = 0, where 0 is the additive identity.

COROLLARY 4 [1]. Let R be a compact, connected topological ring. Then $R^2 = \{0\}$.

COROLLARY 5. A compact topological ring with multiplicative identity is totally disconnected.

The next result finds particular application in the characterization problem treated in section two.

COROLLARY 6. Let S be a compact semiring which is additively divisible. Then $S^2 \subset E[+]$. If also S is connected and E[+] is totally disconnected, then $S^2 = \{e\}$ for some element e in E[+].

The first example will be used in our later work. The additions correspond to *I*-semigroups of types J_1 and J_2 [4].

Example 1. Let *P* be the interval [0, 1] of real numbers with addition x + y = x * y, where * represents ordinary real number product, and let *A* be the interval [1/2, 1] with the addition $x + y = \max(1/2, x * y)$. Both additions are divisible. If both intervals are to be topological semirings, then $P^2 = \{0\}$ or $\{1\}$, while $Q^2 = \{1/2\}$ or $\{1\}$.

3. Additively divisible semirings on intervals. In this section the continuum S shall be the interval [z, u] of real numbers, with z minimal and u maximal in the left to right order on the line. Subcontinua will be written [x, y], where $x \leq y$. That is, $x = x \land y$ and $y = x \lor y$.

An *I-semigroup* is a topological semigroup which is both isomorphic and homeomorphic (*iseomorphic*) to a semigroup on [0, 1], such that 0 and 1 act respectively as a zero and an identity for the semigroup operation. Pearson has given characterizations of the semiring addition when an *I*-semigroup multiplication has been specified on an interval [7; 8]. In this section we shall consider the problem of determining the multiplication when an *I*-semigroup addition has been defined on the interval S = [z, u].

There exist four possible types of *I*-semigroup additions [4, Theorem B]. These are listed below, with real number product written as x * y.

- J₁: The interval [0, 1] with addition x + y = x * y.
- J₂: The interval [1/2, 1] with addition $x + y = \max(1/2, x * y)$.
- J₃: The interval [z, u] with addition $x + y = x \land y$.
- J_4 : The interval [z, u] with the properties:
 - (1) z is an additive zero, u an additive identity;
 - (2) if T is the closure of an interval in S\E[+], T is iseomorphic to J₁ or J₂;
 - (3) if x and y are not in the closure of the same subinterval of S\E[+], x + y = x ∧ y.

All *I*-semigroup operations are divisible. In order to refer to an arbitrary *I*-semigroup operation on an interval [x, y], either x or y is allowed to assume the role of the identity element. Henceforth we shall consider $(S, +, \cdot)$ to be a topological semiring on the interval [z, u], where (S, +) is one of the *J*-additions and u is an additive identity.

If (S, +) is either J_1 or J_2 , the results of Example 1 are the only multiplications compatible with the addition. That is: $S^2 = \{z\}$ or $S^2 = \{u\}$. We require additional examples descriptive of the type of semiring obtainable when addition is J_3 or J_4 .

P. H. KARVELLAS

Example 2. Let T = [a, b] be an interval with min addition. If the multiplicative semigroup (T, \cdot) is an *I*-semigroup, with either *a* or *b* as identity, the resulting structure is a semiring. Similarly if $x + y = x \lor y$ in [a, b] and multiplication is any *I*-semigroup, $(T, +, \cdot)$ is again a topological semiring.

The next example exhibits many of the properties derived in the lemma which follows.

Example 3. Let T = [0, 1/2] with ordinary multiplication and addition $x + y = x \land y$. If addition is given by $x + y = x \lor y$, $(T, +, \cdot)$ is another topological semiring on the same set.

LEMMA 7. Let T = [a, b] be an interval, with J_4 addition, endowed with a multiplication such that $E[\cdot] = \{a\}$ and $(T, +, \cdot)$ is a topological semiring. Then:

(1) T^2 is continued in the same subinterval L of E[+] which contains the element a.

(2) If x, y and w are in T, with $x \leq y$, then $xw \leq yw$ and $wx \leq wy$; if $x \neq a$, then xw, wx < x.

(3) If $x \in T$, xT = [a, xb], Tx = [a, bx] and $T^2 = [a, b^2]$.

Proof. The J₄ addition is divisible and thus $T^2 \subset E[+]$. Since T^2 is also connected and contains $a = a^2$, T^2 is wholly contained in L.

Addition in E[+] is min. Let $x, y \in T$, with $x \leq y$. If either x or y is in E[+], then x = x + y. For any $w \in T$, xw = xw + yw and wx = wx + wy. All elements are in E[+], hence $xw \leq yw$ and $wx \leq wy$. The same computations are also valid if x and y are in different subintervals of $S \setminus E[+]$. If x and y are in the same subinterval L of $S \setminus E[+]$, there exists $h \in L$ such that y + h = x. Then x + y = y + y + h and, because $yw \in E[+]$, we obtain the result $xw + yw = xw \leq yw$.

Let $x, w \in T$, with $x \neq a$. Then $x \neq x^2$ and $x < x^2$ implies that $x = x + x^2$, hence $x^2 = x^2 + x^3$. Adding x to both sides, $x = x + x^3$ and, by induction, $x = x + x^n$ for all $n \ge 2$. But T is compact and the net of powers of x must then cluster to a, implying that x = x + a, which is a contradiction. From a = a + x, $a = a^2 = a + xa \le xa$. Similarly $xa = xa + x^2 \le x^2 < x$. Now, if x = xw, then $x = xw^n$ for every integer $n \ge 2$ and thus x = xa, a contradiction. Now, if x < xw, then x = x + xw, from which $xw = xw + xw^2$ and, using the same procedure as above, x = x + xa, which is another contradiction. Consequently $xw \le x$ and similarly $wx \le x$.

For $x, y \in T$, a = a + y and y = b + y, hence $xa \leq xy \leq xb$ and thus $xT \subset [xa, xb]$. But xT is connected and contains both xa and xb, so xT = [xa, xb]. If a < xa, there exists a positive integer n such that $x^n \in [a, xa)$. Because $n \neq 1$, we have the result

$$x^{n} = x^{n} + xa = x(x^{n-1} + a) = xa$$

which is a contradiction. Analogously one shows that Tx = [a, bx] and $T^2 = [a, b^2]$.

Example 4. Let T = [a, b] with J_4 addition and let (·) be a continuous multiplication defined on T such that: (1) $E[\cdot] = \{a\}$; (2) if $x \leq y$, and $w \in T$, then $xw \leq yw$ and $wx \leq wy$; (3) if $x \neq a$, then xw, wx < x for all $w \in T$; (4) multiplication distributes over addition. Then $(T, +, \cdot)$ is a topological semi-ring with J_4 addition.

The existence of such a multiplication is obvious, since $T^2 = \{a\}$ satisfies the first three postulates and distributes over addition. It would seem that any solution yielding a complete characterization of the multiplication in Lemma 7 would require a knowledge of the topological semigroups which can exist on the interval [0, 1/2], in which 0 is the only multiplicative idempotent.

Because J_3 is a special case of J_4 , it is only necessary to consider the latter. The last example is representative of a topological semiring with J_4 addition.

Example 5. Let S = [z, u] be a real number interval, with J_4 addition, in which u is the additive identity. Choose any four points s, e, f and t in the same subinterval L of E[+], where $z \leq s \leq e \leq f \leq t \leq u$. Label the resulting intervals as A = [z, e], K = [e, f] and B = [f, u], where A is the union of C = [z, s] and D = [s, e], while B is the union of the subintervals I = [f, t]and R = [t, u]. The multiplication on S will be defined so that the set $E[\cdot]$ of multiplicative idempotents lies entirely in [s, t], $S^2 \subset L$ and K is the multiplicative kernel with left-trivial multiplication. Addition in E[+] is min and the subintervals D, K and I will be contained in L. The multiplication is as follows.

In K = [e, f]: xy = x and ks = k for $k \in K$, $s \in S$.

In I = [f, t]: $x + y = x \land y$ and multiplication is an *I*-semigroup with identity *t* and kernel $\{f\}$.

In D = [s, e]: $x + y = x \lor y$ and multiplication is an *I*-semigroup with identity *s* and kernel $\{e\}$.

- In R = [t, u]: $E[\cdot] \cap R = \{t\}$ and multiplication satisfies the four properties of Example 4.
- In C = [z, s]: $E[\cdot] \cap C = \{s\}$ and multiplication is the analogue of Example 4 with $\{s\}$ acting as the multiplicative kernel.

$$In F = [f, u]: xy = yx = x \text{ for } x \in I, y \in R.$$

$$\ln A = [z, e]: \quad xy = yx = y \text{ for } x \in C, y \in D.$$

Complex Products: $B.A = B.K = \{f\}$ and $A.B = A.K = \{e\}$.

The resulting structure $(S, +, \cdot)$ is a topological semiring, with J₄ addition and multiplicative kernel K: the subintervals C, D, I, R, A, B and K are subsemirings. Since products of elements from different subintervals are either trivial or left-trivial in K, the multiplication is easily verified to be continuous and distributive over the addition.

THEOREM 8. Let $(S, +, \cdot)$ be a J_4 addition topological semiring on the interval [z, u] of real numbers. Then:

(1) There exist elements s, e, f and t, all in the same subinterval L of E[+], such that $K[\cdot] = [e, f]$, $E[\cdot] \subset [s, t]$, where $z \leq s \leq e \leq f \leq t \leq u$. Moreover, xy = x or xy = y for all x and y in $K[\cdot]$.

P. H. KARVELLAS

Assuming that multiplication in $K[\cdot]$ is left-trivial (xy = x), and labelling the resulting subintervals as A = [z, e], B = [f, u], C = [z, s], D = [s, e], I = [f, t] and R = [t, u], then:

(2) $(A, +, \cdot)$ and $(B, +, \cdot)$ are subsemirings of S, with respective multiplicative kernels $\{e\}$ and $\{f\}$.

(3) $B.A = B.K[\cdot] = \{f\} and A.B = A.K[\cdot] = \{e\}.$

(4) $(I, +, \cdot)$ and $(D, +, \cdot)$ are subsemirings of S, contained in L, and have min addition and I-semigroup multiplications.

(5) $(R, +, \cdot)$ and $(C, +, \cdot)$ are subsemirings, with $E[\cdot] \cap R = \{t\}$ and $E[\cdot] \cap C = \{s\}$; the multiplication is given by Example 4.

(6) For $x \in C$, $y \in D$, xy = yx = y; for $x \in I$, $y \in R$, xy = yx = x.

(7) $S^2 \subset L \subset E[+].$

Proof. Because (S, \cdot) is a compact and connected semiring, the multiplicative kernel $K[\cdot]$ must be a closed subinterval of S contained in E[+]. Denote the kernel by $K[\cdot] = [e, f]$. Connectivity requires that the kernel be contained in a single component L of E[+]. Similarly $E[\cdot]$ is closed, requiring that elements s and t exist such that $s = s \wedge x$ and $x = x \wedge t$ for all $x \in E[\cdot]$. Because $K[\cdot]$, unless trivial, has a cutpoint, multiplication in the kernel is either left- or right-trivial from [6, Corollary to Theorem 2.4.6]. We assume the former. Thus for $k \in K[\cdot]$, $s \in S$, ks = k(ks) = k and $K[\cdot] \subset E[\cdot]$, requiring that $z \leq s \leq e \leq f \leq t \leq u$.

Consider the subinterval $A = [z, e] = \{x : x = x + e\}$. Because (A, +) is a subsemigroup we need only demonstrate closure under multiplication. For $x, y \in A$ we obtain

$$xy = (x + e)(y + e) = xy + ey + xe + e^{2}$$

= $xy + ey + xe + e$

implying that $xy = xy + e \in A$. Note that $ex, xe \in K[\cdot] \cap A = \{e\}$, and therefore $\{e\}$ is the multiplicative kernel. Similarly $(B, +, \cdot)$ is a subsemiring with multiplicative kernel $\{f\}$.

Recall that $Bf = \{f\}$ and $bk \in K[\cdot]$ for $b \in B, k \in K[\cdot]$. Since f = b + f, we obtain

bk = bk + f = bk + fk = (b + f)k = fk = f

and thus $B.K[\cdot] = \{f\}$. Analogously $A.K[\cdot] = \{e\}$.

For elements $a \in A$ and $b \in B$, e = eb = b + e = ae and a = a + e. Consequently

$$ab + e = ab + eb = (a + e)b = ab$$
$$= ab + ae = a(b + e) = ae = e$$

and hence $A.B = \{e\}$. Similarly $B.A = \{f\}$ from the equations

$$ba + f = ba + bf = b(a + f) = ba$$

= $ba + fa = (b + f)a = fa = f.$

Of the nine set products possible from A, B and $K[\cdot]$, $K[\cdot]$, B^2 and A^2 are yet to be determined. Consider the subsemiring B = [f, u], which is the union of I = [f, t] and R = [t, u]. Since $I = \{x : f = f + x, x = x + t\}$ and $I.f = f.I = \{f\}, \{f, t\} \subset (tI) \cap (It)$ and therefore I = tI = It. The element tis a two-sided multiplicative identity for I.

Noting that $([s, t])^2$ contains both s and t, and that $S^2 \subset E[+], [s, t] \subset E[+]$ and, indeed, $[s, t] \subset L$. Therefore for $x, y \in I, x + y = x \land y$. Now

$$xy = (x + t)(y + t) = xy + ty + xt + t = xy + y + x + t,$$

so $xy \leq t$. But $xy \in B$ so (I, +, .) is a subsemiring. Since I is irreducibly connected between the multiplicative zero element f and the multiplicative identity t, (I, .) must be an *I*-semigroup from the analysis in [4]. In a similar fashion (D, +, .) is a subsemiring, where (D, .) is an *I*-semigroup with multiplicative identity element s.

Because s, $t \in E[+]$, both R = [t, u] and C = [z, s] are additive subsemigroups. Let $x, y \in R$. Then t = t + x = t + y and

$$t = (t + x)(t + y) = t + xt + ty + xy = t + xy$$

which proves closure of R under multiplication. Analogously one shows that (C, \cdot) is a subsemigroup. Lemma 7 can now be applied.

For elements $x \in I$, $y \in R$, we have that x = xt and t = ty and therefore xy = (xt)y = x(ty) = xt = x = yx. A similar result holds for multiplication between C and D.

Lastly, $S^2 \subset E[+]$ as remarked earlier and is a connected set. Consequently $S^2 \subset L$.

References

1. H. Anzai, On compact topological rings, Proc. Japan Acad. 19 (1943), 613-615.

2. J. C. Beidleman and R. H. Cox, Topological near-rings, Arch. Math. 18 (1967), 485-492.

- 3. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Volume I (American Mathematical Society, Providence, 1961).
- P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. 65 (1957), 117-143.
- 5. J. Mycielski, Some properties of connected compact groups, Colloq. Math. 5 (1958), 162-166.
- 6. A. B. Paalman de Miranda, *Topological semigroups* (Mathematisch Centrum, Amsterdam, 1964).
- 7. K. R. Pearson, Interval semirings on R_1 with ordinary multiplication, J. Austral. Math. Soc. 6 (1966), 273–288.
- 8. Certain topological semirings on R₁, J. Austral. Math. Soc. 8 (1968), 171–182.
- 9. J. Shelden, A note on compact semirings, Proc. Amer. Math. Soc. 15 (1964), 882-886.
- 10. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112.
- 11. Dispersal in compact semimodules, J. Austral. Math. Soc. 13 (1972), 338-342.

Department of Electrical Engineering, University of Alberta, Edmonton, Alberta